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Abstract. Losing VoIP packets or speech frames decreases the percep-
tual speech quality. The statistical relation between randomly lost speech
frames and speech quality is well known. In cases of bursty and rate-
distortion optimized losses, a precise quality model is required to relate
losses to quality. In the present paper, we present a model that is based
on the loss impact - or the smportance - of single speech frames. We
present a novel metric to calculate the impact of the loss of multiple
frames by adding the importance of the respective single frames. This
metric shows a high prediction accuracy for distant losses. For losses
following each other closely, we present an aggregation function which
models the psychoacoustic post-masking effect. Our model helps to de-
velop networking algorithms that control the packet dropping process in
networks. For example, we show that a proper packet dropping strategy
can significantly increase the drop rate while maintaining the same level
of speech quality.

1 Introduction

In packet-based communication networks, such as the Internet, packet losses
are a major source of quality degradation. This is true especially for real-time
multimedia services over wireless links such as Wifi-VoIP. One would expect that
the impact of VoIP packet loss' on speech quality is well understood. However,
this is not the case because it is a highly interdisciplinary problem. Multiple
“layers” have to be considered covering the loss process of IP-based networks,
the behavior of speech codecs and frame loss concealment, the psychoacoustics
of the human hearing, and even the cognitive aspects of speech recognition.
State of the art algorithms look up speech quality scores in tables, depending
on the measured loss rate and the speech coding. Alternatively, these tables are
modeled as linear equations or with neural networks [1]. However, the relation
between mean packet loss rate and speech quality is only a statistical description
because the deviation for specific loss pattern can be high and depends on the
content of the lost frames. Also, these relations are only valid for a specific loss

! Speech frames are compressed segments of speech which are generated by an encoder.
VoIP packets carry one or multiple speech frames. Usually, a speech frames or VoIP
packet carry a segment of speech, which has a length of 10, 20, or 30 ms.
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pattern. For example, bursty losses (multiple VoIP packet or speech frame losses
in a row) can have a different impact [2,3] depending on the codec and the
duration of the burst. Lately, rate-distortion optimized multimedia streaming
or selective prioritization algorithms have been introduced [4,5,6], which control
the loss process and select which media frames to drop. If losses cannot be
avoided, they try to drop negligible instead of important media frames. Thus,
they increase the service quality for a given loss rate. The loss rate can be rather
high if only unimportant losses occur (refer to [7]). On the other side, losses of
important frames degrade the speech quality highly.

In the same research context, a method has been developed and validated,
which measures the importance of a single speech frame [8]. The importance of
a speech frame is defined as the impact on the speech quality caused by a frame
loss. In this paper we assume that we can use this method to determine the
impact of one frame loss. Then, the question arises how the impact of multiple
losses can be determined using the importance of single frame losses. The devel-
opment of a novel metric or dimension of frame importance, which simply can
be summed up to get an overall impact of multiple frame losses, is presented
here.

The ITU-T P.862 PESQ algorithm [9,10,11] can assess the impact of one or
multiple frame losses but works only for audio files and not on a speech frame
level. It is an instrumental speech quality assessment tool, which simulates the
human rating behavior of speech quality. It compares two speech samples — the
original sample and the degraded versions, which might include coding and frame
loss distortions — to calculate the mean option score (MOS) value. PESQ by itself
cannot be directly applied on VoIP packets [12] and has a high computational
delay and complexity, which inhibits its on-line and real-time application.

Thus, we remodel the internal behavior of PESQ algorithms using it for frame
losses: We apply the algorithm which PESQ uses to aggregate signal distortions
over time in order to accumulate frame loss distortions over time. This aggre-
gation algorithm is also the basis for the novel importance metric, which allows
adding the frames’ importance linearly and thus has a low complexity. It shows a
high prediction performance, if the losses are distant. If frame losses occur shortly
one after the other, temporal auditory masking have to be considered. We de-
velop a heuristic equation to model these effects. Overall, our approach shows a
high correlation with instrumental speech quality measurements for many loss
patterns.

The following paper first describes the required technical background. We
also give an example showing the impact of the packet dropping strategy on the
speech quality. Then, we present the approach on how to assess multiple speech
frame losses. In the fifth chapter we compare our approach with the PESQ’s
speech quality predictions. Finally, we summarize this work and give an outlook
to further research.
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Fig. 1. Overview of the basic architecture of PESQ [9].

2 Background
2.1 PESQ

The Perceptual Assessment of Speech Quality algorithm predicts human rating
behavior for narrow band speech transmission. It compares an original speech
fragment with its transmitted and thus degraded version to determine an esti-
mated mean option score (MOS), which scales from 1 (bad) to 5 (excellent). For
multiple known sources of impairment (typical for analogue, digital and packe-
tized voice transmission systems) it shows a high correlation (about R = 0.93)
with human ratings. In the following we will describe some details of PESQ
because they are required to understand the following sections.

Overview: PESQ transforms the original and the degraded signal input to
internal representations of a perceptual model. If the degraded signal is not time
aligned, e.g., due to jitter or delay, it is first adjusted to the original signal [10].
Next, the perceptual difference between the original signal and the degraded
version is calculated [11] considering the human cognition of speech. Finally,
PESQ determines perceived speech quality of the degraded signal (see Fig. 1) .

Computation of the PESQ MOS score: The final MOS score is simply a linear
combination of so called normal and asymmetrical disturbance. In most cases,
the output range will be a MOS-like score between 1.0 and 4.5, the normal range
of MOS values found in human subjective experiments:

PESQMOS =45-0.1- Dindicator —0.0309 - Aindicator (1)

with Djndicator being the normal disturbance and A;pgicator being the asym-
metrical disturbance. Before this final calculation the following processing steps
are conducted:

Time-frequency decomposition: PESQ’s perceptual model performs a short term
FFT on the speech samples that have been divided into 32 ms phoneme. The
phoneme overlap each other with 50% so that each position within the sample
is covered by exactly two phonemes. PESQ calculates the spectral difference
between orignal and degraded to calculate distortion of at given phoneme.
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lables (320 ms). The lengths presents pre- and post-masking occur (shaded
have been chosen because they yield areas) if a masker is present [14].
highest prediction performance.

Asymmetric effect: If high correlation between PESQ and subjective listening-
only ratings [13] should be achieved, an asymetric effect has to be considered:
Humans do not know the quality and spectrum of the original speech because
they just hear the degraded speech. Actually, they compare the degraded speech
with an immagetive original, which differs to the original by lacking curtain
spectrum components. It is caused by the fact that the listener adapts to con-
stant limitations of the transmitted signal spectrum. PESQ models this behavior
and calculates separately two perceptual differences for both the normal and the
asymmetric signals. Both disturbances are aggregated separately over time. Fi-
nally, they are combined.

Weighting of disturbances over time: PESQ uses a two layer hierarchy to group
phonemes to syllables and to aggregate syllables over the entire sample length
(Fig. 2). Twenty phoneme disturbances are combined to one syllable distortion
with (2). Phonemes are aggregated with an exponent of 6 to model a cognitive
effect: Even if only one phoneme is distorted, it is not possible to recognise the
syllable anymore [15]. The authors of PESQ argue that this is a cognitive effect
which needs to be considered for high prediction performance.
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A syllable has the length of 320 ms. Similar to phonemes, syllables are also
50% overlapping and cover half of the previous and following syllables. The sylla-
bles are aggregated with (3) over the entire sample. Syllables are aggregated with
an exponent of 2 because disturbances occurring during active speech periods
are perceived stronger than those during silence [15].

N
1
AorDindicator = N Z Syllableﬁnodrz'?ator [’I’L]2 (3)
n=1



2.2 Temporal Masking

Zwicker and Fastl [14] describe temporal masking effects which characterize the
human hearing: The time-domain phenomena pre- and post-masking plays an
important role (Fig. 3). If faint sound follows shortly after a loud part of speech,
the faint part is not heareable because it is masked. Also, if the maskee precedes
the masker it vanishes.

If the temporal masking effect is applied to distortion values, the distinction
between masker and maskee on the one side and between pre- and post masking
the other side is difficult. If a frame got lost, it causes a distortion, resulting in a
segment of speech which can be louder or fainter than the previous segment. If
it is louder, the previous segment is pre-masked, if it is fainter, the loss is post-
masked. Thus, if one considers only distortion, it is not possible to distinguish
pre- and post-masking. Instead, the same amount of distortion can cause pre-
or post-masking or can be effected itself by pre- or post-masking, depending on
the loudness of the resulting speech segment.

This perceptual effect denoted as temporal masking had been considered as
an addition to the PESQ algorithm. However, after implementing it, it never
showed any improvements to the prediction performance of PESQ. Thus, it was
not included.

2.3 Single Frame Loss and Importance

In [8], a measurement procedure was presented, which determines the impact of
single frame losses. It is based on PESQ and consists of two speech quality mea-
surements: First, a speech sample is encoded and decoded again. PESQ compares
this degraded sample with the original to estimate the impact of the encoding
process. Next, the same speech sample is encoded and one (or multiple frames)
are dropped. Then, the encoded frames are decoded or concealed, depending
whether the frames are lost. Again, PESQ calculates the MOS value. The im-
pact of the frame loss is now identified by comparing the pure coding-degraded
MOS value with the MOS value containing additionally the frame loss. The au-
thors have conducted two million measurements with speech samples containing
deliberately dropped packets. For example, Fig. 4 displays the distribution of
MOS values, varying the sample content and the location of the lost packet in
samples having a length of 8 s. The results show that the encoding has a large
impact on the speech quality as well as the sample content (e.g., speaker and
sentence). One can see that the coding distortion varies widely and depends on
the sample content. Figure 4 shows also the impact of losing one and two speech
frames. The frame distortion remains small.

Originally, PESQ has not been designed for measuring the impact of single
packet losses and in such case works outside its specification [9]. Therefore this
application has been verified with formal listening-only tests. Humans’ subjective
ratings and the predictions of PESQ have a cross correlation of R=0.94 [7].
PESQ therefore reflects well the single frame measurements.
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for varying sample contents.

In [8], an importance metric has been firstly introduced. It its defined as fol-
lows: If a sample is encoded, transmitted and decoded, the maximum achievable
quality of a transmission is limited by the coding performance, which depends
on the codec algorithm, its implementation, and the sample content. Some sam-
ples are more suitable to be compressed than others (see Fig. 4). For a sample
s, which is coded with the encoding and decoder implementation ¢, the quality
of transmission is M OS(s,c). The sample s has a length of ¢(s) seconds. As
explained above, the quality is not only degraded by encoding but also by frame
losses. If such losses occur, the resulting quality is described by MOS (s, ¢, e).
The vector e describes a loss event. The following empiric equation (4) describes
how to calculate the importance. If this equation is applied on the data dis-
played in Fig. 4, one can see that most speech frames during voice activity are
not important at all (Fig. 5).

Imp (s, ¢,e) = (MOS (s,¢) — MOS (s, ¢, €)) - t(s) (4)

Still, one drawback remains. Equation 4 can only measure the effect of a
single frame loss. If it is used to add the impact of two or more lost frames, it
does not scale linearly with the number of frames [8]. Thus, the aim of this paper
is to develop an “additive” metric.

3 Example: Frame Dropping Strategies

We have described a method to classify the impact of single and multiple frame
losses. But how cam this be applied? In the following we assume a scenario in
which we know the importance of each frame and in which we can control the
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loss process - e.g. which frames can be dropped. We assume that we can drop
frames at any position and show, how the frame dropping strategy influence the
speech quality.

In our simulations, we increase the dropping rate from 0% to 100% in steps
of 2% using adaptive-multi rate (AMR) coding at 12.2 kbit/s (other codecs give
similar results). We use 832 different samples but consider only the mean MOS
value over all sample variations. In Fig. 6 we have displayed the speech quality
depending on the frame loss rate. If frames have to be dropped, which frames
should be dropped? Classic approaches chose the frames randomly (line “ran-
dom”). Discontinuous Transmission (DTX) algorithms detect the voice activity
(VAD) to interrupt the frame generation. They reduce the transmission rate
during inactive speech periods while maintaining an acceptable level of output
quality. Thus, a DTX algorithm would first drop silent frames, and then active
frames (line “DTX”). Using the metric of frame importance, we introduce two
novel strategies: As a worst case we consider the dropping strategy that drops
the most important frames first. The second called “best” loss strategy prefer-
entially drops the less important frames, and only at high loss rates important
frames are dropped. One can see that the “best” loss strategy performs better
than the DTX and random case. In case of the worst strategy, the speech quality
drops very fast.



4 Additive Metric

A metric that describes the importance of frames shall fulfil the following re-
quirements: First, it should be easily deployable to quantify the impact of frame
losses. Consequently, the loss distortion should be measurable with off-the-shelf
instrumental measurement methods like PESQ (or any other successor). For ex-
ample, it should be able to calculate the metric with two speech quality measure-
ments: with loss and without loss. Second, the metric shall be one-dimensional.
Of course, the distortions caused by frame loss can have many effects. How-
ever, it shall be modeled as a one-dimensional quality scale because this would
simplify the development of algorithms that utilize this metric. Last, it should
be possible to give a statement like “frame A and frame B are as important as
frame C” or “frame A is three times more important than frame B”. In a math-
ematical sense, this requirement is called additive property. It is of importance
when frame loss impacts are to be applied in analytical contexts such as the
rate-distortion multimedia streaming framework by Chou and Miao [6].

The development of such a metric is based on the idea to study the internal
behavior of PESQ and to remodel it for frame losses. PESQ predicts the impact of
frame loss rather well but is far too complex to be applied on a frame basis. Thus,
a simpler model is required that only contains the issues that are relevant. The
proposed approach is based on the following three principles. First, we assume
that the importance of frames is known. For example, the method described in
section 2.3 can be used for offline purposes. A real-time classification of frame
importances is beyond the scope of this paper and is addressed in [16]. Second,
if two or more frame losses have a distance of more than 320 ms, the importance
values, as calculated by (10), can simply be added. Last, if two losses occur
shortly after each other, then (12) is required to add the importance values. In
the following it is described how we have developed this approach by remodelling
PESQ’s behavior.

Asymmetric effect: PESQ judges the impact of distortion with two factors,
the asymmetric and the normal distortion. In case of frame loss, the overall
coding spectrum, which influences strongly the asymmetric effect, is not changed
because the impact of a frame loss is limited to the position of its loss and does
not change the rest of the sample. Also, the asymmetric effect is mainly caused
by the encoding and not by frame losses. Therefore it is reasonable to neglect
the difference between asymmetric and normal distortion and consider just the
sum of them.

Long-term aggregation: In general, the weighting of disturbances over time is de-
termined as in PESQ. Thus, the syllable disturbances are added up as described
in (3). Contrary, we consider disturbances of speech frames instead of syllables.
The disturbance consists of coding as well as loss distortion as shown in (5). If
frame losses are not present, the term dist;ss [i] is zero.

sylablleindictor [1] = disteoding [t] + distioss [¢] - (5)



Combining (3) and (5) we can write

N
1 . .
(AO?“Dindicator)Q = N Z (dlStcoding [’I’L] + distioss [n])2 (6)

n=1

and transform (6) to (7):

N - (AOTDindicatOT)2 - 27];1:1 diStcoding [n]2
= qujﬂ (distloss [n]2 + 2 - distcoding 1] - distioss [n])

(7)

As an approximation we combine both asymmetric and symmetric distur-
bances. Then, (1) can be simplified to:

MOS =4.5— AOTDindicatOT (8)

with AorDindicator = 0.1+ Dindicator — 0.0309 - Aindicator-Combining (7) and (8),
we get:

((4.5 — MOS (s, ¢,¢))* — (4.5 — MOS (s, c))2) N
=N (distloss (0] + 2 - disteoding [1] - distioss [n])

with MOS (s, ¢) being the speech quality due to coding loss and MOS (s, ¢, €)
being the speech quality due to coding as well as frame loss. Equation 9 is the
basis of our new importance metric. One can see that if a loss distortion does
not overlap within one syllable, the distortions can simply be added. We define
(10), which approximates a linear scale better than (4).

(9)

Imp (s,c,e) = (cl—c)-t(s) 1
with l = (4.5 — MOS (s, ¢,e))? and ¢ = (4.5 — MOS (s, ¢))? (10)
Short-term aggregation: For the short term aggregation, we first model the im-
pact of two frame losses with two delta impulses at time ¢, and ¢, with the height
of imp, and impy representing the importance. If the distance ty;q:n = tp — tq
is larger than 320 ms, adding of the importance values is done as described in
the previous section. Otherwise, it is calculated as explained below.

First, we calculate the probability that both losses occur in the same syllable.
We assume that syllables start at 0,320, ... ms and have a length of ¢,y = 320
like in PESQ. Because of the re-occurrence pattern of syllables, it is sufficient to
consider only the period of 0 < t, < tsu. The overlapping of syllables can be
neglected, too. The probability that the two losses are within a syllable is

o [0ty + twiaen > ts
]Din.syll (twidth) = ftt‘ o { 1 ¢ width sylt } dta

tayir Jta=0 otherwise

B 0 if twideh > tsyu
1 — Ledtn otherwise

sy

(11)

If two losses are within a syllable, PESQ adds them not with an exponent of
p = 2 but with p = 6 (2). Because it is not simple to remodel PESQ’s algorithm,
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<3%, ITU G.711/729 <4%) the correlation between measured and predicted
importance is very high.

we introduce the following heuristic function (Eq. (12) and Fig. 7), which shows a
similar behavior as PESQ. For a loss distance longer than the length of a syllable,
it simply sums up the importance values. If it is lower, the importance values
are added but the sum is leveled with a factor 1 — P, sy1. Also, if the distance is
short, we use an another addition, which sums up the square importance values.
Again, this later addition is leveled by the probability of Pj, syu. Actually, we
also tested to add cubics of importance values to model the effect of p = 6 but
this solution did not let to higher correlation coeffiency.

add (impa, impe, twidtn) =
{Zmpa + ,meb lf twidth > tsyll (12)

(impa + impy) %‘—"ﬁh +Vimpa® + impy? (1 — M) otherwise

tsyll

Equation 11 partially models the time-frequency masking effect, which causes
a masking of minor distortions by nearby louder ones. However, PESQ models
the temporal masking effect only in the statistical mean. PESQ’s masking is
stronger — or at least longer — than the pre- or postmasking effect. It can be
seen if one compares Fig. 3 with 7. This observation explains why it was not
necessary to add time masking effects to PESQ: It is already included.

10
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5 Validation

We consider a scenario, in which frame losses occur randomly, and we deter-
mine the speech quality for a given frame loss rate. The same scenario has been
conducted in [8] with the old metric based on (4). The experimental set-up is
described briefly: We follow recommendation ITU P.833, conduct many instru-
mental speech quality measurements, and vary the coding, the sample, and the
loss pattern: A speech sample is encoded, frame losses are enforced depending
on the experimental requirements (e.g., random frame loss), the frames are de-
coded or concealed, and finally PESQ calculates the MOS value by comparing
the original sample with the degraded version.

Figure 8a displays the relation between the rate of random frame losses and
speech quality for different codecs: The higher the loss rate the worse are PESQ’s
speech quality ratings. Next, we calculate the importance of all frame losses
(Fig. 8b). At a loss rate of 0% the importance value is 0. As long as the loss rate
is low, the importance increases linearly with the loss rate.

If the impact of frame losses can be added, the following statement is valid:
The overall importance of the loss of IV frames can be calculated by multiplying
the mean importance with N (13). In Fig. 9, the mean importance depending
on the loss rate is displayed. For low loss rates the importance is a bit underes-
timated. In case of loss rate above 8%, it is clearly underestimated. One should
note that in this experiment the masking is not considered.

Imp (s, ¢, lmean) - N = Imp(s,c,{l1,...,In}) (13)

The next experiments reseembles the measurements of single frame losses
described in [8], but this time we dropped two speech frames instead of one.
Between both losses there is a lossless gap of 40, 80, 160, 320, or 640 ms. In Fig. 10

11
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we display the importance averaged over all single frame losses, vertically sorted
according to the encoding scheme and marked with Single on the horizontal axis.
Also, we display the importance of the second frame Is, if the first frame [ is
lost already. The importance value is calculated using (14).

Imp (s, ¢, {lo | 11}) = ((4.5 — MOS (si,¢,{l1,12}))> —

) (14)
(4.5 — MOS (si, ¢, {11})) ) “t(s)

Considering the G.711 results, one can see that the nearer the frame losses
are, the lower the importance of a frame becomes. This effect can be explained
with the temporal masking effect [14]. However, the mean importance for two
AMR frame losses increases significantly, if the loss distance is 40 ms. We as-
sume that this effect is due to a mismatch between the encoder’s and decoder’s
internal state. The first loss results into to a desynchronized decoder. The ap-
plied loss concealment leads to a wrong prediction of frames’ content. Since the
de-synchronisation of the decoder can last for multiple following frames (up to
700 ms [16]), the mean impairment due to the concealment of the second loss
can be significantly higher. This effect occurs only with the AMR, codec, thus
we will not consider it in this work any further.

12
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Fig. 12. Importance of a block of frame losses (red/square: PESQ, green/circle:
our approach, black lines/cross: cross correlation R)

Figure 11 displays the prediction performance of losing two speech frames
compared to the sum of losing two individual frames. The correlation coefficient
between the importance of the double loss case and the sum of both single loss
case is calculated and displayed. The correlation for a distance of >320ms is
about R>0.98 and drops down to a minimum of R=0.78 at a distance of 40ms.
This effect can be explained with concealment and error propagation effects that
are not modeled in our model.

In the next experiment we study the effect of bursty frame losses. We dropped
one block of continuing speech frames within a sample length of 8 s. The du-
ration of the complete block was between 10 to 80 ms (in Fig. 12 the red lines
marked with a square). Also we used our model to add the importance of the
corresponding single frame loss (the green lines marked with a circle). To calcu-
late the importance of the burst loss we use (15) with N being the number of
continuously lost frames, pos the position of the first lost frame, and I'mp;,, the
importance of a frame loss at position pos.

Imp* (N, pos) = {Imp”“ =1 (15)

add (Imp* (N — 1, pos) ,Imp;;os+N_1,O) ifN >1

The correlation (R) between PESQ and our model is displayed with black
lines. The longer the loss burst, the worse the cross correlation. Our model give
a lower impact of bursty losses as PESQ. This modelling is in line with the
indications that PESQ displays an obvious sensitivity to bursty losses judging
them worse than humans do [2].
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6 Conclusion

This paper describes the impact of speech frames loss by considering their tem-
poral relation. It is based on the concept of the importance of speech frames and
models psychoacoustic aggregation behavior over time. Thus, our model covers
an important aspect in the relation between speech frame losses and speech qual-
ity. Our model shows a high prediction accuracy for many loss patterns when
compared to PESQ. Additionally, our time aggregation function has a very low
complexity. However, before it can be fully applied, three issues have to be ad-
dressed:

First, the measurement of speech frame importance in [8] has a high com-
putational complexity and delay. Thus, it cannot be applied online. We provide
solutions in [16] that decrease delay and complexity at cost of a lower prediction
accuracy. The question remains whether the lower prediction accuracy influences
the performance of our time aggreation function.

Second, we compare the performance of our aggregation algorithm to the
same PESQ algorithm, which we used to derivate and remodel our algorithm.
We achieve a high prediction performance. However, it is still an open point how
well our algorithm performs, if it is compared to subjective listening-only test
results. The verification with databases containing subjective results is subjected
of future studies.

Last, further studies are required to see how our metric scales at high loss
rates. Definitely, the effects of concealment and error propagation play an im-
portant role if losses are frequent or bursty and need to be modeled.

Nevertheless, the given results contribute to research and standardization:
First, they enable researchers developing communication protocols to model the
impact of frame loss with a high accuracy. For example, it can be applied for
algorithms that prevent frame loss burstiness. Second, this work provides also
feedback to the developers of PESQ or similar algorithms, as it explains why
PESQ does not require temporal masking: It was already included. Third, it
identifies weaknesses of frame loss concealment algorithms (e.g. AMR). Last
but not least, our work is directly intended for the standardization process of
ITU-T P.VTQ, as it can been seen as an alternative or complementary algo-
rithm to the ITU’s E-Model, Telchemy’s VQmon and Psytechnics’ psyVOIP
algorithms [17,18], which relate VoIP packet loss and delay to service quality.

To show the relevance of the questions addressed in this paper, we demon-
strate the impact of the packet dropping strategy on speech quality: Using the
knowledge about frame importance, simulations and informal listening-only tests
show that only a fraction of all speech packets need to be transmitted if (at least)
speech intelligibility is to be maintained. Knowing the importance of speech
frames might allow significant energy savings on wireless phones, because fewer
packets need to be transmitted.
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