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Abstract—Modeling extreme latencies in communication net-
works can contribute information to network planning and flow
admission under service level agreements. Extreme Value Theory
is such an approach that utilizes real-world measurement data. It
is often applied without verifying the resulting model predictions
on larger datasets. Here we show that such models can provide
accurate predictions over larger datasets while being applied to
100 random network topologies and configurations. We found
that applying derived models with a bounded tail to a twentyfold
time period results in a prediction accuracy of 75% for extreme
latency exceedances. Furthermore, we show that tail latency
quantiles can be predicted on a flow level with median absolute
percentage errors ranging from 0.7% to 16.8%. Therefore, we
consider this approach to be useful for dimensioning networks
under latency-constrained service level agreements.

Index Terms—extreme value theory. latency measurements.
network modeling. data analysis.

I. INTRODUCTION

End-to-end latency requirements are commonplace in ser-
vice level agreements for networks, influencing network de-
sign and planning. Modeling flow latencies in networks can
be approached from multiple directions. Provable worst-case
upper bounds can be derived using theoretical frameworks,
such as network calculus. The behavior of latencies over time
can be approximated using network simulators, emulators, or
direct measurements on hardware. Such measurements can
be used as input to statistical models. This paper utilizes
a statistical method called Extreme Value Theory (EVT) to
obtain models for the behavior of the tail, i.e., rare events,
of latency distributions. These models can be used to predict
extreme latencies occurring during extended operational times
of networks, requiring a comparatively small measurement
period.

II. BACKGROUND AND RELATED WORK

This section provides background information and related
work on EVT and its application.

A. Extreme Value Theory

EVT is commonly used to predict extreme events such as
natural disasters. It models the tail behavior of empirically col-
lected data. This model can be used to predict extreme events
in the future. There are several approaches how to derive such
a model. The first one is the block maxima approach, where
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data is separated into blocks of arbitrary size and the maximum
value in each block is classified as belonging to the tail. The
tail data is fit to a Generalized Extreme Value Distribution
(GEV) characterized by three parameters: the location p, the
scale o, and the tail £. GEV generalizes a family of three
distributions: Fréchet, Weibull, and Gumbel. The value of &
maps to these three distributions. [1] The second approach is
the Peaks over Threshold (PoT) approach, where all datums
larger than an arbitrary threshold are classified as belonging to
the tail. The tail data is fit to a Generalized Pareto Distribution
(GPD) which is characterized by the same three parameters.
The difference to GEV is that the location does not need to
be estimated and is fixed to the previously chosen threshold
value. [1] It shifts the probability distribution to a fixed value,
for example, the location parameter of the normal distribution
is its mean. We can utilize standard methods such as Maximum
Likelihood Estimation (MLE) to fit data to GEV or GPD.
The remainder of this paper will concentrate on the PoT
approach. Note that the block maximum approach has very
similar capabilities. The fitted GPD distribution can be used
for different purposes. One option is to calculate the return
level associated with a return period, which is a measure of
the value of an extreme event that occurs on average once
within the return period [2]. An example for the case of
flow latencies: A return period of 1s and a return level of
5ms means that we will observe latencies exceeding 5 ms
on average every 1s. Another option is to derive quantiles
from the fitted distribution [3], [4]. This provides information
about the behavior of different parts of the tail. For example,
commonly used key performance indicators for latencies, such
as 99.999% latency bound adherence [5].

B. Applications of Extreme Value Theory

EVT has been used to estimate worst-case execution times
of program runs [6]. Furthermore, it has been shown to
be applicable to time series, containing dependent data [7].
Mehrnia and Coleri have applied EVT to wireless intra-
vehicular communications with a time resolution of 2ms,
focusing on selecting optimal thresholds [8]. Bennis et al.
applied EVT to estimate tail queue lengths in a mobile edge
scenario [9]. Liu et al. applied EVT to task offloading in edge
computation scenarios, predicting extreme task queue events,



TABLE I: Metrics of network configurations and topologies

Parameter Minimum Maximum Mean >
Number of Network Nodes 6 15 12 1,190
Number of Flows 19 59 35 3,559
Flow Lengths 2 9 3 —
Flow Rates [Mbits™!] 1.0 831 44 —
Link Rates [Mbits™!] 434 2000 705 —
Link Utilization Rates [%] 0 87 24 —

relying on simulation data to evaluate the approach [10]. Zhu
et al. follow a similar methodology, using EVT as part of an
optimization problem [11]. We build on parts of these works
and apply EVT to low-latency, multi-hop, virtualized, wired
networks with 100 different topologies and a time resolution
of 12.5ns [12]. Furthermore, we evaluate the models on larger
time horizons relative to the training data used for model
derivation.

I[II. METHODOLOGY

This section describes the source of measurement data and
the approach to modeling the delay and jitter behavior using
EVT.

A. Latency and Jitter Data

We rely on measurement data obtained by Wiedner et
al. [13]. The measurements were performed on 100 networks
of up to 15 nodes with randomly generated topologies and
flow specifications. We chose data from random configurations
to obtain as many different combinations of parameters as
possible, leading to edge cases which are root causes of long-
tailed latencies. At the same time, this makes the networks
more synthetic and they are not necessarily representative
of real-world networks. Details of parameter distributions of
these measurements are shown in Table I. From this data, we
extract end-to-end latency values for each frame, as well as
the jitter between every two consecutive frames. This provides
us with almost 14 billion latency and jitter values respectively.

B. Data Cleaning

The latency and jitter data are cleaned from measurement
artifacts in a pre-processing step. The matching of frames to
determine the latency is based on a 32bit identifier derived
from a combination of header fields. The loss of a frame in
combination with an overflow of this identifier can lead to
incorrect latency values. Therefore, all latency values larger
than the time it takes to generate such an overflow under a
given flow rate are excluded from further analysis.

C. Modeling Tail Behavior using EVT

We utilize EVT to model the tail behavior of delay and jitter
values on the flow-level over 100 different networks. The data
for each flow is split into two parts: The first 5% are used
to derive the EVT model and the remaining 95% are used to
verify and evaluate the quality of the model. A requirement
for applying EVT is that the data is identically distributed and
stationary [14]. This is a relaxation of the independent and
identically distributed (i.i.d.) requirement assumed in other
works [15]. We test for stationarity using the Augmented

M100
199:
9o

—— Tail

/

=TMNggs =To

Density

/
M99 9 150

Threshold

1
Latency

Fig. 1: Example latency distribution and percentiles of the tail

Dickey-Fuller (ADF) test. Identical distribution is assumed by
property of latency and jitter values belonging to a single
flow with a repeating sending pattern in a static network
setup. Next, we apply the PoT approach of the EVT. This
requires us to choose a suitable threshold. A threshold can be
selected in two ways: based on the usecase or based on the
stability of predictions. For example, the usecase could be the
prediction of extreme latencies larger than 1ms, leading to
this value as a threshold. If it is not as clear what constitutes
an extreme event, we can rely on the stability method. The
stability method selects the largest possible threshold such
that the estimated scale and tail parameters do not exhibit any
large deviations above this threshold, i.e., the estimated model
is stable [2]. The PoT method is used to select all values
larger than the threshold. These values are the empirical data
points based on which the MLE is estimating the parameters
for the GPD. The parameter estimations are derived with a
confidence interval for a confidence level of 95%. This GPD
is the model for the tail behavior. Based on this model we can
calculate future extreme events. One approach is to calculate
the return level for a given return period, i.e., the value that
is exceeded on average exactly once during the return period.
The return period is a measure of time, specified in the same
arbitrary units as the measurement data. The return level is
defined as shown in Equation (1) where D is the number of
data points and Dy, is the number of data points exceeding

the threshold [2].
D d>p ¢
—=] -1 1
<m ) > (D)

A confidence interval for the return level with a confidence
level of 95% is derived using the delta method [2], [16].
Commonly, the quality of a return level is assessed by plotting
the return level against the empirical data points. However,
since we derive return levels for multiple thousands of flows
this method quickly becomes infeasible. Additionally, we want
to compare the predictions made by the return levels against
unseen data points. Therefore, we evaluate the return levels by
calculating the number of exceedances of the return level in
the unseen data points. The expected number of exceedances is
Meval where Meyq; 1S the number of data points in the unseen

m
evaluation dataset and m is the return period.
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Fig. 2: Workflow combining data pre-processing (blue), EVT
modeling (green), and evaluation (red)

A second method to evaluate the quality of the tail model
is by comparing the quantiles of the GPD with the evaluation
data, e.g. percentile values. For bounded tails, this includes
the predicted maximum extreme event, while it is excluded
for unbounded tails (£ > 0). Figure 1 shows an example of
a distribution of latencies, exhibiting a long tail. It indicates
the percentiles of the overall latencies 7, as well as the
percentiles of the tail, i.e., values over the threshold, n;. Long
tail latencies can be caused by a variety of factors, such as
hardware interrupts or interference between bursty traffic flows
at multiplexing points. We compare the relative error of the
percentiles as defined in Equation (2) for each percentile 7).

rel _ GPDm

err
! Eval,,

-1 2)

Furthermore, we compare the GPD model with three differ-
ent approaches: linear regression, the Harrell-Davis estimator,
Kernel Density estimation, and an EVT baseline. The linear
regression uses a Tweedie regressor to fit between the per-
centiles of the training and evaluation tails. The Harrell-Davis
estimator is distribution-free, and therefore a good comparison
to test the assumption of the tail behaving as described by a
GPD. The Kernel Density estimation is another distribution-
free approach. The EVT baseline represents the percentiles
from the tail of the training data. The evaluation is performed
by training the EVT model on 5% of data points for each
flow and comparing predictions made by this model for the
remaining 95% of data points of this flow. Therefore, our
evaluation dataset is 19 times larger than the training dataset
for each flow. This is in contrast to other evaluation approaches
for EVT such as leave-one-out cross-validation [17] with more
training- and less evaluation data. Figure 2 shows the high-
level overview of the methodology.

IV. EVALUATION
This section presents and discusses results obtained by
applying EVT to flow latencies and jitters.
A. Prerequisites

We employ the ADF test to ensure stationarity of our data.
Figure 3 shows the p-values of the ADF test for all flows
and topologies. We can observe that it is smaller than 0.05
for 99.08% of flows when considering latency and 100% of
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Fig. 3: The p-values of the ADF test for all flows and
topologies. For latency, jitter, and both metrics combined.
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Fig. 4: The difference between the ADF test- and critical
values. Negative values mean that the test value is smaller
than the critical value, indicating stationary data.

flows when considering jitter. This gives a combined valid
percentage of 99.54% based on the p-value. Furthermore, the
ADF test value is smaller than the critical value for 97.88%
of flows when considering latency and for 100% of flows
when considering jitter as shown in Figure 4. This results in
a valid percentage of 98.94% based on the test value. The
combinations of p-value and test statistic means we can reject
the null-hypothesis for 98.94% of all flows, which in turn lets
us assume that the data is stationary.

B. Optimizations

Threshold selection is based on the stability of parameter
estimations. Figure 5 shows the stability of the two parameters,
the tail of the GPD &, and a modified version of the scale o*.
The scale is modified as shown in Equation (3) to de-couple
it from the threshold [2].

ot =0, 3)
Both ¢ and o* behave roughly stable for a threshold of up
to 799.5.

C. Tail Model Verification

The GPD describing the tail behaves differently for different
values of the tail parameter £. A value smaller than zero results
in a bounded tail converging to a maximal value. A value
larger than zero results in a non-converging unbounded tail.
Table II shows the portion on bounded and unbounded tails for
latency and jitter respectively. We can observe that a majority
of latency tail models have an upper bound, whereas only a
minority of jitter tail models do. Since jitter is a metric derived
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Fig. 5: Stability of MLE-derived GPD parameters over differ-
ent percentile thresholds

TABLE II: Percentage of flows with bounded and unbounded
tail behavior for latency and jitter values respectively

Metric Bounded Tail

3,507 (57.51%)
1,325 (21.73%)

Unbounded Tail

2,591 (42.49%)
4,773 (78.27%)

Latency
Jitter

from latency, it should be as equally bounded as latencies are.
This is not the case which indicates that the EVT approach
is more suitable to model latencies. We will only consider
the bounded tail latency models for the remainder of the
evaluation.

The following shows results obtained by comparing latency
predictions made by the flow level EVT models trained on 5%
of the data and evaluated on 95% of the data.

1) Percentiles: Table III shows the Median Absolute Per-
centage Error (MdAPE) between GPD and evaluation data
percentiles. Figure 6 shows the relative error between GPD and
evaluation data percentiles for four selected percentiles. Fur-
thermore, it contains a comparison to four other methods. For
the 50", 90t", and 99.999%" percentiles the GPD outperforms
all other methods. For the maximum, the GPD outperforms
all methods except for the EVT baseline.

To get an understanding of whether GPD models are indeed
flow specific, as assumed thus far, we compare flow-level
percentiles to percentiles derived from GPD models on a
network-level, i.e., aggregated over all flows traversing a
network. Should the models not be flow specific, we would
assume the network-level model to perform better since it
has more data points available. Figure 7 shows the relative
errors for different percentiles of flow- and network-level
GPD models. The network-level models perform slightly better
for low percentiles, whereas the flow-level models perform
significantly better for high percentiles. We conclude that
EVT models should be derived at the flow level when high
percentiles of the tail are of importance.

2) Return Levels and Exceedances: The return level x,,
for the return period m is the value that is exceeded on
average once during m. We compare the return levels for two

TABLE III: Median Absolute Percentage Error (MdAPE) of
GPD predictions for different tail percentiles

Percentile 50 75 90 99 999 99.99
MAAPE [%] 07 1.0 18 42 6.8 9.6

99.999 100
11.4 168
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Fig. 6: Relative error in percentile predictions for different tail
percentiles

periods: For 100% of the evaluation dataset (x199) and 10%
of the evaluation dataset (x1g). For the return level x99 we
would expect one exceedance of this value on average in the
complete evaluation dataset. For the return level z19 we would
expect one exceedance in 10% of the evaluation dataset or
ten exceedances in the complete evaluation dataset. Figure 8a
shows the number of exceedances for the two return periods of
flow-level models. We consider the number of exceedances to
be the respectively expected one or ten if there is a return level
within the confidence intervals that satisfies this constraint.
For the 100% and 10% return levels, we obtain the correct
number of exceedances for 75% and 85% of flows respectively.
Comparing these results to network-level models is shown
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in Figure 8b. We can observe significantly less predictive
power. This matches the observations for the relative error
of percentile values, showing that flow-level models are better
suited than network-level models, despite containing less data.

D. Limitations

The quality of EVT models and predictions depends on
the amount of available data as well as on the confidence
level of the distribution fitting and return level calculation.
Furthermore, latencies of flows were mostly stationary in this
setup but might not be stationary in general.

V. CONCLUSION

We showed that EVT can be applied to predict flow-
level end-to-end latencies in different virtualized multi-hop
networks connected over physical wires. The models were
evaluated on larger time horizons compared to related work.

The predictive power of tail percentiles was shown to exhibit
a small relative error, and exceedances of latency values
were predicted with an accuracy of 75-85% for a two- and
twentyfold time horizon respectively. Future work includes
scaling to larger topologies as well as including specific types
of topologies such as leaf-spine topologies.
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