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Abstract
Artifact evaluation places a significant burden on both authors and
reviewers: Authors must package bespoke experimental setups,
while committees struggle to validate them. Research Infrastruc-
tures (RIs) offer tools to support reproducibility, yet interoperability
remains limited due to insufficient standardization efforts.
To address this, we propose new standards that unify RIs through
a formal experiment execution format and topology management
for networked experiments. In addition, we advance sustainabil-
ity through integrated energy analysis and modeling. Together,
these contributions improve reproducibility, enable cross-RI col-
laboration, and foster more sustainable experiments. This makes
RIs more FAIR—particularly by strengthening interoperability and
reusability—while aiding broader adoption across the (network)
research community.

CCS Concepts
• General and reference → Experimentation;Measurement;
Validation; • Networks→ Network experimentation; Topology anal-
ysis and generation; Physical topologies; • Social and professional
topics→ Sustainability.
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1 Introduction
Research Infrastructures (RIs), i.e., testbeds, provide an essential ser-
vice to the research community by enabling the design, execution,
and evaluation of complex experiments under controlled conditions.
A core strength of RIs lies in their emphasis on reproducibility, al-
lowing researchers to validate existing results and build upon prior
work. However, despite significant advances in recent years, there
remain important challenges to foster usability, sustainability, in-
teroperability, and reproducibility across RIs.
In this work, we present three novel approaches to extend the
capabilities of existing RIs:

(1) Standardizing a structure for experiment executions using
newly introduced RO-Crate profiles.

(2) Introducing network topology management based on YANG,
an IETF data modeling language.

(3) Integrating energy consumption monitoring and analysis
into the experimental workflow.

These contributions are motivated by two main goals: First, to pro-
pose unified methods addressing a lack of open, widely adopted
RI standards, improving convenience and efficiency to encourage
broader RI adoption. Second, to strengthen reproducibility, support-
ing the community in producing more transparent and comparable
results for easier evaluation. This work raises no ethical issues.

2 Background
RIs such as CloudLab [4], Chameleon [9], and SLICES [5] provide
environments where the FAIR principles [12]—Findable, Accessible,
Interoperable, and Reusable—can be operationalized. They also en-
able the automation of these processes at scale. Despite this, achiev-
ing reproducibility across different RIs remains challenging due
to heterogeneous execution tools and inconsistent measurement
practices. In our previous work [8], we demonstrated which ele-
ments experiment artifacts should include to improve reproduction
across RIs, but interoperability between them remains challenging.
To address these challenges, standardized formats are needed to
simplify and enhance information exchange between RIs.

3 Implementation
In this section, we outline our contributions. Due to the limited
space of this extended abstract, we present a concise overview of
our approaches rather than full technical details.
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Figure 1: Simplified draft of an RO-Crate profile for RIs.
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Figure 2: Visualized experiment topology of example nodeA.

3.1 Standardized Experiment Structure with
RO-Crate Profiles

RO-Crate [11] is a framework for packaging research data together
with its metadata. It builds on JSON for Linked Data (JSON-LD),
which enables linking result resources and fosters interoperability.
In previous work, we demonstrated how RO-Crate can be used
to package artifacts of RIs [7]. RO-Crate encourages using terms
from schema.org [6] to describe (meta-)data. However, this open
vocabulary is often too generic and does not adequately cover the
specific workflows of RIs.

The recently released RO-Crate version 1.2 (June 2025) [10]
introduces the concept of profiles, enabling domain-specific ter-
minologies tailored to particular use cases. Building on this, we
propose a dedicated RO-Crate profile for RIs to more accurately
capture their experimental workflows. The profile defines a basic
set of unified operations common across RIs and supports the de-
scription of key processes such as experiment node resets or script
executions. Figure 1 illustrates a simplified draft for these exem-
plary operations. The draft objects include properties like name or
duration, and can link to adjacent files or other objects.

3.2 Network Topology Management with YANG
Experiments in distributed systems and network protocol prototyp-
ing often rely on multi-node setups where the network topology
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Figure 3: Experiment power consumption over time.

becomes a crucial part of it. Yet, topologies are usually documented
only graphically, limiting automated processing and requiring man-
ual work. In multi-user testbeds, frequent changes further under-
line the need for automated detection, representation, visualization,
modification, and reuse—features we summarize under the term
topology management.

In this work, focusing on the core aspect of representation, we
base topology management on the Yet Another Next Generation
(YANG) data modeling language. YANG was originally developed
for the NETCONF protocol and standardized in RFCs 6020 and
7950 [1, 2]. It allows defining structured data templates, called
models, that can be reused and extended through augmentations.

We build on the IETF L2 Topology Model (RFC 8944 [3]), aug-
menting it to meet the needs of RI-based experiment topologies.
Specifically, this includes support for bidirectional links as well as
adding link characteristics such as medium type (e.g., fiber) and line
rate. In addition, we add support for fiber-optic splitters (i.e., passive
optical taps) with their respective split ratios. Figure 2 illustrates
an example topology of an experimental node, demonstrating key
features supported by our YANG model, including bidirectional
links, a splitter configuration, and a switched network segment.

3.3 Energy Monitoring and Modeling
Power consumption and energy efficiency are important, but often
overlooked in experimental research. To address this, we integrate
automated monitoring of energy-related parameters via metered
power outlets, with results directly linked to individual experi-
ment runs through RO-Crate. Figure 3 shows the automated power
analysis of an experiment divided into eight runs, each applying a
different load and thus consuming different amounts of energy.
Beyond analysis, we provide modeling tools in Jupyter Notebooks
that help researchers identify phases of high energy consumption,
optimize their implementations, and predict the estimated power
consumption of different configurations.

4 Conclusion
This work showcased how targeted advancements in standardized
experiment execution, topology management, and energy monitor-
ing can make RIs more reproducible, transparent, and convenient to
use. Beyond improving experimental workflows, these approaches
pave the way for more sustainable and comparable research prac-
tices across different testbeds. To test the proposed concepts, we
invite the community to seek collaboration with our RI, SLICES-DE
(https://slices-de.org/), Germany’s contribution to the European
SLICES initiative. Looking ahead, we aim to drive the integration of
these approaches into future standards and best practices, shaping
the next generation of reproducible and interoperable RIs.

https://slices-de.org/
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