
Calculating Relative Clock Drifts
Using IEEE 802.11 Beacons

Ram Krishna
Department of Electronics and Communication Engineering

Indian Institute Of Technology Guwahati
781039, Assam, India

Christian Hoene
Interactive Communication Systems (ICS)

Universität Tübingen
72076 Tübingen, Germany

Abstract—This paper proposes an approach to calculate the
relative clock drift occurring between two communicating nodes
in an WLAN system using IEEE 802.11 beacon frames. The
IEEE 802.11 beacon frames contain a timestamp field that tells
the time at which the packet was sent from the transmitting
node. If a IEEE 802.11 packet is received, the WLAN card
stores a timestamp that precisely depicts the time at which the
packet was received. Using these timestamps, we developed an
algorithm that calculates the relative clock drift between two
nodes and conducted many experimental measurements using off-
the-shelf WLAN cards showing the clock drifts under different
circumstances. Knowing the relative clock drifts is important for
two-way time-of-arrival (TOA) location tracking.

I. I NTRODUCTION

State of the art localization technology has aroused con-
siderable research interest in the last 20 years due to a wide
range of application areas. The popularity of the localization
technology stems from the fact that the traditionally used
outdoor localization technology GPS system is hard to be
implemented in indoor and dense urban areas. As the satellite’s
signals are reflected and/or diffracted by building structures,
the receiver can not receive clear and strong satellite signal for
localization purposes in such areas. Therefore, WLAN based
location tracking algorithms have been developed. The most
popular of all localization technology uses the Received Signal
Strength Indications (RSSI) for determining the position of
WLAN nodes, which is now a mature technology.

Location tracking based on time of arrival (TOA) algorithms
measures the duration of the propagation of the physical
transmission signal, which travels at the speed of light through
vacuum. As compared to RSSI measurements, TOA has the
benefit that its measurement results scale linearly with the
open-air propagation distances. In our previous work [1], we
have shown that even off-the-shelf IEEE 802.11 network inter-
face cards can conduct time of flight measurements at accuracy
of few meters even though the resolution of timestamps is only
1 µs or 300 m. We utilized the immediate acknowledgements
of the IEEE 802.11 protocol to measure the round trip time
of packets.

Because of drifting clocks, the TOA measurements are
subjected to a time varying clock quantization effect, which
helps to get results below the resolution of a single TOA
measurement. Because we take advantage of rounding the
alternating errors of clock quantization, the clocks of different

nodes must not be synchronized and clock drifts must be
present.

Sometimes, WLAN cards synchronize their clocks with the
clocks of other nodes. In these cases, the clock drift is in the
order of ppb (as compared to the typical±25 ppm of normal
quartzes) and the two-way TOA measurement does not work
anymore. Thus, it is important to determine the clock drift to
know whether the results of two-way TOA measurements are
meaningful. In this paper we present an algorithm to determine
the clock drift using IEEE 802.11 beacon frames.

The IEEE 802.11 standard defines various frame types that
nodes use for communication purpose, as well as for managing
and controlling the wireless link. Every frame has a control
field that depicts the 802.11 protocol version, frame type, and
various indicators, such as whether WEP (wired equivalent
privacy) is on, power management is active, and so on. In
addition all frames contain MAC addresses of the source
and destination station (or access point), a frame sequence
number, frame body and frame check sequence (used for error
detection).

IEEE 802.11 data frames carry protocols and data from
higher layers within the frame body. A data frame, for ex-
ample, could be carrying the HTML code from a web page
(complete with TCP/IP headers) that the user is viewing.
Other frames, that stations use for management and control,
carry specific information regarding the wireless link in the
frame body. For example, a beacon’s frame body contains the
Service Set Identifier (SSID), timestamp, and other pertinent
information regarding the access point.

The access point (AP) in a WLAN periodically sends a bea-
con frame to announce its presence and relay information such
as timestamp, SSID, and other parameters regarding the AP to
radio NICs that are within range. Radio NICs continually scan
all 802.11 radio channels and listen to beacons as the basis
for choosing which access point is best to associate with.

In this publication, we selected the beacon frame as the
basis for determining the clock drifts that occur in the wireless
LANs devices. Every AP in WLAN periodically transmits
beacon frames with the broadcasting time, which is stored in
a piece of the beacon frame field called "beacon timestamp".
The timestamps are generated by an AP clock and record the
time when the first bit of the beacon frame hits the physical
layer for transmission. The time resolution of a timestamp is



governed by 802.11 protocols as one microsecond. When a
receiving node receives beacon frame, every beacon frame’s
arrival time is recorded in the form of "MAC timestamp".
These two timestamps can be used to calculate the relative
clock drift occurring between the communicating nodes.

II. RELATED WORK

There has been substantial works about estimating clock
drifts in various environments. In [2] the authors have tried to
estimate the relative clock drifts between two communicating
nodes by measuring the length of successive response packets
sent by one of the two nodes. In [3] the author has defined
the notion of clock drift in terms of the rate of change of
the hardware clock of one node with respect to the hardware
clock of the other node. Similarly in [4], the author points
out the classical solution by measuring the frequency offset at
the output of the preamble synchronization system (PLL for
instance) used for packet reception.

III. M EASUREMENTS

A. Experimental Setup

All IEEE 802.11 measurements were done at the University
facility building called “Sand” in Tübingen, Germany. Using
a Lenovo R51 notebook and a Netgear Dual Band Wireless
PC Card WAG 511 (chipset Atheros 168c:0013), we collected
with tcpdump [5] packets using the monitor mode of the
WLAN card. Tcpdump is a powerful tool that allows us to
sniff network packets and make some statistical analysis out
of those dumps. During the experiments, the WLAN was set
to the ad-hoc mode, the transmission rate was set to 1 Mbps,
and the RTS/CTS mode was turned on.

Also, the notebook via another virtual interface was sending
on the same WLAN card pings to an access point. Ping is a
program that sends a series of packets over a network or the
Internet to a specific computer in order to generate a response
from that computer. The other computer responds with an
acknowledgement that it received the packets. Ping estimates
the round-trip time (RTT), generally in milliseconds, records
any packet loss and prints a statistical summary when finished.
However, throughout this publication, the pings were not of
relevance. Actually, we ignored all pings and focused only on
the IEEE 802.11 beacon packets, which were received at the
same time.

This way we captured the network packets once for about
two hours and once for about eight hours. During this period,
multiple PCAP files were stored each containing either 2000
or 10000 floated pings and multiple beacon packets.

B. Data analysis

We obtained the entire network packets in the form of
PCAP files. Then we exported the data in the form of text
files using the "tcpdump" command. The exact tcpdump
command that we used for exporting data from PCAP files
was "tcpdump -n -tt -eee -x -r source.PCAP
> target.txt" in which "source.PCAP" is the PCAP
file whose data we want to export in the text format and

Fig. 1. A PCAP file displayed with Wireshark.

"target.txt" is the target text file where we want to
store the data obtained from PCAP file. Actually using this
particular tcpdump command, we made sure that we have
at least some important parameters present in our text file
for the frames. These important parameters include the MAC
addresses of the sending and receiving stations, beacon times-
tamps, MAC timestamps and the another important parameter
called arrival time. The arrival time is a timestamp which tells
the time (in microseconds) at which the beacon frame was
received by the destination with respect to a reference time,
where the reference is the EPOCH (1. Jan 1970). Figure 1
shows a typical PCAP file opened using Wireshark software
and showing the arrival time, MAC timestamp and beacon
timestamp for one transmitted beacon frame.

Having extracted all these parameters from all the PCAP
files in text format we go onto calculate the clock drift. The
process of clock drift calculation from the tcpdumped text files
involves the following key steps:

1) For a particular MAC address, store the beacon times-
tamps tb

i
, MAC timestampstM

i
and arrival timesta

i

occurring in a particular PCAP file. If multiple beacons
are received having the same MAC address, this step
has to be repeated for alli ∈ {1...n}.

2) Then subtract all the beacon timestamps from the beacon
timestamp of the first beacon occurring in that PCAP
file and thus it gives the modified beacon timestamp for
all the beacons:tb

′

i
= tb

i
− tb

1
. Similarly subtract the

MAC timestamps of all the beacons from that of the
first occurring beacon and thus giving us the modified
MAC timestamp:tM

′

i
= tM

i
− tM

1
.

3) Now we subtract the MAC timestamp corresponding
to each beacon from their corresponding beacon times-
tamp:di = tM

′

i
− tb

′

i
. This gives us the difference of the

timestamps at which the beacon was sent from one node
and the timestamp at which it was received by another



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−6.6

−6.55

−6.5

−6.45

−6.4

−6.35

−6.3

−6.25

−6.2

−6.15

−6.1

Time (hours)

C
lo

ck
 d

rif
t (

pp
m

)

Plot of clock drift vs time for the mac address 00:14:1c:de:33:90

Fig. 2. Plot of clock drift for 2000 ping case for MAC address
00:14:1c:de:33:90 (Cisco)

node. Now we plot the values of the difference between
these two timestampsdi versus the MAC timestamptM

′

i
.

Then we apply linear regression to get the best fit line
for the data points obtained that way:d = tM

′

· β + ǫ.
We also calculated the degree of fitnessR2 to signify the
accuracy to which the best fit line was in good agreement
with the actual curve that the data points signified.

4) The slopeβ of the best fit line obtained in the way
described above is the clock drift for our system.

5) This process was applied for all MAC addresses of a
particular PCAP file and this was repeated for all of the
PCAP files.

The algorithm described above is implemented in Matlab using
a script which calculates the clock drift corresponding to all
MAC addresses in a PCAP file. This way the clock drift for all
MAC addresses of all PCAP files are obtained and the results
are stored in a text file called"table.txt".

C. Results

We captured a number of PCAP files from the active
network using the tcpdump and analyzed the data to obtain
the clock drifts for different MAC addresses. The plot of clock
drifts versus arrival time (modified by subtracting all arrival
times from the first arrival time in a file for a particular MAC
address) were largely stable in the order of a few ppm. The
plot of clock drift for the MAC address 00:14:1c:de:33:90 (a
Cisco Aironet 1131 AP) for the 2000 pings case is shown in
Figure 2 while that for the MAC Address 00:1c:10:91:3d:c4
(our Linksys AP) for the 2000 pings case are shown in Figure
3. Similarly the plot of clock drift for the MAC address
00:05:4e:4c:9d:7b (a Philips product) for the 10000 pings case
is shown in Figure 4.

D. Discussion

The clock drifts calculated by our algorithm were pretty sta-
ble for 2000 ping packets for both observed MAC Addresses
00:14:1c:de:33:90 and 00:1c:10:91:3d:c4. The clock driftfor
the MAC Address 00:14:1c:de:33:90 can be examined to vary

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

35

40

45

50

Time (hours)

C
lo

ck
 d

rif
t (

pp
m

)

Plot of clock drift vs time for the mac address 00:1c:10:91:3d:c4

Fig. 3. Plot of clock drift for 2000 ping case for MAC address
00:1c:10:91:3d:c4 (Linksys)

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

Time (hours)

C
lo

ck
 d

rif
t (

pp
m

)

Plot of clock drift vs time for the mac address 00:05:4e:4c:9d:7b

Fig. 4. Plot of clock drift for 10000 ping case for MAC Address
00:05:4e:4c:9d:7b (Philips)

between -6.15 to -6.6 ppm whereas for the MAC Address
00:1c:10:91:3d:c4 it was fairly constant at values close to2.5-
3 ppm. The clock drift for the 10000 ping case for the MAC
Address 00:05:4e:4c:9d:7b was largely varying between 40-
180 ppm.

IV. M EASURING CLOCK DRIFTS WITH OUR

TRILATERATION SOFTWARE

Previously, we have developed an open source WLAN
location tracking software called “Goodtry” [6], [7], which can
trilaterate WLAN nodes by using off-the-shelf WLAN card
and round-trip time-of-flight measurements. We have extended
Goodtry to measure the clock drifts of neighbouring IEEE
802.11 ad-hoc nodes and access points. As described in the
previous section, we collect both the timestamps: when the
beacon has been sent and when it has been received. Then,
a linear regression is calculated to determine the relation
between sent and received timestamps. The values of slope,
which ideally should be 1, helps to calculate the clock drift,
which is the slope minus one. In addition, we calculate the
95% confidence of the results to know how precise the linear
regression fits the measurement data.



TABLE I
CLOCK DRIFT MEASURED WITH TWO DIFFERENTWLAN CARDS.

MAC address AR5413 BCM4318 AP hardware
000E8E0FF573 237.3 -0.0003 SparkLAN
001A70FCD290 244.0 7.13471 Linksys WRT54GL

(BCM5352)
004096575809 243.9 7.09844 Linksys WRT54GL (2)

001C102FADB4 244.0 7.16844 Linksys WRT54GL (3)
001C102FAF25 243.6 7.1245 Linksys WRT54GL (4)
001C103CD5FE 244.0 7.1583 Linksys WRT54GL (5)
001C10913DC4 243.5 7.1576 Linksys WRT54GL (6)
00223F8BF62F 245.5 8.28903 Netgear WG602v4

(Broadcom 5354)
002333C2CA80 234.1 -2.83843 Cisco (Aironet 1131)
002333C2CE80 231.2 -5.78454 Cisco (2)
002333C2D520 236.3 -0.4948 Cisco (3)
002333C2D580 231.7 -5.1837 Cisco (4)
0024148A4C60 233.5 -3.3938 Cisco (5)

Using this software, we conducted multiple experiments us-
ing two different WLAN NIC cards as observing node. Again,
the measurements took place in the Sand building in Tübingen,
during which we used a Atheros AR5413 (168C:001B) card
and a Broadcom BCM4318 card (14E4:4318). Nearby, six
Linksys WRT54GL, five Cisco, one Netgear and one Spark-
LAN routers were placed.

The measurement data shows some interesting results.
Firstly, the AR5413 chipset clock timer is much faster than
what the standard limits allows (0.01%). Assumingly, it tries
to achieve a higher transmission performance by overclocking.
Earlier Atheros and the Broadcom chipsets did not show this
behaviour and work well within the typical limits (±25 ppm).

If we look at the clock drift of the access points, it can
be seen that in case of the Cisco hardware the clock drifts
differ by a few ppm. Such distribution can be expected if
one considers the typical accuracy of quartzes. The Linksys
WRT54GL access point (they were running all in ad hoc
mode), did not show such a distribution. The clock drifts were
below one ppm. We assume that the built-in Broadcom WLAN
hardware adjusts its timer to the beacons (as required in the
IBSS/ad-hoc mode). Thus, in these cases one hardly sees any
clock drift.

Alternatively, Broadcom WLAN hardware might be having
a phase-lock-loop that tunes the clock to the nodes. The
Broadcom WLAN driver has a parameter called “freqtrack”
which we assumed to be setting the afore mentioned frequency
tracking on and off. However, we were unable to disable the
frequency tracking in our experiments.

We also conducted measurements of the clock drift over
longer periods of time. Figure 5 displaying a period of 15 me-
ters shows that the relative clock drift does not remain stable.
At the beginning of the measurement period, the relative clock
drift is slower and it becomes faster at the end.

V. CONCLUSION

In this publication we introduce an easy and effective
way to measure the relative clock drift between two WLAN
nodes. Our experimental results yielded the following findings.
Typically, the relative clock drift differs in the order of 10 ppm.

Fig. 5. Relative clock drift between a BCM4318 WLAN card and a Cisco
AP over time.

This result was expected because this is the accuracy of
commercial grade quartzes. Also, the relative clock drift does
not remain stable and it keeps changing. Thus, the clock drift
measurements has to be done continuously to adapt to varying
conditions.

Some commercial WLAN cards show unexpected prop-
erties. For example, the Atheros AR5413 chipset has been
overclocked and runs faster than the recommended limits of
IEEE 802.11 standards. On the other hand, Broadcom chips
tend to synchronize their clocks and hardly showed any clock
drifts. Indeed, in those cases a software based time-of-flight
measurement is not possible, because the time varying time
quantisation cannot be observed anymore.

ACKNOWLEDGMENT

This work was supported by the German Academic Ex-
change Service (DAAD) and Landesstiftung Baden Württem-
berg gGmbH within the AmbiSense project of University of
Tübingen. The authors would take the opportunity to thank S.
D. Mandal, M. Hyder, S. König and M. Schmidt for helping
us.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user
location and tracking system,” inInfocom 2008, vol. 2, Tel-Aviv, Israel,
2000, pp. 775–784.

[2] K. I. Ahmed and G. Heidari-Bateni, “Improving two-way ranging preci-
sion with phase-offset measurements,” inIEEE Global Telecommunica-
tions Conference (GLOBECOM ’06), 2006, p. 1.

[3] L.-M. He, “An improved time synchronization algorithm forwireless
sensor networks,” in4th International Conference on Wireless Commu-
nications, Networking and Mobile Computing (WiCOM ’08), Oct. 2008,
pp. 1–4.

[4] N. Marechal, J.-B. Pierrot, and J.-M. Gorce, “Fine synchronization for
wireless sensor networks using gossip averaging algorithms,” in IEEE
International Conference on Communications (ICC ’08), May 2008, pp.
4963–4967.

[5] (2008) Tcpdump/libpcap public repository. [Online]. Available:
http://www.tcpdump.org/

[6] C. Hoene. (2009) Goodtry - software based WLAN trilateration.
[Online]. Available: http://www.ambisense.uni-tuebingen.de/

[7] C. Hoene and J. Willmann, “Four-way TOA and software-based trilater-
ation of IEEE 802.11 devices,” inIEEE PIMRC, Cannes, Sep. 2008.


