
MARTE: Malleable and Automated Reproduction for
Testbed-driven Experiments

Eric Hauser
Technical University of Munich
Garching near Munich, Germany

hauser@net.in.tum.de

Kilian Warmuth
Technical University of Munich
Garching near Munich, Germany

warmuth@net.in.tum.de

Marcel Kempf
Technical University of Munich
Garching near Munich, Germany

kempfm@net.in.tum.de

Stefan Lachnit
Technical University of Munich
Garching near Munich, Germany

lachnit@net.in.tum.de

Georg Carle
Technical University of Munich
Garching near Munich, Germany

carle@net.in.tum.de

Abstract
Reproducing experimental results in computing and networking
is notoriously difficult due to intricate dependencies and diverse
execution environments. Re-executing an experiment often feels
like deciphering a puzzle, where incomplete documentation and
missing configurations lead to inconsistent outcomes. While re-
search infrastructures in the form of testbeds provide a structured
framework for (reproducible) experiments, additional measures are
necessary to completely close the loop between experiment execu-
tion, sharing of results, and re-execution.
To address these challenges, we propose MARTE, a reproduction
methodology for testbed-driven experiments. MARTE consists of
two complementary approaches: (1) Malleable reproduction, which
retains original scripts, allowing modifications for flexible reuse,
and (2) automated record-replay, which automatically captures and
seamlessly replays all experiment instructions. Additionally, we
integrate a structured data management format to store experiment
results along with all relevant metadata about the execution and
environment. This new approach for packaging artifacts ensures
that configurations and dependencies are preserved and remain
accessible. By integrating a tool for seamless publication to open
repositories, we transform experimental results into shareable ar-
tifacts that others can build upon. We argue that the barriers for
researchers to achieve reproducibility must be kept as low as pos-
sible. We address this by automating key aspects of experiment
documentation, re-execution, and publication.
The functionality of our implementation is showcased in a demon-
stration experiment. Its complete artifact is openly accessible, along
with an example of its reproduction and replay using MARTE.

CCS Concepts
• General and reference → Experimentation;Measurement;
Validation; • Networks→ Network experimentation; Network mea-
surement.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ACM REP ’25, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1958-5/2025/07
https://doi.org/10.1145/3736731.3746154

Keywords
Repeatability, Reproducibility, Replicability, Research Infrastruc-
ture, Testbed, Experiment, Measurement, RO-Crate, Malleability,
Replay
ACM Reference Format:
Eric Hauser, Kilian Warmuth, Marcel Kempf, Stefan Lachnit, and Georg
Carle. 2025. MARTE: Malleable and Automated Reproduction for Testbed-
driven Experiments. In ACM Conference on Reproducibility and Replicability
(ACM REP ’25), July 29–31, 2025, Vancouver, BC, Canada. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3736731.3746154

1 Introduction
Reproducibility is a cornerstone of the scientific process, enabling
the validation of results and fostering trust in research outcomes. In
networking and computer science, achieving reproducibility poses
challenges due to the complexity of experimental environments and
dependencies on specific hardware and software configurations.
Research infrastructures (RIs) give researchers access to large-scale,
flexible, and highly configurable testbeds, providing a convenient
method for conducting their experiments. In recent years, many RIs
like Cloudlab [6], Chameleon [17], or SLICES [8] were established.
Although these RIs offer valuable support for conducting repro-
ducible experiments, combining experiment execution, result shar-
ing, and reproduction within a unified and automated framework
remains an ongoing challenge that calls for further effort from the
research community. Reconstructing experimental environments
often remains a manual and error-prone process—highlighting the
need for tools that streamline and automate this process.

The challenges of reproducibility are also identified in a study by
Collberg et al. [5], who investigate the state of it in more than 600
papers in applied computer science. They evaluate the availability
and usability of code and data associated with these publications,
finding that a significant number lacked accessible artifacts nec-
essary for re-execution. Moreover, the study identified common
challenges to reproducibility: incomplete documentation, missing
dependencies, and incompatible environments.

To address these challenges, we present MARTE, a methodology
for the malleable and automated reproduction of experiments in
testbed-driven environments. The vision of MARTE is to create
self-contained experiment artifacts by integrating the results with
the scripts that generated them. With MARTE, we want to close the
loop between the experiment execution, sharing of artifacts, and

https://orcid.org/0000-0002-5378-3905
https://orcid.org/0000-0001-6328-1047
https://orcid.org/0000-0001-7540-776X
https://orcid.org/0009-0001-0126-3801
https://orcid.org/0000-0002-2347-1839
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736731.3746154
https://doi.org/10.1145/3736731.3746154


ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada Hauser et al.

reproduction of experiments. Thereby, MARTE consists of different
components.
As the first step, we integrate the RO-Crate [23] structured data
packaging approach in the experiment workflow. Using RO-Crate
as a foundation, we can store experiment results along with the
metadata that describes the entire experimental environment. This
integration aims to bridge the gap between experiment execution
and documentation, promoting a more holistic approach to repro-
ducible research. Additionally, we store all relevant environment
details, i.e. the software and hardware details as well as the network
topology. Only by documenting the entire environment, a complete
and accurate reproduction of results is possible.
As the main part of this work, we present two complementary
approaches to make experiment artifacts fully self-contained. The
first approach is a high-level method for the malleable reproduction
of experiments, while the second is a low-level method for fully
automatic record-replay of experiments.

Malleable Reproduction. This high-level approach is designed to
enhance the reusability of experiments by preserving the original
scripts that generated the results. Researchers can then arbitrar-
ily edit the experiment scripts in the artifact before initiating the
re-execution in an RI. Therefore, this approach promotes the mal-
leability of results, making them shareable artifacts and allowing
other researchers to build upon existing work. In this context, mal-
leability means that experiment artifacts can be adjusted, modified,
and extended while remaining reproducible. It allows for the com-
plete reproduction of the experiment workflow, from the initial
setup through the measurement to the evaluation. However, the
implementation of this approach cannot be entirely automatic; it
requires minimal effort from researchers to document the exact in-
vocation process. This documentation includes optional arguments
and environment variables as well as all additional dependent files
of the experiment.

Automated Record-Replay. In contrast, this low-level approach
automatically records all instructions issued to the experiment con-
troller during the experiment. This fully automatic approach runs
in the background, enabling an effortless and precise replay of the
original experiment without manual intervention by the researcher.
However, it does not retain the original experiment scripts; instead,
it stores the instructions in a machine-readable format. As a result,
this method is limited to replay the same experiment without mod-
ifications.

The vision of MARTE applies to all three stages of the ACM
Artifact Review and Badging [1] terminology: repeatability, repro-
ducibility, and replicability. While repeatability and reproducibility
use the same hardware setup, replicability requires a different setup
imposing additional challenges. Therefore, ensuring compatibility
across RIs is essential for MARTE to address all stages and, thus,
promoting the adaptability and transferability of experiments.

The remainder of this paper is structured as follows: Section 2
provides background information on issues in reproducibility, result
data management, and related initiatives. Thereafter, we formulate
the requirements of our proposed approaches in Section 3. Section 4
introduces the integration of RO-Crate to structure experiment arti-
facts. The implementation details of the malleable reproduction and

automated record-replay approaches are described in Sections 5 and
6, respectively. Section 7 discusses the automated publication and
sharing of experiment artifacts, while Section 8 demonstrates our
approaches in an example experiment. Finally, Section 9 concludes
the paper, summarizing our contributions and outlining potential
directions for future research.

2 Background
In this section, we discuss further aspects of reproducibility and pro-
vide more background information for our implementation. More-
over, we gather requirements for our implementation as well as
explain and justify the tools we use.

2.1 Issues in Reproducibility
As a continuation to the introduction, which presented the study
of Collberg et al. [5], several papers describe the challenges of
reproducibility but also its importance and value to the community.

Hummel and Manner [13] provide a structured literature review
on reproducibility in computer science, highlighting the lack of
proper documentation as a major barrier. Their findings emphasize
that certain fields, such as Information Retrieval, have made more
progress in fostering reproducibility through dedicated efforts and
community-driven initiatives. They also note the role of publishers
and conferences in promoting reproducibility through artifact eval-
uation and badging systems.
Gil et al. [10], in their study on scientific workflows, explore the
specific challenges faced in reproducing workflow-based research.
They identify issues such as missing dependencies, evolving soft-
ware environments, and inadequate metadata, which frequently
hinder successful re-execution. Their work underscores the need for
comprehensive provenance tracking and standardization in work-
flow management to facilitate reproducibility.
Similarly, Mayer and Rauber [21] conducted a quantitative study
on the re-executability of publicly shared scientific workflows, re-
vealing that many workflows cannot be easily re-executed due to
incomplete or outdated dependencies. Their findings demonstrate
that even when workflows are publicly available, a lack of struc-
tured and machine-readable metadata can severely impact their
usability and reproducibility.

Especially when experiments rely on specialized hardware that
cannot be easily replicated, a simple reproduction is difficult. How-
ever, we want to close this gap by capturing and providing as much
metadata as possible about the experimental environment. Thus,
enabling researchers to recreate conditions as closely as possible.

From our understanding, backed up with previously mentioned
studies, the barriers and effort required for achieving reproducibil-
ity must be as low as possible. Ideally, such a system should work
mostly in the background, requiring minimal additional effort from
researchers. MARTE addresses this need by automating the repro-
ducibility process to the greatest extent possible. As a positive side
effect, experiments that researchers initially considered merely for
testing purposes become automatically reproducible.

2.2 Experiment Data Management
The management of experimental data is a crucial aspect of ensur-
ing reproducibility. Since the concept relies on sharing results with



MARTE: Malleable and Automated Reproduction for Testbed-driven Experiments ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada

the scientific community, it is essential that these results are acces-
sible to everyone. Moreover, results should provide the relevant
context (i.e. metadata) of the experiment.
In 2016, Wilkinson et al. [26] proposed FAIR as guidelines for the
organization of research data. FAIR consists of four principles that
establish the theoretical foundation for how research data should
be organized to make it easily accessible to the community:
Findability: Results should have a globally unique identifier and be
indexed in searchable resources.
Accessibility: Data should be retrievable using open and free stan-
dard protocols, with metadata remaining accessible even if the
dataset itself becomes unavailable.
Interoperability: Results should be presented in widely recognized
formats that are machine-readable and should reference related
datasets.
Reusability: Datasets should include rich metadata, be licensed ap-
propriately, and follow domain-specific community standards.

As part of the reproducible experiment workflow, online open
repositories are important platforms that focus on the findability
and accessibility aspects of FAIR. These platforms provide a simple
method to publish, preserve, and index data. Different platforms
have been established in the past, for example Trovi or Zenodo.
Trovi [4] is an open repository platform for sharing, preservation,
and discovery of experiment artifacts. Trovi is mainly used by the
Chameleon [17] RI.
Zenodo [7] is another open repository hosted by CERN to publish,
share, and preserve research data. Moreover, Zenodo assigns a Dig-
ital Object Identifier (DOI) to every artifact, making them uniquely
identifiable and, therefore, easily citable. Both, Trovi and Zenodo,
provide an integration with GitHub for improved version control.
On Zenodo, different versions of the artifact can have individual
(sub-)DOIs for clear differentiation. As a result, researchers can
push updates and ensure they are easily identifiable.

Regarding MARTE, we tightly connect open repositories to our
implementation. Researchers should be able to publish experiment
results automatically. Additionally, existing artifacts should be eas-
ily downloadable back into the RI to enable seamless reproduction.

Concerning the interoperability and reusability aspects of FAIR,
a structured data management format is necessary. One initiative
is Research Object Crate (RO-Crate), proposed by Soiland-Reyes et
al. [23], which packages research data together with its associated
metadata. RO-Crate provides a structured format for describing
research outputs and linking related entities together. Thereby,
RO-Crate uses a machine-readable format to store all metadata.

2.3 Selected Infrastructure and Tools for
MARTE

First, we require an RI as a foundation for the implementation of
MARTE. In the following, we list and discuss available RIs.

CloudLab [6] is a federated testbed and RI for cloud computing re-
search and spans over multiple sites across the USA. CloudLab uses
Emulab [12] to allocate raw access to different hardware resources
like servers or switches. By providing a diverse and reconfigurable
infrastructure, it enables researchers to design and test custom
cloud environments tailored to their specific experimental needs.

Chameleon [17] is an RI and testbed designed for configurable
experiments in edge and cloud-based systems. It offers a flexible
platform that provides access to a wide variety of hardware. Instead
of using self-developed software, Chameleon utilizes OpenStack
and employs a virtual currency for resource allocation. A key fea-
ture of the platform is Trovi, which hosts experiments based on
Jupyter [19] notebooks, enhancing sharing and reproducibility.

SLICES [8] (Scientific Large-Scale Infrastructure for Computing/
Communication Experimental Studies) is a European RI designed
to support large-scale experiments in computing and networking. It
provides a federated testbed with advanced computing, storage, and
networking resources, enabling researchers to conduct experiments.

We have chosen the SLICES RI for the implementation ofMARTE.
SLICES utilizes the pos [9] methodology and framework for con-
ducting experiments. One significant advantage of using pos is
the compatibility with other RIs. Stubbe et al. [24] demonstrated
how experiments from SLICES/pos can be executed on the other
well-known RIs Cloudlab [6] and Chameleon [17]. Consequently,
the SLICES/pos RI offers the necessary capabilities to attain the
highest ACM badge: replicability.

2.4 The pos Methodology
Within the SLICES RI, pos [9] is the main methodology and frame-
work for the experiment execution. As a framework, pos manages
all experiment machines (i.e. testbed nodes) from a centralized
management server running the pos daemon. The management
includes several tasks, such as the reservation, allocation, reset, and
execution of commands and scripts on the testbed nodes.

As a methodology, the core of pos is the everything-must-be-
scripted paradigm. All testbed nodes boot live images running in a
ramdisk after a reset. As a consequence, a node is always in a well-
defined state before an experiment commences. This enforces that
the researcher fully scripts the setup and the subsequent measure-
ment, as there is no state-keeping between experiment executions.
Moreover, the specification of the used OS image ensures a consis-
tent base environment across executions. While scripting the setup
of a node, it is essential for researchers to pin all dependencies to a
specific version or commit hash, especially when manually built.

Experiment Procedure. To provide a clearer understanding of a
pos experiment—both in general and for the following sections—we
briefly outline the procedure in this paragraph.

An experiment starts with the reservation of the available testbed
nodes. This happens either directly on the CLI of the management
host or in a web-based calendar system. Once the nodes are re-
served, the researcher creates an allocation that generates a unique
experiment identifier. All subsequent instructions involving the
allocated nodes belong to this experiment. After these initial steps,
users can send commands to configure the testbed nodes and run
scripts directly on them. The configuration includes selecting an
operating system image, optionally setting kernel boot parameters,
and rebooting the nodes. Moreover, files can be transferred from
the management node to the testbed nodes. Next, researchers can
execute scripts of any kind on the experiment nodes. Additionally,
pos offers the ability to parameterize the scripts using variable sets.
These variables can be accessed on the testbed nodes while exe-
cuting scripts. Moreover, variables can be used in loop mode by



ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada Hauser et al.

specifying start, step, and stop values. This is particularly useful
for experiments that examine how behavior changes across a range
of a given input value.

2.5 Related Initiatives
There are very few initiatives that combine testbed-driven ex-
perimentation, reproducibility, and artifact sharing. Among them,
KheOps by Rosendo et al. [22] is a key initiative in this domain. The
authors themselves mention the limited availability of comparable
solutions while also emphasizing the potential of such integrated
approaches to improve reproducibility in experimental research.
KheOps introduces a Jupyter notebook-based environment for de-
scribing experiments, integrates the Trovi platform as an open
repository for sharing artifacts, and connects different RIs. They
also close the loop between experiment execution, artifact publica-
tion, and reproduction. Additionally, it promotes collaboration by
enabling researchers to reuse and adapt existing experiments.

With MARTE, we address some limitations of KheOps. We pro-
vide detailed and automated documentation of the software and
hardware setup, including OS images and network topologies. Sec-
ond, we integrate RO-Crate as a standardized, machine-readable
data management format that bundles experimental results to-
gether with the scripts that produced them. This ensures complete
traceability and avoids undocumented experiments. Additionally,
MARTE targets the networking research area more directly, pro-
viding details about the network environment, for example optical
splitters for non-intrusive traffic measurement.

3 Requirements
For the descriptions of our implementation in the upcoming Sec-
tions 4, 5, 6, and 7, we formulate the following requirements. We
distinguish between general requirements R-G applicable to both
approaches and specific requirements for the individual approaches
R-M (malleable reproduction) and R-R (record-replay), respectively.
These requirements are later referenced in the respective sections.

3.1 General Requirements
The general requirements define the foundation of MARTE. These
requirements refer to the integration of RO-Crate for structuring
the results and the subsequent publication of results, which apply
to both approaches:

R-G1 Complete and Structured Metadata Storage:
All experiment metadata, including hardware and soft-
ware setups, as well as dependencies and configurations,
should be stored in an RO-Crate instance. Results and
metadata, as well as the metadata itself, should reference
each other to improve the artifact’s understandability.

R-G2 Publication and Sharing of Experiments:
The implementation must support straightforward publi-
cation and sharing processes through standardized for-
mats and metadata. In future, we envision an extensive,
categorized collection of available experiments that can
be used for reproduction as well as a source of inspiration.

R-G3 Portability of Experiments:
The approaches should allow experiment reproduction
across different testbeds or environments.

3.2 Malleable Reproduction Requirements
Here, we list requirements of the malleable reproduction approach.
The core principles emphasize retaining the original scripts while
imposing only minimal restrictions on the execution environment:

R-M1 Retention of Original Scripts:
The original experiment scripts must be preserved to
avoid any form of information loss.

R-M2 Malleability of Experiments:
Researchers should be able to modify existing experi-
ments with minimal effort to explore new ideas.

R-M3 Minimal Restrictions:
This approach should impose as few constraints as possi-
ble on the experiment execution and modification.

3.3 Record-Replay Requirements
The requirements for the record-replay approach focus on achieving
full automation, ensuring that experiments can be recorded and
replayed automatically without requiring manual intervention or
additional configuration:

R-R1 Automated Experiment Recording:
The framework records all instructions issued during the
experiment setup, execution, and evaluation. This auto-
mated process eliminates the need for manual documen-
tation, reducing human error and ensuring completeness.

R-R2 One-Click Replay:
Users must be able to replay experiments through an auto-
mated process requiring no manual setup or adjustments.

4 RO-Crate for Experiment Results
Before we can make the artifacts of pos-driven experiments self-
contained by combining results with the scripts that produced them,
we must first advance the organizational structure of the artifacts.
Currently, the experiment results (i.e. artifacts) are stored in an unor-
ganized and unstructured manner, complicating their management,
reproduction, and effective sharing. This unorganized structure
makes it more difficult to compare different experiments, which
is a fundamental aspect of reproducibility. Therefore, we propose
restructuring the experiment results of the pos methodology and
adopting a formal results management system: RO-Crate [23]. RO-
Crate provides a standardized approach for packaging experimental
data along with its metadata. The core of RO-Crate is the manda-
tory ro-crate-metadata.json file, located at the root folder of
the artifact. This file uses JSON for Linked Data [25] (JSON-LD)
to establish references between different artifact components. As
a result, the data becomes more interconnected, structured, and
easily machine-readable.

In previous work [11], we demonstrated how incorporating addi-
tionalmetadata, such as authors, hardware parameters, and network
topology, enhances the completeness of research data.
Building on this foundation, we propose the comprehensive linking
of the various single components within the result artifact. Ex-
plicitly defining the dependencies within the result artifact makes
their relationships more accessible and easier to understand. As a
consequence of this approach, we fulfill requirement R-G1.

In the following, we detail our implementation of RO-Crate as a
foundation forMARTE. First, wemodify the pos daemon to generate



MARTE: Malleable and Automated Reproduction for Testbed-driven Experiments ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada

ro-crate-metadata.json

pos version

node resetnodenode scriptperson

hardware topology visualized
topologystatus stdout stderr

result
file

variable
setaffiliation OS image

creator

hasPart

hasPart

executedOn
executedOncreator

subjectOf subjectOf

detailsoutputaffiliation image

variables

1

Figure 1: Proposed RO-Crate structure (simplified) for experiment artifacts combining experiment results and metadata.

a new RO-Crate instance for each executed experiment. In such an
instance, we include the result data as well as all available metadata.
Figure 1 shows the links between the components of an RO-Crate
instance. At the top of the figure, there is the previously mentioned
ro-crate-metadata.json file that stores all metadata information.
Since the complete structure of such an instance would be too
lengthy to explain in detail, we have simplified it here. Therefore,
we focus on three main entities: (1) the involved persons, (2) node
resets, and (3) the node scripts of the experiment.

First, an experiment can have multiple involved persons that
are a part of the experiment. Moreover, every person is linked to
their institutional affiliation as shown on the left of the figure.
We use the Open Researcher and Contributor ID (ORCID) [15] for
unambiguously identifying a person and the Research Organization
Registry (ROR) [20] for identifying their affiliation.
On the right of the figure, we display the node resets. A reset involves
rebooting an experiment node and booting a previously selected
live OS image into a RAM disk. Each reset entry links to the node on
which it was executed and the image used. The used image contains
the image’s name (for example debian-bookworm) as well as a
detailed log of installed packages. Currently, we build these images
locally from the official Linux distribution’s package repositories.
To that end, we plan to provide an option to integrate the used
images into the RO-Crate artifact. A reset entry also refers to the
version of the pos daemon on which the experiment took place.
Following the link to the node entry, this entity includes further
information about the node. For example, hardware and topology
information providing additional context about the experiment’s
hardware and network setup.
The node scripts, located below the ro-crate-metadata.json in
the figure, refer to scripts that are launched on the experiment
nodes. Similar to the node reset, a node script entity references the
node on which the script is launched. Additionally, we connect the
set of variables used during execution. This link to the variables
helps tracking the specific environment during the execution of a
particular node script. Furthermore, we link the node script to its
output, including stdout, stderr, and status (exit code), as well
as additional result files it may have produced during execution.
Finally, each script is associated with the person who initiated the
execution.

By adding and linking all these entities, we create a comprehen-
sive and structured RO-Crate instance that packages the complete
information about an experiment. Moreover, introducing RO-Crate
lays the foundation for self-contained experiment artifacts and
enables machine-readable access to the experiment and its results.

The RO-Crate standard also offers the possibility of providing a
user-friendly representation of the artifact in the form of a website.
This representation allows researchers to understand and navi-
gate the self-contained experiment artifact, including metadata,
scripts, and results. We plan to release this visualization concept
in a future version of MARTE as it closes the gap between the
machine-readable JSON-LD and a human-readable representation.

5 Malleable Reproduction of Experiments
In this section, we present our implementation of the malleable
reproduction for testbed-driven experiments. Malleability, in this
context, refers to the reusability and adaptability of experiments
while ensuring their reproducibility. Specifically, a malleable exper-
iment can be re-executed with modifications, allowing researchers
to explore variations in configurations, parameters, and dependen-
cies. As a consequence, to allow modifications, the original scripts
need to be retained in a way that also ensures an effortless re-
execution. Moreover, the original experiment script may contain
additional logic or helpful documentation for other researchers that
is worth preserving. However, achieving this form of malleable
reproduction requires additional effort from the researcher to pre-
cisely document the invocation of the initial experiment script.
This includes specifying the execution parameters, environment
settings, and dependencies that influence the experiment’s outcome.
Additionally, all required extra files must be explicitly referenced
to ensure that they remain accessible in the artifact. To facilitate
this process, we propose a new configuration file format that con-
solidates the necessary information. This file serves as a structured
reference, allowing researchers to:

• Document the exact command-line invocation of the ex-
periment script, including the interpreter and any optional
arguments.

• Specify all extra files that are not part of the experiment
script’s folder.



ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada Hauser et al.

open-access repository

new experiment

configuration file

configuration file

reproduce experiment

experiment storage

MARTE execution tool

copy files to tmp

invoke script

script execution

copy files to RO-Crate

experiment execution

in
st
ru
ct
io
ns

experiment
metadata

collection
of results

packaging as RO-Crate

Researcher pos daemon Testbed nodes

Publication

nodeA

nodeB

nodeN

...

output

instructions

save scripts

save artifact

upload
download

1

Figure 2: Workflow of the malleable reproduction approach: The main part of this approach occurs on the researcher’s side.
The closed-loop process is highlighted.

• Set adjustable parameters like environment variables.

By using such a configuration file, we keep the design of the experi-
ment scripts widely open and do not pin on a specific programming
or scripting language. The only requirement is that the experiment
script is an executable file. This method fulfills the requirement R-
M3, focusing on minimal restrictions to the experiment design. As
a result, the configuration file offers a structured way to document
how to (re-)execute an experiment in the testbed environment. By
providing this structured information, we introduce a closed-loop
process for experiments. Experiments do not end when they finish
but rather provide the foundation for subsequent (modified) execu-
tions. In the following paragraph, we explain the workflow of the
malleable reproduction approach in more detail.

Workflow. Figure 2 illustrates the workflow of the proposed mal-
leable reproduction approach. The process initially begins with re-
searchers defining a new experiment in an executable file as shown
in the top left corner of the figure. Before starting the execution,
researchers additionally create the aforementioned configuration
file, which specifies the invocation details. To start the execution,
the researcher passes the configuration file to a new CLI command
introduced by MARTE. This new MARTE execution tool then pre-
pares the experiment execution. First, the main executable file and
all other files specified in the configuration file are copied to a
temporary location. By taking this step, we ensure that all neces-
sary files are present. Moreover, this approach helps to identify
and prevent issues with relative and absolute paths. In general, we
recommend using relative paths to ensure the experiment runs
correctly in different environments. Next, the execution tool in-
vokes the experiment script within the temporary environment
based on the information in the configuration file. The invocation
and, therefore, the allocation of the involved testbed nodes trig-
gers the creation of a new RO-Crate instance for this experiment.
From this point, the invoked script sends instructions to the pos
daemon positioned in the center of the figure, for example resetting
nodes or launching scripts on the nodes. Once the experiment script
completes, all contents from the temporary folder, along with the

configuration file, are transferred to the existing RO-Crate instance
of the experiment. This process is depicted in the bottom center of
the figure where the RO-Crate instance is packaged. At this point,
the workflow is complete, and the resulting RO-Crate contains both
the experiment results and the original experiment script that pro-
duced them, achieving requirement R-M1.
As the final step, the created RO-Crate instance is saved locally
on the testbed management host. Researchers have two options:
they can either publish the experiment artifact by uploading it to
an open repository or initiate the reproduction of the experiment.
Details about the publication process and sharing of result arti-
facts are outlined in Section 7. For reproduction, a researcher can
either rerun the original script as-is or modify specific parts before
re-executing it. This flexibility for arbitrary modifications ensures
compliance with requirement R-M2. Once the same or another re-
searcher initiates the experiment reproduction, the process forms a
closed loop, where an existing experiment serves as the foundation
for a new experiment run. The thick arrows in the figure illustrate
the closed loop.

6 Automated Record-Replay of Experiments
In addition to the malleable reproduction approach, we introduce a
record-replay approach, serving a slightly different use case. This
approach provides a simple and lightweight method for replaying
experiments without requiring additional effort from the researcher.
A key advantage is that, once initiated by the user, the replay runs
completely automatically on the pos daemon, requiring no fur-
ther user interaction. Unlike the malleable reproduction approach,
the record-replay method does not retain the original experiment
scripts. Instead, it captures and stores the communication between
the user and the pos daemon as a plain sequence of instructions.
While this format remains readable, it may be harder to interpret,
as it lacks the original structuring logic, such as loops and condi-
tions, which are unpacked into a linear sequence of commands.
However, even if a researcher does not take the extra step of doc-
umenting dependencies for the malleable reproduction approach,
the experiment remains re-executable, and its artifacts can still be



MARTE: Malleable and Automated Reproduction for Testbed-driven Experiments ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada

open-access repository

new experiment

replay experiment

experiment storage

experiment execution

instruction
recording

experiment
metadata

collection
of results

packaging as RO-Crate

Researcher pos daemon Testbed nodes

Publication

nodeA

nodeB

nodeN

...

instructions

output

instructions

save artifact

upload
download

1

Figure 3: Workflow of the record-replay approach: The recording occurs independently of the researcher and takes place in the
pos daemon. The closed-loop process is highlighted.

accurately reproduced using this method. This ensures that even in
cases where researchers do not plan for reproducibility in advance,
their experiments can still be replayed, preserving their results and
making them available for future validation.

Figure 3 highlights the integration of the record-replay approach
in the overall pos workflow. Analogously to the malleable repro-
duction approach in Section 5, this approach also introduces a
closed-loop process. The process begins in the top left corner of the
figure with the creation of a new experiment. As the experiment
execution progresses at the top of the figure, all requests sent to
the pos daemon are recorded. While the pos daemon executes the
instructions, the recorded instructions are continuously dumped in
the respective experiment RO-Crate, as shown in the center of the
figure. Once the experiment concludes, the complete RO-Crate is
stored locally on the testbed’s management node. Users can then
publish and upload the results to an open repository, as depicted in
the bottom left corner. Similarly, the RO-Crate can be downloaded
for local storage and future use.

When a user initiates the replay of an experiment, the record-
replay loop is completed. The thick arrows in the figure highlight
this closed loop. The following sections provide a detailed explana-
tion of the record and replay process.

6.1 Recording of Experiments
In general, researchers use a REST API for communication with the
pos daemon. Through this API, researchers can send requests to the
pos daemon, which include general instructions for tasks such as
resetting testbed nodes and launching scripts on them. Hence, each
experiment consists of a set of instructions directing the daemon
which actions to perform with the testbed nodes. Currently, while
the issued instructions are executed, they are not recorded.

Therefore, we extend the pos daemon to record all issued in-
structions, including their exact payloads. By implementing this
feature on the daemon side, the recording runs in the background
and, therefore, accomplishes requirement R-R1. The content of the
payloads, as well as the structure, varies depending on the type of
instruction. For example, a node reset request only needs the node’s

name, while a script execution request includes the full script in the
payload. The same applies to file transfers to testbed nodes. More-
over, we include a timestamp for every request. These timestamps
can be used to estimate the experiment’s execution time. Finally,
the complete sequence of instructions is then stored in a JSON file
located in the experiment’s RO-Crate instance.

6.2 Replaying of Experiments
After an experiment has been completed, its replay can be initiated.
Therefore, the researcher uses a new CLI command of MARTE
on the testbed’s management node, which reads the recorded se-
quence of instructions from the recording’s JSON file stored in the
experiment’s RO-Crate. Next, this CLI command (i.e. replay tool)
transmits the instructions together with their payload to the pos
daemon. The daemon processes the received instructions identi-
cally compared to a regular researcher’s input, reproducing the
experiment under the same conditions as in the original execution.
By maintaining the exact execution order, the replay mechanism
ensures that the experiment runs identically, eliminating any incon-
sistencies between original and replayed execution. As the replay
tool manages the entire process, we meet the requirement R-R2 for
one-click replay.

In conclusion, the replay approach enables researchers to vali-
date their results by re-executing their experiments. Since every
executed instruction is stored in the RO-Crate, the replay process
requires no additional manual input, making it a seamless and fully
automated part of MARTE and the pos framework.

7 Publication and Sharing of Experiments
In the current implementation of pos, all experiment results are
stored solely in a predefined location on the pos management host’s
local storage. Moreover, after an experiment has concluded, no fur-
ther management of the results is available. Therefore, the further
management of results is handled individually by every researcher.
As a consequence, result management is a tedious process requiring
manual action from the researcher. This manual handling also leads
to many different approaches rather than a standardized process.



ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada Hauser et al.

experiment
results

associated
metadata

malleable
reproduction data

record-replay
data

malleable
reproduction

record-replay

Zenodo
GitHub
...

RO-Crate instance
Execution

Execution

Publication

new RO-Crate instance

Research
community

1

Figure 4: Publication, sharing, and re-execution of artifacts
with MARTE.

To address this gap in result management, we propose an au-
tomated process for publishing experimental artifacts. We aim to
create a framework that enables the community to share results and
build upon existing work, thereby promoting collaboration. This
approach is analogous to GitHub’s philosophy, in which users can
share their code publicly, create forks to enhance existing work, and
then can contribute back to the community. As pos integrates with
other RIs [24], researchers can choose their preferred environment
and test across infrastructures, satisfying requirement R-G3.

For the implementation of our approach, we retain the local
storage while introducing additional tools to improve result man-
agement. Specifically, we will enable the automated publishing of
experimental results to external open repositories such as Zenodo
and GitHub to facilitate seamless artifact uploads. Therefore, we
extend the pos methodology with a result management endpoint
to easily upload results in a standardized process. As part of this
process, researchers can specify the title of the publication, add
additional authors etc., fulfilling the requirement outlined in R-G2.

In general, the connection to online repositories offers several
key advantages: (1) Results are automatically backed up to an ex-
ternal, persistent storage location, reducing the risk of data loss.
(2) Experiments published on Zenodo receive a DOI, making them
uniquely identifiable and citable in academic research. (3) Shar-
ing results in publicly accessible repositories fosters open science
and FAIR, allowing researchers to discover, analyze, reproduce, or
modify existing experiments.

Figure 4 illustrates this process from the perspective of a re-
searcher. A researcher can either search through online platforms
for available experiment artifacts or authors of scientific publica-
tions provide the DOI to their experiment artifact. Platforms like
GitHub or Zenodo allow users to directly view the artifacts online,
and due to the structured and linked approach of RO-Crate, the indi-
vidual files are well documented. If researchers wish to explore the
artifacts further, they can download them to their local RI storage.

In the MARTE implementation, the downloaded artifacts consist
of either three or four components. First, there are the results and

the associated metadata of the experiment. Next, the contents of the
record-replay approach, which were automatically created during
the initial execution of the experiment, are included. If the author
has created the configuration file for the malleable reproduction
approach, this information is also available in the artifact.

Researchers focused on validating results can use the record-
replay method. In contrast, researchers who want to understand
the structure and execution of the experiment or modify it should
prefer the malleable reproduction method.

In both cases, re-executing the experiment generates a new RO-
Crate instance as depicted in Figure 4. This way, both the original
RO-Crate and the new instance provide all the information nec-
essary for a precise comparison between the original and the re-
created results. The new RO-Crate instance can then be uploaded
and published as well, completing the loop between experiment
creation and re-execution.

8 Demonstration
We present a demonstration experiment to showcase the MARTE
implementation. This demonstration consists of multiple parts.
First, we create a new experiment in the SLICES/pos RI. We decide
to perform a network measurement to create an experiment that
involves multiple nodes and is sufficiently rich to meaningfully
test MARTE’s reproducibility capabilities. In this measurement,
we evaluate the performance of different implementations of the
transport protocol QUIC [16]. After the measurement, we briefly
present the results and publish the result artifact on Zenodo.
Next, we demonstrate the functionality of the two MARTE ap-
proaches: malleable reproduction and automated record-replay. We
begin by using the automated record-replay to validate the results
on the same servers, relying solely on the recorded information con-
tained in the published artifact. Thereafter, we use the malleable re-
production, enabling us to modify the original measurement scripts
as part of the artifact. To demonstrate the experiment’s malleabil-
ity, we switch to a different server pair, which requires a minor
modification of the original experiment due to changed network
interface names. Finally, we compare the original measurement
with the replayed and reproduced measurements.

8.1 Experiment Description
QUIC is a transport protocol standardized by the Internet Engi-
neering Task Force (IETF) in 2021 [16]. It builds on top of the User
Datagram Protocol (UDP) and is designed to provide reliable, secure,
and low-latency transport. By integrating Transport Layer Security
(TLS) directly into the protocol, QUIC eliminates the need for a
separate TLS handshake. QUIC is used as transport protocol in the
HTTP/3 standard [2]. Unlike the Transmission Control Protocol
(TCP), QUIC is usually implemented in user space.While this allows
for faster development cycles, it results in numerous implemen-
tations in different programming languages. For our demonstra-
tion experiment, we use two popular open-source implementations
(both written in C) of QUIC: lsquic [14] and picoquic [3]. As the
purpose of our experiment is to demonstrate and test the MARTE
framework, the selection of the QUIC implementations is arbitrary.

For the measurement, we use two identical off-the-shelf servers
that are directly connected over an Ethernet Link. Specifically, the



MARTE: Malleable and Automated Reproduction for Testbed-driven Experiments ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada

QUIC Client ▶
◀ QUIC Server▶

◀

1

Figure 5: Demonstration experiment setup.

servers are equipped with a quad-core Intel Xeon E3-1230 CPU,
16GB RAM, and a 10Gbit/s Intel X540 network interface card (NIC).
One machine acts as client, while the other acts as server. Figure 5
illustrates the described experiment setup.

We use the provided example implementations of both QUIC
libraries to perform the measurements. The client requests a single
file and then downloads it from the server via HTTP. After the
transmission is completed, the client and server are stopped. We
use the goodput, defined as the file size divided by the client’s
runtime, as the primary performance metric. This measurement
procedure is simplified but comparable to the one presented before
by Kempf et al. [18].

8.2 Experiment Execution
The experiment is implemented using the pos methodology and,
therefore, split into three parts. The setup part includes the config-
uration of the nodes themselves, the network interfaces, and the
installation of required packages. The main part, the experiment
itself, starts with copying variables onto the nodes and building
the QUIC implementations. The loop functionality of pos is used
to execute the actual measurement multiple times with different
parameters. In each loop iteration, from now on referred to as run,
a new certificate and testfile are created on the server to ensure
equal conditions for each run. We added a few loop variables to the
experiment, including the file size of the transferred file, the used
QUIC implementation, and a bandwidth limit, which is emulated
on the server for outgoing traffic. Each configuration of loop vari-
ables can be repeated to achieve a higher confidence in the results
by averaging the measured values. For our demo, a value of ten
repetitions is used. During the transmission, logs are collected at
both endpoints. The log directory is uploaded to the management
node after each run to become part of the experiment artifact. The
evaluation part of the experiment includes log analysis and trans-
formation as well as plot generation. For this part, the collected
logs, metrics, and used variable sets from all runs are copied onto
one measurement node, where the analysis is performed. We im-
plemented a basic evaluation that calculates mean average values
as well as standard deviations from goodput values over all repeti-
tions. Finally, a sample plot visualizing the measurement results is
generated and uploaded to the management node, together with a
summary of the results.

8.3 Experiment Evaluation
Network experiments, in particular involving complex protocols
such as QUIC, provide both an ideal and challenging setting for
evaluating reproducibility. In comparison to a simple calculation,
yielding the same result every time, network experiments are much
more complex and, therefore, more difficult to reproduce. To address
this, we only look at the goodput and the general trend for different
emulated bandwidths. While measured results vary slightly even
with identical parameters, the outcomes of the same experiment

250 500 750 1,000 1,250 1,500 1,750 2,000
0

250

500

750

1,000

1,250

Configured bandwidth limit [Mbit/s]

Av
er
ag
e
go

od
pu

t[
M
bi
t/s

]

lsquic picoquic

1

Figure 6: Original measurement showing the performance
of two QUIC implementations.

on different nodes are comparable and lead to the same conclusion,
as previously shown [18].

The results from the original measurement are shown in Fig-
ure 6. The x-axis depicts the configured bandwidth limit on the
server. The y-axis displays the measured average goodput over ten
repetitions for the implementations. For the lower bandwidth lim-
its until 1250Mbit/s, we observe that picoquic achieves a minimal
higher goodput than lsquic. With a higher bandwidth limit, lsquic
reaches a significantly higher goodput of 1196Mbit/s compared to
1068Mbit/s of picoquic.

8.4 Publication
The complete artifact of the demonstration experiment is available
at Zenodo: https://doi.org/10.5281/zenodo.15747497. As described
in Section 7, the publication is a seamless and automated process.
It can be initiated anytime after the experiment has terminated.
All contents of the published artifact are automatically generated
during the execution of the experiment, with no manual additions.
The artifact contains the experiment results, metadata, malleable
reproduction scripts, and the automated recording. Formatted as
RO-Crate, the artifact’s contents align with Figure 4.

Artifact Explanation. To simplify the exploration of the artifact,
we want to highlight the location of the aforementioned contents in
this paragraph. On the root of the artifact, we have the mandatory
ro-crate-metadata.json, which describes and links all contents
of the artifact. The scripts and their outputs, which have been
executed on the experiment nodes, are stored in the scripts folder.
The result files, including the goodput plot of the experiment, are
located in the files folder. All information about the environment,
such as hardware and topology, are stored in config folder.

The malleable_reproduction folder contains the original ex-
periment scripts and the configuration file (config.yml) of the mal-
leable reproduction approach. The experiment recording is stored
in the experiment_recording.json file.

8.5 Experiment Reproduction
In this section, we want to showcase the automated reproduction
of the published experiment artifact powered by MARTE.

https://doi.org/10.5281/zenodo.15747497


ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada Hauser et al.

250 500 750 1,000 1,250 1,500 1,750 2,000
0

250

500

750

1,000

1,250

Configured bandwidth limit [Mbit/s]

Av
er
ag
e
go

od
pu

t[
M
bi
t/s

]

Replay: lsquic picoquic
Reproduction: lsquic picoquic

1

Figure 7: Reproduced measurements with MARTE showing
the performance of two QUIC implementations.

First, we use the automated record-replay method to seamlessly
replay the original experiment. As the record-replay approach is
unsuitable for modifying the recorded experiment, we replay it on
the same testbed nodes. Therefore, the objective of the replay is to
accurately validate the result of the original measurement.
Second, to demonstrate the malleability of the experiment, we mod-
ify the original measurement files. Therefore, we switch to a dif-
ferent pair of servers. For these servers, the interface names have
changed; thus, we need to change a variable file of the experiment
scripts. The first server, acting as the QUIC server, is equipped
with an Intel Xeon E5-2640 v2 CPU and 32GB of RAM. The second
server, which functions as the QUIC client, is a dual-socket system
using the same CPU model but has 16GB of RAM. Both servers are
equipped with NICs from the Intel X500 family.

Reproduction Evaluation. Figure 7 depicts the results of the two
experiment reproductions. We first look at the replayed results
highlighted with the filled markers in the figure. In general, sim-
ilar to the original measurement, for lower bandwidth limits the
goodput of picoquic is minimally better than lsquic while for larger
bandwidths lsquic is noticeably faster than picoquic. Moreover, if
we look closely, all goodputs are very close to the original measure-
ment, validating the initial results. If we pick one value, for example
lsquic at the 1500Mbit/s limit, the goodputs are 1129.15Mbit/s for
the original and 1133.96Mbit/s for the replay, respectively. This
results in a deviation of approx. 0.43% between the original and
replayed experiment.

In comparison, themalleable reproduction results are highlighted
with the white-filled markers in the figure. We note that the good-
put is worse than the original and replayed measurement. This
effect can be explained by the different servers which were used
for the reproduction. Since MARTE documents detailed hardware
information in the artifacts, we can use this information to compare
the different setups. Consequently, we observe that the CPUs of the
original experiment have 4 cores with 3.2GHz base clock, while the
servers of the malleable reproduction have 8 cores but only a base
clock of 2.0GHz. Due to the reduced base clock and comparable
architecture, the single core performance of the malleable repro-
duction servers is worse. As the used QUIC implementations are

single-core applications, the lower goodput can be explained by the
reduced single-core performance.

9 Conclusion
Reproducing and validating experimental results in the computa-
tion and data networking area remains a complex challenge due
to intricate dependencies, evolving environments, and insufficient
documentation. While research infrastructures provide a solid foun-
dation for reproducibility, additional concepts and tools are required
to boost their full potential.

We presented MARTE, a novel methodology to close the loop
between experiment execution, result sharing, and reproduction.
We made several contributions to implement this methodology.
First, we package experiment results alongside with the scripts
that generated them, obtaining self-contained experiment artifacts.
We use RO-Crate as foundation for result data management to
integrate structured and rich metadata. Next, we proposed two ap-
proaches for a user-friendly reproduction of experiments: malleable
reproduction, which enables flexible reuse and adaptation of exist-
ing experiments, and record-replay, which captures and replays
experiment executions fully automated for simple reproduction.
By emphasizing malleability, experiments become shareable ar-
tifacts, allowing the research community to build upon existing
work. Moreover, we provide tools to streamline the publication of
artifacts to open repositories. For all the mentioned contributions,
a key aspect of this work is automating the process as much as
possible to minimize the effort required for reproducible research.

Future research could explore whether adding components in
addition to cross-research infrastructure (cross-RI) compatibility
would further improve reproducibility. We also envision creating
a digital twin of the testbed or the identical experiment hardware
setup to facilitate the reproduction of experiments. To implement
this approach, MARTE is well-equipped due to its comprehensive
environment documentation. Additionally, the machine-readable
RO-Crate format simplifies the process of automated replication.

Our demonstration experiment shows that MARTE streamlines
the reproduction processwhile decreasingmanual effort.We showed
that the measurement can be seamlessly validated using record-
replay, and we applied the malleable reproduction approach to
execute the experiment on a different hardware setup. We made
the artifact of our demonstration experiment publicly available
on Zenodo (https://doi.org/10.5281/zenodo.15747497) to allow the
research community to better understand the advantages of the
MARTE methodology.

Acknowledgments
We received funding from the EU’s Horizon 2020 programme as part
of the projects SLICES-PP (10107977) and GreenDIGIT (101131207).
Moreover, we received funding from the Federal Ministry of Re-
search, Technology and Space (BMFTR) under the projects 6G-life
(16KISK002) and 6G-ANNA (16KISK107) as well as from the Ger-
man Research Foundation (DFG) within the project HyperNIC
(CA595/13-1). Additional funding was received from the Bavarian
Ministry of Economic Affairs, Regional Development and Energy
within the project 6G Future Lab Bavaria.

https://doi.org/10.5281/zenodo.15747497


MARTE: Malleable and Automated Reproduction for Testbed-driven Experiments ACM REP ’25, July 29–31, 2025, Vancouver, BC, Canada

References
[1] ACM. 2020. Artifact Review and Badging Version 1.1. https://www.acm.org/

publications/policies/artifact-review-and-badging-current Accessed: 2025-03-25.
[2] Mike Bishop. 2022. HTTP/3. RFC 9114. doi:10.17487/RFC9114
[3] Christian Huitema. 2017. picoquic. https://github.com/private-octopus/picoquic

Accessed: 2025-04-03.
[4] Chamelon Cloud. 2021. Trovi. https://trovi.chameleoncloud.org/dashboard/about

Accessed: 2025-03-30.
[5] Christian Collberg, Todd Proebsting, Gina Moraila, Akash Shankaran, Zuoming

Shi, and Alex M Warren. 2014. Measuring reproducibility in computer systems
research. Department of Computer Science, University of Arizona, Tech. Rep 37
(2014).

[6] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, et al. 2019. The Design and
Operation of CloudLab. In 2019 USENIX Annual Technical Conference, USENIX
ATC 2019, Renton, WA, USA, July 10-12, 2019. https://www.usenix.org/conference/
atc19/presentation/duplyakin

[7] European Organization For Nuclear Research and OpenAIRE. 2013. Zenodo.
doi:10.25495/7GXK-RD71

[8] Serge Fdida, Nikos Makris, Thanasis Korakis, Raffaele Bruno, Andrea Pas-
sarella, Panayiotis Andreou, Bartosz Belter, Cedric Crettaz, Walid Dabbous,
Yuri Demchenko, and Raymond Knopp. 2022. SLICES, a scientific instru-
ment for the networking community. Comput. Commun. 193 (2022), 189–203.
doi:10.1016/J.COMCOM.2022.07.019

[9] Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, and Georg Carle. 2021.
The pos Framework: A Methodology and Toolchain for Reproducible Network
Experiments. In CoNEXT ’21: The 17th International Conference on emerging Net-
working EXperiments and Technologies, Virtual Event, Munich, Germany, December
7 - 10, 2021. ACM. doi:10.1145/3485983.3494841

[10] Yolanda Gil, Ewa Deelman, Mark H. Ellisman, Thomas Fahringer, Geoffrey C.
Fox, Dennis Gannon, Carole A. Goble, Miron Livny, Luc Moreau, and Jim Myers.
2007. Examining the Challenges of Scientific Workflows. Computer 40, 12 (2007),
24–32. doi:10.1109/MC.2007.421

[11] Eric Hauser, Sebastian Gallenmüller, and Georg Carle. 2024. RO-Crate for
Testbeds: Automated Packaging of Experimental Results. In IFIP Networking
Conference, IFIP Networking 2024, Thessaloniki, Greece, June 3-6, 2024. IEEE, 654–
659. doi:10.23919/IFIPNETWORKING62109.2024.10619057

[12] Fabien Hermenier and Robert Ricci. 2012. How to Build a Better Testbed: Lessons
from a Decade of Network Experiments on Emulab. In Testbeds and Research
Infrastructure. Development of Networks and Communities - 8th International ICST
Conference, TridentCom 2012, Thessanoliki, Greece, June 11-13, 2012, Revised Se-
lected Papers (Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, Vol. 44), Thanasis Korakis, Michael Zink,
and Maximilian Ott (Eds.). Springer, 287–304. doi:10.1007/978-3-642-35576-9_24

[13] Tobias Hummel and Johannes Manner. 2024. A Literature Review on Repro-
ducibility Studies in Computer Science (short paper). In Proceedings of the 16th
ZEUS Workshop, Ulm, Germany, February 29-March 1, 2024 (CEUR Workshop Pro-
ceedings, Vol. 3673), Sebastian Böhm and Daniel Lübke (Eds.). CEUR-WS.org,
54–62. https://ceur-ws.org/Vol-3673/paper9.pdf

[14] LiteSpeed Technologies Inc. 2017. lsquic. https://github.com/litespeedtech/lsquic
Accessed: 2025-04-03.

[15] ORCID Inc. 2010. ORCID: Open Researcher and Contributor ID. https://orcid.org/.
Accessed: 2025-06-21.

[16] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. doi:10.17487/RFC9000

[17] Kate Keahey, Jason Anderson, Zhuo Zhen, et al. 2020. Lessons Learned from the
Chameleon Testbed. In 2020 USENIX Annual Technical Conference, USENIX ATC
2020, July 15-17, 2020. USENIX Association. https://www.usenix.org/conference/
atc20/presentation/keahey

[18] Marcel Kempf, Benedikt Jaeger, Johannes Zirngibl, Kevin Ploch, and Georg Carle.
2024. QUIC on the Fast Lane: Extending Performance Evaluations on High-rate
Links. Comput. Commun. 223 (2024), 90–100. doi:10.1016/J.COMCOM.2024.04.038

[19] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing,
and Jupyter Development Team. 2016. Jupyter Notebooks - a publishing format
for reproducible computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas, 20th International Conference on Elec-
tronic Publishing, Göttingen, Germany, June 7-9, 2016, Fernando Loizides and
Birgit Schmidt (Eds.). IOS Press, 87–90. doi:10.3233/978-1-61499-649-1-87

[20] California Digital Library, Crossref, and DataCite. 2019. ROR: Research Organi-
zation Registry. https://ror.org/. Accessed: 2025-06-21.

[21] Rudolf Mayer and Andreas Rauber. 2015. A Quantitative Study on the Re-
executability of Publicly Shared Scientific Workflows. In 11th IEEE International
Conference on e-Science, e-Science 2015, Munich, Germany, August 31 - September
4, 2015. IEEE Computer Society, 312–321. doi:10.1109/ESCIENCE.2015.58

[22] Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick
Valduriez, and Gabriel Antoniu. 2023. KheOps: Cost-effective Repeatability,

Reproducibility, and Replicability of Edge-to-Cloud Experiments. In Proceedings
of the 2023 ACM Conference on Reproducibility and Replicability, ACM-REP 2023,
Santa Cruz, CA, USA, June 27-29, 2023. ACM, 62–73. doi:10.1145/3589806.3600032

[23] Stian Soiland-Reyes, Peter Sefton, Mercè Crosas, et al. 2022. Packaging research
artefacts with RO-Crate. Data Sci. 5, 2 (2022). doi:10.3233/DS-210053

[24] Henning Stubbe, Sebastian Gallenmüller, and Georg Carle. 2024. The Pos Experi-
ment Controller: Reproducible & Portable Network Experiments. In 19th Wireless
On-Demand Network Systems and Services Conference, WONS 2024, Chamonix,
France, January 29-31, 2024. IEEE, 85–92. doi:10.23919/WONS60642.2024.10449532

[25] W3C. 2020. JSON-LD 1.1: A JSON-based Serialization for Linked Data. https:
//www.w3.org/TR/json-ld/ Accessed: 2025-03-25.

[26] Mark DWilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3, 1 (2016).

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.17487/RFC9114
https://github.com/private-octopus/picoquic
https://trovi.chameleoncloud.org/dashboard/about
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.25495/7GXK-RD71
https://doi.org/10.1016/J.COMCOM.2022.07.019
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1109/MC.2007.421
https://doi.org/10.23919/IFIPNETWORKING62109.2024.10619057
https://doi.org/10.1007/978-3-642-35576-9_24
https://ceur-ws.org/Vol-3673/paper9.pdf
https://github.com/litespeedtech/lsquic
https://orcid.org/
https://doi.org/10.17487/RFC9000
https://www.usenix.org/conference/atc20/presentation/keahey
https://www.usenix.org/conference/atc20/presentation/keahey
https://doi.org/10.1016/J.COMCOM.2024.04.038
https://doi.org/10.3233/978-1-61499-649-1-87
https://ror.org/
https://doi.org/10.1109/ESCIENCE.2015.58
https://doi.org/10.1145/3589806.3600032
https://doi.org/10.3233/DS-210053
https://doi.org/10.23919/WONS60642.2024.10449532
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/

	Abstract
	1 Introduction
	2 Background
	2.1 Issues in Reproducibility
	2.2 Experiment Data Management
	2.3 Selected Infrastructure and Tools for MARTE
	2.4 The pos Methodology
	2.5 Related Initiatives

	3 Requirements
	3.1 General Requirements
	3.2 Malleable Reproduction Requirements
	3.3 Record-Replay Requirements

	4 RO-Crate for Experiment Results
	5 Malleable Reproduction of Experiments
	6 Automated Record-Replay of Experiments
	6.1 Recording of Experiments
	6.2 Replaying of Experiments

	7 Publication and Sharing of Experiments
	8 Demonstration
	8.1 Experiment Description
	8.2 Experiment Execution
	8.3 Experiment Evaluation
	8.4 Publication
	8.5 Experiment Reproduction

	9 Conclusion
	Acknowledgments
	References

