
Slicing Networks
with P4 Hardware and Software Targets

Eric Hauser, Manuel Simon, Henning Stubbe, Sebastian Gallenmüller, Georg Carle
Chair of Network Architectures and Services, Department of Informatics,

Technical University of Munich, Garching near Munich, Germany
{hauser,simonm,stubbe,gallenmu,carle}@net.in.tum.de

ABSTRACT
Running applications over a shared network may lead to unwanted
impairments or performance impacts. To avoid these effects, the
partitioning of network resources is an integral aspect of effective
5G networks. These virtually partitioned networks or slices allow
the provisioning of network resources to guarantee a specific ser-
vice quality to dedicated virtual networks. Programmable network
devices, pushed by new languages such as P4, with their intrinsic
flexibility, present themselves as a promising technique to realize
slicing. This paper explores three approaches to network slicing
and their respective implementation on a P4 soft- and hardware
network device. We focus our effort on investigating P4 primitives
that do not require the features of a specific P4 device but are avail-
able across different P4 targets. Based on our findings, we provide
target-specific guidelines minimizing the impact of P4-based slicing
for software and hardware targets alike.

CCS CONCEPTS
• Networks → Network performance analysis; Network mea-
surement; Programmable networks.

KEYWORDS
P4, Network Slicing, Network Experiments
ACM Reference Format:
Eric Hauser, Manuel Simon, Henning Stubbe, Sebastian Gallenmüller, Georg
Carle. 2022. Slicing Networks with P4 Hardware and Software Targets. In
ACM SIGCOMM 2022 Workshop on 5G and Beyond Network Measurements,
Modeling, and Use Cases (5G-MeMU ’22), August 22, 2022, Amsterdam, Nether-
lands. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3538394.
3546043

1 INTRODUCTION
Digital cellular networks are characterized by the coexistence of
different communication tasks such as signaling, data, or voice.
Each of these tasks requires a specific service quality. In 5G, the
fundamental property of different service classes is extended to
applications utilizing data over cellular networks. Three promi-
nent service classes in 5G networks are the throughput-optimized

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
5G-MeMU ’22, August 22, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9393-5/22/08. . . $15.00
https://doi.org/10.1145/3538394.3546043

enhanced mobile broadband (eMBB), the massive machine type
communication (mMTC) for networks with many nodes, and ultra-
reliable low-latency communication (URLLC) for highly critical
applications.

A key concept to realize the different requirements of the previ-
ously mentioned service classes is network slicing [13]. Multiple
logical networks or slices share the same physical infrastructure
in sliced networks. A key challenge for network slicing is the par-
titioning of resources, e.g., hardware, to minimize the impact of
the individual slices on each other. In this work, we investigate the
suitability of programmable network devices for realizing sliced
networks.

P4 [1] is a domain-specific language for programming differ-
ent kinds of network devices, also called targets, such as software
packet processing applications or switches. In addition, P4 allows
the definition of network processing tasks on a low level. As 5G’s
different service classes have different requirements, a P4-driven
network allows low-level optimizations to adapt to the currently
running services without changing the hardware. The low-level
control over the network enables a degree of flexibility that is
unique to P4, making it a highly attractive platform for realizing
different network services.

In the following, we identify different ways to utilize P4’s capa-
bilities to realize network slicing. The focus of our investigation
is the utilization of vanilla P4. We want to avoid relying on spe-
cific hardware features available only on selected targets. Based
on our findings, we provide measurements of the different slicing
approaches on a software and a hardware P4 target. The results
identify the benefits and disadvantages of the individual slicing
approaches on different P4 targets and provide recommendations
for their use.

The paper is structured as follows. Section 2 investigates related
concepts and solutions. In Section 3, we propose three different
slicing approaches. The implementation of these approaches is de-
tailed in Section 4. Section 5 presents latency and performance
measurements of the implemented slicing approaches. The imple-
mentations’ strengths and weaknesses are discussed in Section 6.
Section 7 concludes the paper.

2 RELATEDWORK
5G networks and network slicing are highly active research topics,
extensively described in literature. In this paper, we want to fo-
cus our investigation on slicing approaches of programmable data
planes.

Ordonez-Lucena et al. [11] propose general concepts for slicing
the 5G network infrastructure. Thus, enabling multiple networks,

https://doi.org/10.1145/3538394.3546043
https://doi.org/10.1145/3538394.3546043
https://doi.org/10.1145/3538394.3546043

5G-MeMU ’22, August 22, 2022, Amsterdam, Netherlands E. Hauser, M. Simon, H. Stubbe, S. Gallenmüller, G. Carle

here synonymous with slices, on top of a physical network infras-
tructure. Thereby, technologies such as Software Defined Network-
ing (SDN) and Network Function Virtualization (NFV) build the
foundation of the sliced 5G infrastructure. While akin in terms of
general concepts, our work adds the aspect of evaluating concrete
approaches and their P4 implementations.

Wang et al. [19] present a hardware design for a multi-tenant
programmable processing pipeline. The architecture is applied to
two different FPGA-based NIC platforms, demonstrating a near-
native performance for the implemented isolation mechanisms. A
different multi-tenant architecture for a P4-programmable FPGA
target is presented by Stoyanov et al. [17]. They consider the details
of isolating tenants and suggest, among others, a privileged tenant
responsible for managing access rights of other tenants. Moreover,
Ricart-Sanchez et al. [12] propose QoS-aware slicing in the edge-
to-core segment of 5G networks. All three works target a common
hardware platform: FPGA instead of a software or ASIC target. In
addition, they discuss the aspect of multi-tenancy. In contrast to
this work, no comparison of different isolation approaches takes
place.

Chen et al. [3] introduce the P4-TINS framework allowing net-
work slicing on hardware switches. They rely on hardware-specific
priority queues available in the Intel Tofino switching ASIC. Tur-
boNet [2] is a network emulator for the Intel Tofino. While Cao
et al. [2] touch on the aspect of realizing isolated links on this
ASIC, their solution neither intends nor permits the execution of
individual P4 code on the device. Instead, TurboNet focuses on the
efficient deployment of arbitrary network topologies. To realize
multi-tenancy on hardware ASICs, such as the Intel Tofino, Wang et
al. [20] discuss how multiple programs can be run on a single piece
of hardware. Apart from showing the feasibility, they intended to
start a discussion on the vision for multi-tenancy. In an early work,
Hancock et al. [7] describe HyPer4, a virtualization solution for
P4-programmable devices. In contrast to our work, HyPer4 relies
on target-specific hardware features to implement network slic-
ing with P4. As the two previously mentioned publications, this
work targets the Intel Tofino and its ASIC. This results in programs
relying on non-vanilla P4 functionality specific to this target. In
our paper, we include an ASIC-based target in our comparison.
However, we eliminate target-specific extensions to allow for more
general observations.

Finally, from a P4 language perspective, Soni et al. [16] discuss
challenges and possible solutions when combining arbitrary pro-
grams. They suggest a framework that eases combining programs
and running them on a single P4 target. While the main idea of such
an abstraction would assist in combining programs of sliced net-
works, possible slicing approaches discussed here remain the same.
Arguably, the abstraction would distract during the evaluation and
comparison provided by this work.

P4 slicing is an active field of research investigated from various
angles. Approaches consider isolation on a software or hardware
level, with studies exploring different targets such as software,
FPGA, or ASIC. However, the mentioned approaches use target-
specific features supported by platforms to realize slicing. Relying
on target-specific features restricts users to a specific device, such
as Intel Tofino, or class of devices, such as FPGAs. Because of this
restriction, we claim that target-specific slicing approaches need to

be well justified. For us, this means that these target-specific slicing
approaches must offer significant advantages compared to regular
P4 targets. We restrict our investigation to vanilla P4 capabilities,
i.e., features available on any P4-capable device. Our measurements
provide a baseline performance for vanilla P4 slicing approaches
across different targets. This baseline can act as a performance goal
for the previously described target-specific slicing approaches.

3 SLICINGWITH P4
P4 is an open-source programming language aimed at solving the
heterogeneity in SDN by introducing programmability in a vendor-,
protocol-, and target-independent way. The underlying model of
P4 considers three parts: parser, match-action pipeline, and deparser.
The parser processes incoming packets. Afterward, packets traverse
the match-action pipeline consisting of one or more control blocks.
Within these control blocks, matches to header fields and actions are
performed. Tables provide the values against which header fields
are matched and the associated action and their parameters. Ac-
tions allow arbitrary packet modifications and special instructions
such as dropping the packet. The control plane can update table
entries dynamically without changing the P4 program. Addition-
ally, current research aims to provide updates to the tables directly
from the data plane [15]. Modifying table entries directly reduces
the update delay compared to the traditional method involving
the control plane. Finally, the deparser reassembles packets before
transmission.

The common goal of network slicing is the separation of the
traffic for different logical networks. In this work, we propose three
approaches to sharing the resources of a single physical P4 pro-
grammable device between multiple logical networks: table, pro-
gram, and hardware slicing. Each method relies on specific P4 con-
structs to partition the logical networks.

Table slicing uses separate entries in P4 tables to discriminate
between logical networks. Every entry in this P4 table is associ-
ated with a specific logical network. The table and its structure
remain the same for all logical networks. This unmodifiable ta-
ble structure determines the investigated header fields and the
performed matches. The content of the P4 table can be changed
without modification of the P4 code or the hardware simplifying
the implementation of table slicing. P4 allows the modification of
table entries at runtime. This way, entries for the different logical
networks can be easily added, removed, or changed during oper-
ation. The table slicing method may increase the number of table
entries, as entries are added for each logical network. Therefore,
table slicing requires additional space for the table, which may lead
to an increased energy consumption or impact the performance
depending on the data structures used for the tables.

Program slicing allows providing complete processing tasks for
each logical network. Specific actions can be defined and mapped
to specific logical networks. In addition, individual tables using
their specific structure can be created for each logical network.
Individual actions and tables allow the implementation of highly
individual functionality. In extreme cases, the specific processing
tasks of the different logical networks share neither actions nor
table structures. When combining logical networks that require
different functionality, the P4 program must be adapted. Typically,

Slicing Networks with P4 Hardware and Software Targets 5G-MeMU ’22, August 22, 2022, Amsterdam, Netherlands

...

P4 target

...
tenant A
excl. ports

tenant N
excl. ports

shared ports
of tenants

Figure 1: Flexible port allocation concept

this requires merging two different P4 programs into one. The
combined P4 program needs to reflect the different processing
paths of the separate logical networks. As a result, the combination
of different processing paths with their specific complexity may
impact the observed performance. Packets that require complex
processing may delay the processing of other packets requiring less
complex processing.

Hardware slicing achieves separation between logical networks
on the hardware level. Additional hardware resources on the P4 tar-
get are required to realize hardware slicing. The additional resources
are used to realize P4 processing pipes that rely on exclusive hard-
ware resources. Therefore, the individual programs of the logical
networks have exclusive access to the sliced hardware. Such exclu-
sive hardware access allows the processing of packets with minimal
impact on the other logical networks. Thus, the performance im-
pact is low even for programs with highly different complexity. A
disadvantage of providing the additional hardware resources is high
costs. In addition, the hardware resources must be available; how-
ever, not all P4 targets may implement extra hardware resources to
realize hardware slicing.

4 IMPLEMENTATION
This section presents our reference implementation for the three
slicing approaches, i.e., table, program, and hardware slicing. Prior
to that, we introduce a reference scenario that we use to illustrate
our assumptions.

To foster the reproducibility of our results, we published our
implementation: https://github.com/tumi8/memu-5g22-p4-slicing

4.1 Scenario Description
The concept of network slices in 5G enables diversified services
sharing one physical network. Therefore, the physical network
operator rents independent logical networks, or network slices, to
the tenants. In our proposed implementation scenario, we associate
one logical network with one specific tenant. Thus, tenants are
independent and have different applications to be executed on their
network slice. For all three approaches, we isolate the tenants by
strictly separating their traffic. To achieve this separation, we split
the data plane’s available ports into exclusive and shared ports.
Figure 1 depicts this flexible port allocation concept. Separation
is implemented using Virtual LANs (VLANs) according to IEEE
802.1Q [8]. Thereby, we assign an individual VLAN identifier (VID)
to every tenant. Exclusive ports, i.e., access ports, are solely bound
to one tenant. Shared ports, i.e., trunk ports, can be used by multiple
tenants simultaneously.

In our implementation, the assignment of incoming packets to
the respective tenant on the exclusive ports is directly based on the
receiving port number. In contrast, for the shared ports, the VID is
used to distinguish the packets of different tenants. Packets arriving
at unallocated ports or with an unknown VID are dropped. A possi-
bly existing VLAN header is removed for all outgoing packets on a
tenant’s exclusive port. On the contrary, a VLAN header is inserted
for the shared ports. In this case, the assigned VID depends on the
initially mapped tenant. Direct communication between different
VLANs is prohibited; however, packets may be exchanged outside
the VLAN domain.

4.2 Table Slicing
Table slicing allows tenants to write table entries to a predefined
table structure. Therefore, the table structure is fixed and cannot be
individually adjusted by the tenants. If a packet matches a tenant’s
table entry, the respective tenant can select actions from a pool
provided by the P4 target operator. We propose the following exam-
ple actions for our implementation: forwarding to one of the valid
shared or exclusive output ports, dropping packets, and modifying
the header fields of packets. Custom actions that are not part of the
pool of predefined actions are not supported. Our implementation
focuses on enabling support for widely used protocols such as IPv4,
IPv6, UDP, and TCP. The proposed table structure has a predefined
set of keys to match the table entries. The predefined table keys fol-
low the standard 5-tuple model. Therefore, the key fields are fixed
to the network layer’s source and destination addresses, the used
protocol on the transport layer, and the transport layer’s source and
destination ports. Other table keys or actions can support further
protocols depending on the actual use case.

4.3 Program Slicing
In contrast to table slicing, program slicing offers more customiz-
ability to the tenants. Instead of adding entries to a predefined table
structure, tenants have complete control over a single control block.
Within a control block, arbitrary P4 operations can be executed.
This includes custom actions and regular if-else statements. Ten-
ants can also define their own tables. As long as the resources, e.g.,
special memory for fast table lookups, of the respective P4 target
are not exhausted, there are no limits on table entries or the number
of tables in total. However, because the tenants only have access
to their control block, parser and deparser structures are shared
across all tenants. To allow sharing parsers and deparsers among
tenants, our implementation provides a common parser supporting
various standard protocols. This default parser is applied to each
packet processed by our P4 implementation. The tenants can access
the headers of the parsed packets from within the tenant-defined
control blocks and use the available information for processing.
After the control block processing has ended, the initially parsed
headers are deparsed by the provided deparser implementation. Our
deparser implementation supports the same standard protocols as
the initially defined parser.

https://github.com/tumi8/memu-5g22-p4-slicing

5G-MeMU ’22, August 22, 2022, Amsterdam, Netherlands E. Hauser, M. Simon, H. Stubbe, S. Gallenmüller, G. Carle

DuT

LoadGen

1
A

2
B

3
A B

1

Figure 2: Measurement setup

4.4 Hardware Slicing
Hardware slicing aims to lift all limitations of the table and pro-
gram slicing approaches. Instead of control blocks for every ten-
ant, tenants can use all features of the P4 programming language.
Therefore, the tenants define their programs individually, including
parsers, control blocks, and deparsers. The required tenant-specific
parsers, for instance, enable support for new protocols. Hardware
slicing is implemented differently depending on the desired P4 tar-
get. Multiple P4 programs can run simultaneously using separate
CPU cores on software-based targets. In contrast, hardware targets
like specialized ASIC switches typically feature multiple indepen-
dent processing pipes. In the default case, all pipes execute the
same P4 program. However, some targets support the assignment
of different programs to each pipe. The actual implementation de-
pends on the used P4 target. We only support one specialized ASIC
switch with four parallel pipes in our implementation. Therefore,
the total number of tenants participating in the hardware slicing
implementation is limited to four. A combination of the hardware
slicing approach and the table or program slicing approaches is
possible to support a larger number of tenants.

5 EVALUATION
This section presents latency measurements of the proposed net-
work slicing approaches. We compare multi-tenant examples with
baseline measurements to identify the performance impacts of the
different slicing approaches. Thereby, the baseline measurement
represents a single-tenant setup but keeps all introduced features
like exclusive and shared ports.

5.1 Measurement Setup
We compare the performance of two different P4 targets for the
evaluation: (i) a hardware target based on a switching ASIC and (ii)
the software target t4p4s [18]. T4p4s is based on the Data Plane De-
velopment Kit (DPDK) [10], a high-performance packet processing
framework. We use t4p4s based on commit a3a54e37 with custom
latency optimizations. Despite fundamental differences, we aim to
keep the measurement setups for both targets as similar as possible.
Furthermore, we keep the overall setup as simple as possible to
eliminate any additional influences. Therefore, we use only one
isolated CPU core for the evaluation of the software target. We use
the plain orchestrating system (pos) [6] methodology to create fully
automated, reproducible experiments and experiment evaluations.
The overall measurement setup is depicted in Figure 2. The setup
consists of two devices, the P4 target as Device under Test (DuT) and
a load generator (LoadGen). The setup supports two active tenants,

baselineA /B 2 tenantsA 2 tenantsB
1

0 5 10 15 20 25 30
0
20
40
60
80
100

Latency [µs]

CD
F
[%
]

1
(a) Software target (t4p4s)

600 625 650 675 700
0
20
40
60
80
100

Latency [ns]

CD
F
[%
]

1
(b) Hardware target (ASIC)

Figure 3: Latency CDFs for table slicing

A and B, utilizing two exclusive ports (1, 2) and a shared port (3).
All three ports of the P4 target are connected to the load generator
via separate physical links. As described in Section 3, we use VIDs
100 and 200 to separate traffic on the shared port for tenants A and
B, respectively. We use MoonGen [5] as packet generator sending
84 B sized packets to the DuT. In addition to the packets, Moon-
Gen periodically samples the end-to-end latency with additional
hardware-timestamped packets. The used measurement hardware
allows the collection of timestamps with nanosecond resolution [9].
All packets are sent to the shared port 3 of the DuT. Depending
on the targeted tenant, the packets are dropped or forwarded from
port 3 to ports 1 or 2 of the DuT. The chosen forwarding direction
simplifies the overall measurement setup because different tenants
can be addressed by adjusting the packet’s VID.

For the load generator and the software target, we use servers
equipped with AMD Epyc 7542 (32 cores, base clock 2.9GHz, max.
turbo clock 3.4GHz), 512GB RAM, dual-port 100Gbit/s Intel E810
NIC, and quad-port 25Gbit/s Intel E810 NIC. The hardware target is
a high-performance switching ASIC with four separate processing
pipes supporting up to 100Gbit/s per port. We use 100Gbit/s links
between the hardware target and the load generator and 10Gbit/s
links between the software target and load generator. To avoid
overloading the software target, we limit the packet rate to 2.1Mpps.
This limitation derives from the comparably expensive unboxing
of the VLAN header, which requires copying different parts of
the packet. As the hardware target offers higher throughput, the
measurement is done at 110Mpps. A further packet rate increase
is not possible because we are limited by the maximum transmit
packet rate of the used Intel E810 NIC.

5.2 Table Slicing
The measurements in Figures 3a and 3b compare the latency distri-
butions of the table slicing approach for the software and hardware
target, respectively. Observed latencies are displayed as cumulative
distribution functions (CDFs) for each of the different measurement
runs. For both targets, we compare a one-tenant baseline with a
two-tenant scenario.

Regarding the software target, a single tenant uses 7500 entries
each for the IPv4 and IPv6 tables, thus raising the total number of
entries to 15 000. Accordingly, in the two-tenant scenario, tenants A

Slicing Networks with P4 Hardware and Software Targets 5G-MeMU ’22, August 22, 2022, Amsterdam, Netherlands

baselineA 2 tenantsA 8 tenantsA
baselineB 2 tenantsB 8 tenantsB

1

0 5 10 15 20 25 30
0
20
40
60
80
100

Latency [µs]

CD
F
[%
]

1
(a) Software target (t4p4s)

550 600 650 700
0
20
40
60
80
100

Latency [ns]

CD
F
[%
]

1
(b) Hardware target (ASIC)

Figure 4: Latency CDFs for program slicing

and B have 15 000 entries each, resulting in a total of 30 000 entries
for this table-sliced program. The two-tenant latency distribution
is close to the baseline (blue), with a median latency of 14.6 µs.
The median for tenant A (green) is increased by approx. 1.3 µs; the
median for tenant B (orange) by approx. 2.3 µs. The latency increase
between the baseline and tenant A is caused by the overhead of
the table slicing approach. In general, the number of tenants’ table
entries has only a minor impact on the expected latency per tenant
because t4p4s uses a dynamically-sized hash table. This statement
holds as long as all entries fit into the software target’s available
cache [14, 15]. However, we observe a higher latency for tenant B
compared to A. The likely reason for this is the sequential evaluation
of VIDs on the software target. Together with the discussion about
table sizes before, it implies that a single tenant does not have a
significant disadvantage when using table slicing, as long as the
entries of all tenants fit into the cache.

Investigating the hardware target, we raise the number of en-
tries for each table to 40 000, resulting in 80 000 entries for the
single-tenant and in 160 000 entries for the two-tenant scenario,
respectively. The latency distributions of both tenants in the sliced
scenario are highly similar, indicating that the latencies of all ten-
ants are directly related to the total number of table entries. This
behavior can be explained by the number of active stages per pro-
cessing pipe. Every pipe is divided into sub-units called stages.
Thereby, every stage has a fixed amount of available hardware
resources, e.g., SRAM or TCAM memory. The hardware target acti-
vates no more than the minimum number of required stages. The
more table entries are used, the more stages have to be activated on
the processing pipes. As a result, there is a direct relation between
the total number of entries and the expected total latency of the
table-sliced program. For this behavior, we introduce the term inter-
tenant interference. With inter-tenant interference, we consolidate
all effects when the actions of a single tenant affect the performance
of other tenants. Regarding the table slicing approach, we observe
a minimal inter-tenant interference for the software target that
is neglectable. In contrast, a noticeable inter-tenant interference
occurs on the hardware target.

tenant entries stages
setup total entries A B A B

baseline 15 000 15 000 0 4 2
2 tenants 15 000 15 000 0 4 4
8 tenants 40 000 15 000 0 8 8

Table 1: Required stages on the hardware target

5.3 Program Slicing
The measurements shown in Figure 4a compare the latency distri-
butions of the program slicing approach for the software target and
in Figure 4b for the hardware target, respectively. To demonstrate
the customizability of the individual control blocks, we show the
two tenants implementing different applications. Tenant A runs an
access control list (ACL) to filter incoming packets while tenant
B implements a simple forwarder. Using this setup, tenant A allo-
cates tables and therefore requires more hardware resources than
tenant B. For both tenant applications, we conduct a baseline mea-
surement indicating the single-tenant latency, for tenant A (blue)
and tenant B (light blue), respectively. Due to the reduced hard-
ware effort of the forwarder, tenant B achieves a median latency of
10.8 µs on the software target and 583 ns on the hardware target. In
contrast, tenant A’s ACL achieves a median latency of 13.8 µs and
624 ns, respectively. Next, we measure the latency when tenant A’s
(dash-dotted green) and tenant B’s (dotted orange) applications run
simultaneously using the program slicing approach.

On the software target, we observe a median latency increase
between the baseline and the sliced version for tenant B (forwarder)
of 1.4 µs. Furthermore, the latency distribution for tenant A (ACL)
is shifted by approx. 1.5 µs. This slight increase for both targets is
caused by the general overhead of the program slicing approach.
However, in general, both two-tenant latency CDFs are close to
their respective baseline latency CDF. An explanation for this be-
havior is the software target’s “run-to-completion” paradigm. In
this paradigm, one packet after another is processed, to minimize
expensive in-memory moves [4]. Therefore, the runtime for each
packet is flexible. After selecting the associated control block for the
tenant, only this block has to be executed. As a result, the tenant’s
individual latencies follow the respective baseline latencies plus
a small slicing overhead. Therefore, only a minimal inter-tenant-
interference is visible for the software target.

The measured latencies of the hardware target show a different
result. Tenant B’s forwarding latency moved from its baseline (me-
dian 583 ns) to tenant A’s baseline latency (median 624 ns). This
behavior can be explained by the hardware target’s ASIC architec-
ture. If the complexity of a P4 program increases, e.g., total lines
of code, conditional statements, or more table entries, the hard-
ware target activates more processing stages. With every additional
stage, the latency increases by a specific offset. Moreover, all pack-
ets must traverse through all activated stages regardless of the
executed tenant application. Due to tenant A’s increased hardware
usage, which activates more stages, tenant B’s latency increases
equally. To further illustrate this behavior, we implement an eight-
tenant setup on the hardware target. Additionally, this exemplary

5G-MeMU ’22, August 22, 2022, Amsterdam, Netherlands E. Hauser, M. Simon, H. Stubbe, S. Gallenmüller, G. Carle

550 575 600 625
0
20
40
60
80
100

Latency [ns]

CD
F
[%
]

baselineA
baselineB
2 tenantsA
2 tenantsB

Figure 5: Latency CDFs for hardware slicing (ASIC)

eight-tenant setup serves as demonstration for the overall scalabil-
ity of all presented slicing approaches. In this eight-tenant setup,
tenant B’s forwarder (dash-dotted yellow) further suffers from the
hardware usage of the other seven tenants, which all run an ACL.
Moreover, even tenant A (red) suffers from the required hardware
resources of the new tenants C to H. The overall median latency
in the eight-customer scenario increases to 667 ns. Table 1 empha-
sizes the relation between the allocated number of table entries
and the required stages. Even though tenant A does not require
more table entries than in the two-tenant setup, the total latency
increases because of the other tenants’ table entries. In general, the
hardware target’s expected total latency for the program slicing ap-
proach derives from the combined hardware resource requirements
of all tenants. Therefore, we again observe a noticeable inter-tenant
interference in terms of latency for the hardware target.

5.4 Hardware Slicing
The third approach, hardware slicing, promises more separation
and closer hardware access to the tenants. By now, hardware slicing
is only implemented in the ASIC switching hardware target. We
keep the same applications for tenants A and B as in the previ-
ous program slicing measurements. The latency distributions are
depicted in Figure 5. In contrast to the table and program slicing
measurements on the hardware target, tenant B’s (orange) latency
is not influenced by tenant A (green). The latency distribution of
the baseline scenario for both tenants A (blue) and B (light blue)
are close to their sliced versions. Because every tenant has an ex-
clusively assigned pipe, a tenant’s increased hardware usage does
not affect the other tenants. As a result, every tenant has an ex-
clusive slice of the available physical hardware. Therefore, any
inter-tenant interference is completely eliminated when using the
hardware slicing approach.

6 DISCUSSION
The three approaches offer a different amount of flexibility and
sovereignty as depicted in Figure 6. The table slicing approach
features the least flexibility having a fixed program logic. Program
slicing offers high flexibility by allowing different logic for different
tenants. While table and program slicing are compatible with all
targets, the hardware slicing approach is currently only supported
on particular targets since it does not rely on vanilla P4 mechanisms.

When it comes to performance, software and hardware targets
differ. While hardware targets generally have a better performance,

Table Slicing

Program Slicing

Hardware Slicingpe
rfo

rm
an
ce

fle
xi
bi
lit
y

abstraction

scalability

1

Figure 6: Comparison of slicing approaches

their pipes support only a fixed number of stages. Therefore, they
impose the cost of slicing on all tenants when using table or program
slicing. The sliced performance is worse than the performance of
the most complex single-tenant baseline. High-complexity tenants
may introduce performance penalties for low-complexity tenants.
This is not the case for the hardware slicing. In software targets, per-
formance implications are less severe. Latency is typically increased,
but one tenant is not significantly penalized by the complexity of
the others.

7 CONCLUSION
Network slicing is an important technique to realize the different
service classes of 5G networks sharing the same underlying net-
work equipment. An essential aspect of network slicing is ensuring
the isolation of slices, especially when it comes to the quality of pro-
vided services. Programmable data planes, enabled by the program-
ming language P4, are a hot topic facilitating the move of functional-
ity towards tenants. In this paper, we present, discuss, and evaluate
three variants of network slicing on two well-known P4 targets:
table, program, and hardware slicing, on a performance-oriented
ASIC-based hardware target and a flexibility-focused DPDK-based
software target. Our results suggest that P4-programmable targets
are capable of network slicing in all proposed variants. However,
properly isolating tenants to avoid unintended performance in-
fluences is a challenging endeavor. Depending on the target and
the slicing approach, we observed different aspects of inter-tenant
interference. These interferences are eliminated only for the hard-
ware slicing approach. However, this hardware-oriented approach
is currently only available for specific hardware targets. In future
work, we plan to bring this approach to the software target. The
required parallelism can be implemented on multi-core CPUs by
dedicating individual cores to specific clients.

The possibility of enabling tenants to deploy custom logic on
network devices offers attractive application opportunities. More-
over, with careful planning, the expected performance changes can
be embedded in appropriate service guarantees.

ACKNOWLEDGMENTS
This project has received funding from the Bavarian Ministry of
Economic Affairs, Regional Development and Energy as part of the
project 6G Future Lab Bavaria. Additionally, we received funding
by the German Federal Ministry of Education and Research (BMBF)
under the project 6G-life (grant number 16KISK001K). Furthermore,
we would like to thank the anonymous reviewers for their valuable
feedback.

Slicing Networks with P4 Hardware and Software Targets 5G-MeMU ’22, August 22, 2022, Amsterdam, Netherlands

REFERENCES
[1] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: programming protocol-independent packet processors.
Comput. Commun. Rev. 44, 3 (2014), 87–95. https://doi.org/10.1145/2656877.
2656890

[2] Jiamin Cao, Ying Liu, Yu Zhou, Lin He, and Mingwei Xu. 2022. TurboNet: Faith-
fully Emulating Networks With Programmable Switches. IEEE/ACM Transactions
on Networking (2022), 1–15. https://doi.org/10.1109/TNET.2022.3142126

[3] Yan-Wei Chen, Chi-Yu Li, Chien-Chao Tseng, and Min-Zhi Hu. 2022. P4-TINS:
P4-driven Traffic Isolation for Network Slicing with Bandwidth Guarantee and
Management. IEEE Transactions on Network and Service Management (2022), 1–1.
https://doi.org/10.1109/TNSM.2022.3159232

[4] Mihai Dobrescu, Norbert Egi, Katerina J. Argyraki, Byung-Gon Chun, Kevin R.
Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
2009. RouteBricks: exploiting parallelism to scale software routers. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009, Jeanna Neefe Matthews and Thomas E.
Anderson (Eds.). ACM, 15–28. https://doi.org/10.1145/1629575.1629578

[5] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet Generator. In
Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015, Kenjiro Cho, Kensuke Fukuda, Vivek S. Pai, and Neil
Spring (Eds.). ACM, 275–287. https://doi.org/10.1145/2815675.2815692

[6] Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, and Georg Carle. 2021.
The pos Framework: A Methodology and Toolchain for Reproducible Network
Experiments. In CoNEXT ’21: The 17th International Conference on emerging Net-
working EXperiments and Technologies, Virtual Event, Munich, Germany, December
7 - 10, 2021. ACM, 259–266. https://doi.org/10.1145/3485983.3494841

[7] David Hancock and Jacobus van der Merwe. 2016. HyPer4: Using P4 to Virtualize
the Programmable Data Plane. In Proceedings of the 12th International on Confer-
ence on Emerging Networking EXperiments and Technologies (Irvine, California,
USA) (CoNEXT ’16). Association for Computing Machinery, New York, NY, USA,
35–49. https://doi.org/10.1145/2999572.2999607

[8] IEEE. 2018. Standard for Local and Metropolitan Area Network–Bridges and
Bridged Networks. IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014) (2018),
1–1993. https://doi.org/10.1109/IEEESTD.2018.8403927

[9] Intel 2021. Intel Ethernet Controller E810 Datasheet. Intel. Rev. 2.3.
[10] Intel. 2022. Intel DPDK: Data Plane Development Kit. http://dpdk.org Last

accessed: 2022-06-30.
[11] Jose A. Ordonez-Lucena, Pablo Ameigeiras, Diego R. López, Juan J. Ramos-Muñoz,

Javier Lorca, and Jesús Folgueira. 2017. Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges. IEEE Commun. Mag. 55, 5 (2017), 80–87.
https://doi.org/10.1109/MCOM.2017.1600935

[12] Ruben Ricart-Sanchez, Pedro Malagón, Jose M. Alcaraz-Calero, and Qi Wang.
2019. P4-NetFPGA-based network slicing solution for 5G MEC architectures. In
2019 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS 2019, Cambridge, United Kingdom, September 24-25, 2019. IEEE,
1–2. https://doi.org/10.1109/ANCS.2019.8901889

[13] Peter Rost, Christian Mannweiler, Diomidis S. Michalopoulos, Cinzia Sartori,
Vincenzo Sciancalepore, Nishanth Sastry, Oliver Holland, Shreya Tayade, Bin
Han, Dario Bega, Danish Aziz, and Hajo Bakker. 2017. Network Slicing to Enable
Scalability and Flexibility in 5G Mobile Networks. IEEE Commun. Mag. 55, 5
(2017), 72–79. https://doi.org/10.1109/MCOM.2017.1600920

[14] Dominik Scholz, Henning Stubbe, Sebastian Gallenmüller, and Georg Carle. 2020.
Key Properties of Programmable Data Plane Targets. In Teletraffic Congress (ITC
32), 2020 32nd International. Osaka, Japan.

[15] Manuel Simon, Henning Stubbe, Dominik Scholz, Sebastian Gallenmüller, and
Georg Carle. 2021. High-Performance Match-Action Table Updates from within
Programmable Software Data Planes. In ANCS ’21: Symposium on Architectures
for Networking and Communications Systems, Layfette, IN, USA, December 13 - 16,
2021. ACM, 102–108. https://doi.org/10.1145/3493425.3502759

[16] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster. 2020.
Composing Dataplane Programs with 𝜇P4. In SIGCOMM ’20: Proceedings of the
2020 Annual conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for computer commu-
nication, Virtual Event, USA, August 10-14, 2020, Henning Schulzrinne and Vishal
Misra (Eds.). ACM, 329–343. https://doi.org/10.1145/3387514.3405872

[17] Radostin Stoyanov and Noa Zilberman. 2020. MTPSA: Multi-Tenant Pro-
grammable Switches. In EuroP4@CoNEXT 2020: Proceedings of the 3rd P4Workshop
in Europe, Barcelona, Spain, December 1, 2020. ACM, 43–48. https://doi.org/10.
1145/3426744.3431329

[18] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté Tejfel, and Sándor
Laki. 2018. T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors. In IEEE 19th International Conference on High Performance
Switching and Routing, HPSR 2018, Bucharest, Romania, June 18-20, 2018. IEEE,
1–8. https://doi.org/10.1109/HPSR.2018.8850752

[19] TaoWang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda.
2022. Isolation Mechanisms for High-Speed Packet-Processing Pipelines. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA, 1289–1305. https://www.usenix.org/
conference/nsdi22/presentation/wang-tao

[20] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, Dan R. K. Ports,
and Aurojit Panda. 2020. Multitenancy for Fast and Programmable Networks in
the Cloud. In 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud
2020, July 13-14, 2020, Amar Phanishayee and Ryan Stutsman (Eds.). USENIX
Association. https://www.usenix.org/conference/hotcloud20/presentation/wang

https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/TNET.2022.3142126
https://doi.org/10.1109/TNSM.2022.3159232
https://doi.org/10.1145/1629575.1629578
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/2999572.2999607
https://doi.org/10.1109/IEEESTD.2018.8403927
http://dpdk.org
https://doi.org/10.1109/MCOM.2017.1600935
https://doi.org/10.1109/ANCS.2019.8901889
https://doi.org/10.1109/MCOM.2017.1600920
https://doi.org/10.1145/3493425.3502759
https://doi.org/10.1145/3387514.3405872
https://doi.org/10.1145/3426744.3431329
https://doi.org/10.1145/3426744.3431329
https://doi.org/10.1109/HPSR.2018.8850752
https://www.usenix.org/conference/nsdi22/presentation/wang-tao
https://www.usenix.org/conference/nsdi22/presentation/wang-tao
https://www.usenix.org/conference/hotcloud20/presentation/wang

	Abstract
	1 Introduction
	2 Related Work
	3 Slicing with P4
	4 Implementation
	4.1 Scenario Description
	4.2 Table Slicing
	4.3 Program Slicing
	4.4 Hardware Slicing

	5 Evaluation
	5.1 Measurement Setup
	5.2 Table Slicing
	5.3 Program Slicing
	5.4 Hardware Slicing

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

