
Network Synthesis under Delay Constraints:
The Power of Network Calculus Differentiability

Fabien Geyer∗† Steffen Bondorf‡
∗Airbus Central R&T

Munich, Germany

†Technical University of Munich
Munich, Germany

‡Faculty of Computer Science
Ruhr University Bochum, Germany

Abstract—With the advent of standards for deterministic
network behavior, synthesizing network designs under delay
constraints becomes the natural next task to tackle. Network
Calculus (NC) has become a key method for validating industrial
networks, as it computes formally verified end-to-end delay
bounds. However, analyses from the NC framework were thus
far designed to bound one flow’s delay at a time. Attempts to
use classical analyses for derivation of a network configuration
revealed this approach to be poorly fitted for practical use cases.
Take finding a delay-optimal routing configuration: One model
for each routing alternative had to be created, then each flow
delay had to be bounded, then the bounds were compared to
the given constraints. To overcome this three-step procedure,
we introduce Differential Network Calculus. We extend NC to
allow for differentiation of delay bounds w.r.t. to a wide range
of network parameters – such as flow routes. This opens up
NC to a class of efficient nonlinear optimization techniques
taking advantage of the delay bound computation’s gradient.
Our numerical evaluation on the routing problem shows that our
novel method can synthesize flow path in a matter of seconds,
outperforming existing methods by multiple orders of magnitude.

I. INTRODUCTION

With the current developments of networking solutions for
strict reliability and safety requirements (such as IEEE Time
Sensitive Networking (TSN)), formal verification and opti-
mization of safety-critical networks has become an important
step of the design process in various industries [1]. While
using mathematical models and formalization of end-to-end
delay bounds has now become common practice, optimizing
and fine-tuning networks under such formulations remains a
difficult task. This main difficulty arises from the inherent
combinatorial property and nonlinearity of the formal models,
making them hard problems to solve in polynomial time.
Previous attempts were often limited to small networks.

In this paper, we propose a novel approach for modeling,
optimizing and synthesizing networks under hard end-to-end
delay constraints able to scale to networks of realistic sizes.
We introduce an approach able to efficiently synthesize flows’
paths, flows’ priorities, and schedulers’ parameters. We bound
end-to-end delays using Network Calculus (NC) based on the
(min,plus) algebra [2]. While this method is commonly used
in some industries for formally validating delay requirements,
it is rarely used for synthesis or as a design tool. Existing
NC analyses were created to analyze already complete net-
work designs, making them only suitable for a design space
exploration that enumerates and ranks different designs.

We present an extension of NC called Differential Network
Calculus (DiffNC). We formally show that under the as-
sumptions traditionally used for validating industrial networks
(i.e. token-bucket and rate-latency curves), a flow’s delay
bound computed using the (min,plus) algebra is differentiable
according to the different curves’ parameters in the network.
This enables a wide range of applications, among which is
gradient-based nonlinear programming (NLP). Via variable
relaxation, we demonstrate that traditional NLP methods based
on Newton’s method can efficiently solve the aforementioned
network optimization problems – and synthesize configura-
tions. We show that these optimization methods are highly
efficient, scale well and provide the best solutions, making
them applicable to networks of sizes found in the industry.

In the realm of NC, previous works already formalized
NC as an optimization problem, by proposing a formulation
of the end-to-end delay bounds as a linear program (LP)
[3]. This approach is able to achieve tight delay bounds.
We illustrate that this LP formulation can be extended to
multiple flows in its objective function, too. It can be used
to optimize paths of flows, yet, the objective function suffers
from poor expressivity for some important types of constraints.
Additionally, we show that it suffers from poor scalability,
taking more than one hour of computation even on relatively
small networks. Its limitations render the approach unsuitable
for realistic problems.

Our proposed approach has the following benefits. First, we
use an existing NC analysis to derive an (min,plus)-algebraic
term bounding the delay, yet with integer variables encoding
alternatives like potential flow paths. Then, for finding the best
alternative with NLP, we may include nonlinear constraints
and nonlinear objective functions, enabling for concepts like
utility functions [4] on the delay bounds, or even reducing the
tail of the delay bound distribution. Finally, we illustrate that
our approach scales to networks with up to 1000 flows, a size
similar to industrial use-cases [5, 6, 7]. Our implementation is
based on efficient computer algebra system (CAS) and auto-
matic differentiation (AD), enabling us to efficiently compute
the end-to-end delay bounds and their gradient without paying
dearly in terms of computation times. As an application of our
approach, we illustrate how to use DiffNC for finding the best
priorities and certain scheduler parameters in TSN networks.

This paper is organized as follows: Section II presents
the related work, followed by NC in Section III. Section IV
presents the mathematical foundations of DiffNC and suitable

network optimization problems. Section V extends existing
LP-based NC to compete with DiffNC. We numerically evalu-
ate and compare DiffNC against other optimization methods in
Section VI. Finally, we discuss applications of DiffNC to, e.g.,
TSN, in Section VII and Section VIII concludes the paper.

II. RELATED WORK

Optimization with delay bounds: Various works already
investigated delay bound minimization. [8] proposed one of
the early works on route optimization based on NC by using
shortest path on graphs with weights set according to delay
bounds. While this approach was shown to be efficient, it is
limited to the optimization of a single flow’s route, restricting
its use when multiple routes need to be optimized.

In [9], various iterative algorithms for rerouting flows to
minimize tail delays were detailed. These NC-based algo-
rithms appeared to scale to realistic network sizes. Various
works modeled delay bounds as an integer linear programming
(ILP) for optimizing routes. [10] used a linear formulation of
the NC end-to-end delay bound for optimizing the network-
on-chip of a many core processor. Their approach showed
promising results compared to a nonlinear formulation on a
small network. Similarly, [11] recently proposed another ILP
formulation tailored to TSN and multicast flows, optimizing
paths and schedules. For both [10] and [11], the scalability of
both approaches to larger networks remains unclear.

In the scope of TSN, [12] applied worst-case delay calcu-
lations in combination with a greedy optimization approach.
While the results show improvements over a shortest path
approach, the formulation is tailored to the TSN schedulers
and the optimality of the solution is difficult to assess.

Derivation of service requirements: An NC-based approach
that can derive a lower bound on the system service was pro-
posed in [13, 14]. It extends the (min,plus)-algebraic NC with
novel theory to take as input a function upper bounding the
delay to be guaranteed under a certain load level. However, the
approach is currently restricted to FIFO systems. DiffNC can
perform the same task, yet without any restricting assumptions.
It can fully use existing algebraic NC theory and analyses.

NC combined with other methods: (min,plus) algebra can
be replaced with (max,plus) to better fit discrete event systems
[15]. NC was paired with event stream theory [16] and with
timed automata [17] for state-based system modeling. NC
has been applied to the component-based models of real-time
systems [18], giving rise to the so-called real-time calculus.

Various formulations of the (min,plus) algebra as LP were
proposed, either addressing networks without assumptions
on the multiplexing of flows [3], or with FIFO scheduling
[19]. These formulations provide tight delay bounds but scale
poorly, as shown by [20] and later also in Section V. These
concerns were partially addressed recently in [21]. Addition-
ally, [22] also proposed an ILP for optimizing time-division
multiple access (TDMA) schedules in combination with NC.

Finally, machine learning (ML) was recently brought to
NC to speed-up costly network analyses originally requiring
a search mimicking optimization in the algebraic approach.

DeepTMA was proposed in [23, 24] as a framework for
predicting the best contention model. Similarly, DeepFP [25]
targeted the prediction of best flow prolongation. [26] applied
similar deep learning techniques for checking feasibility of
network configurations, yet not for their synthesis.

To the best of our knowledge, this is the first work investi-
gating the differentiability of an end-to-end NC delay bound.

III. DETERMINISTIC NETWORK CALCULUS

A. Network Calculus System Model [2]

NC models a network as a directed graph of connected
queueing locations, the so-called server graph G = (S, E).
A server s ∈ S offers forwarding of queued data. Flows cross
the graph G from a source server to a destination server, both
in S. Data put into the network by flows is only known at their
resp. source, and is characterized by a cumulative function in

F+
0 =

{
f : R+ → R+ | f(0)=0, ∀s ≤ t : f(t)≥f(s)

}
. (1)

When flows multiplex in a server’s queue, we assume no
knowledge about the resulting order (arbitrary multiplexing).

NC uses univariate functions that give deterministic bounds
on either data arrivals or forwarding in ∆-time, called curves.
Curves are in F0, an extension of F+

0 by ∀t < 0 : f(t)=0.
Definition 1 (Arrival Curve): Given a flow f described by

A ∈ F+
0 , a function α ∈ F0 is an arrival curve for f iff

∀ 0 ≤ d ≤ t : A(t)−A(t− d) ≤ α(d). (2)

The forwarding service offered by servers in S needs to be
a lower bounding curve relating data output to data input.

Definition 2 (Service Curve): If a server receives a data input
A ∈ F+

0 and produces an output A′ ∈ F+
0 , then it is said to

offer service curve β ∈ F0 iff

∀t : A′(t) ≥ inf
0≤d≤t

{A(t− d) + β(d)}. (3)

Definition 3 (Strict Service Curve): A server offers a strict
service curve β if it produces an output of at least β(d) ∈ F0

during periods of queued data of length d.

B. Algebraic Network Calculus Analysis

An NC analysis computes a bound on the end-to-end delay
of a specific flow of interest (foi) in a complete server graph
model. We are concerned with the NC branch that derives a
(min,plus)-algebraic term describing all flow interactions that
impact the end-to-end delay under arbitrary multiplexing.

Definition 4 (Operations): Let functions f, g ∈ F0. Then

aggregation: (f + g) (d) = f (d) + g (d), (4)
convolution: (f ⊗ g) (d) = inf

0≤u≤d
{f(d− u) + g(u)}, (5)

deconvolution: (f � g) (d) = sup
u≥0
{f(d+ u)− g(u)}, (6)

left-over: (f 	 g) (d) = sup
0≤u≤d

{f(u)− g(u)}. (7)

Algebraic NC analyses such as Separate Flow Analysis
(SFA) and Pay Multiplexing Only Once (PMOO) require
service curves to be strict and then give rules to arrange the

operations to form a delay bounding term. In order to do so,
each of these analyses has a different procedure to backtrack
crossflows to their sources [27], e.g. SFA proceeds server-
by-server and backtracks one crossflow aggregate per server’s
incoming edge in E . In the end, the (min,plus)-algebraic term
describes a single end-to-end left-over service curve for the
foi that is used to compute its delay bound:

Theorem 1 (Delay Bound): A flow with arrival curve α
that crosses a server (or sequence of servers) offering service
curve β to the flow experiences a delay bounded by

h(α, β) := inf {d ≥ 0 | (α� β) (−d) ≤ 0} . (8)

IV. DIFFERENTIAL NETWORK CALCULUS

We describe here our extension of NC, called Differential
Network Calculus (DiffNC). After a formalization of our
mathematical framework, we describe one exemplary appli-
cation: optimization of flow paths using NLP. Further appli-
cations of DiffNC are detailed later in Section VII, covering
TSN-related topics (flow priorities and scheduler parameters).

A. From algebraic NC analysis to differentiable delay bound
We restrict our description here to the two most commonly

used curves in practice for industrial networks: the rate-latency
service curve βR,L and the token-bucket arrival curve γr,B :

βR,L(t) = R[t− L]+,∀t ≥ 0 (9)

γr,B(t) = B + r · t,∀t ≥ 0 (10)

with [x]+ = x if x ≥ 0 and 0 otherwise. Note that our
description is not limited to these curves as DiffNC can be
extended to concave arrival curves and convex service curves.

Applying NC’s (min,plus)-algebraic operations to the above
curve types, the following lemma can be derived:

Lemma 1 (Closed-form expression of NC operations): With
the assumption of using rate-latency service curves and token-
bucket arrival curves, the NC operations listed in Section III-B
have the following closed-form solutions:

aggregation: γr1,B1
+ γr2,B2

= γr1+r2,B1+B2
(11)

convolution: βR1,L1
⊗ βR2,L2

= βmin(R1,R2),L1+L2
(12)

deconvolution: γr,B � βR,L = γr,B+r·L (13)
left-over: βR,L 	 γr,B = βR−r,(B+R·L)/(R−r) (14)

delay bound: h(γr,B , βR,L) = B/R+ L (15)

under the condition that r < R.
From Lemma 1, the following theorem is derived:
Theorem 2 (Differentiability of delay expression): With the

assumption of using rate-latency service curves and token-
bucket arrival curves, a NC end-to-end delay bound is dif-
ferentiable w.r.t. the curves parameters.

Proof: Using the closed-form (min,plus) operations from
Lemma 1, all NC operations use the following basic opera-
tors: addition, multiplication, division and min. For the min
operator, we use the following partial derivates for x 6= y:

∂min(x, y)

∂x
=

{
1, if x < y

0, if x > y

∂min(x, y)

∂y
=

{
0, if x < y

1, if x > y

All of the applied operators are then differentiable, proving
Theorem 2. �

Partial derivates for the min operator used in the above proof
are easily implemented using the Heaviside step function.

B. Generalized NC Model

As an exemplary optimization problem, we detail a formu-
lation of the optimization of flow paths in a given network.
A traditional NC network model has only one path per flow
and all existing analyses are tailored to this basic model.
I.e., our example problem would have to be tackled by first
enumerating all combinations of paths and creating a network
for each combination. Instead, we generalize the NC network
model to hold all alternative paths of flows, alongside binary
variables for mutual exclusion of alternatives.

Let G = (S, E) be the directed server graph on which the
end-to-end delay bounds of the set of flows F need to be
optimized. I.e., we also depart from the assumption that there
is only a single foi to analyze. Moreover, each flow fi with
arrival curve αfi may take multiple paths in G given its source
and destination servers. We adopt here a path flow model,
where a set of paths Pfi are considered for each flow fi ∈ F in
the server graph. A fixed set of paths can easily be enumerated
using traditional graph traversal algorithms.

For each flow fi and each potential path j ∈ Pfi , we define
pfi,j as a binary variable representing the choice of path j for
flow fi. From this formulation, the following constraint forces
to have a unique path for each flow:∑

j∈Pfi

pfi,j = 1,∀fi ∈ F (16)

With these, we define so-called virtual flows along the
different potential paths as illustrated in Figure 1. The input
functions Afi,j(t) of the virtual flows are set to 0 on the non-
optimal paths, and are constrained by αfi on the optimal paths.
For each virtual flow, Equation (2) is reformulated as:

∀ 0 ≤ d ≤ t : Afi,j (t)−Afi,j (t− d) ≤ αfi(d) · pfi,j (17)

By applying Lemma 1 to the virtual flow model, the token-
bucket arrival curve of a virtual flow from Equation (17) is
equivalent to:

αfi(d) · pfi,j = γri·pfi,j
,Bi·pfi,j

(d) (18)

s1

s2 s3

s4

s5
f1,1
f1,2

Figure 1: Illustration of virtual flow concept with one flow
taking two potential paths in the server graph.

We essentially defined a mixed-integer nonlinear program-
ming (MINLP), a combinatorial optimization problem with a
number of potential solutions growing in O(|F||P|).

Traditional NC analyses such as SFA or PMOO would
not be able to capture the virtual flow model but instead
include all flows in their resulting (min,plus)-algebraic NC
term. I.e., their backtracking of flow dependencies succeeds
but the transformation of these depencies to a term needs
to be overly pessimistic. We extend the resulting (min,plus)-
algebraic NC term with our binary variables, yet, unchanged
traditional analyses cannot analyze this term anymore.

Note, that our formulation and subsequent applications to
the optimization methods may also be reformulated as a link
flow model. This alternate formulation avoids iterating over a
fixed set of paths for each flow, but potentially requires more
binary variables and their associated constraints.

C. Constrained nonlinear programming

Using DiffNC and Theorem 2, we extend NC to other
applications, the main one being nonlinear optimization. As
shown later in Section VI, NLP techniques based on gradient
information – such as Newton’s method – are well-known to
outperform other NLP optimization techniques.

We show here how to model the network design problem
as a differentiable NLP of the following form:

min
x∈Rn

f(x) (19)

s.t. gl ≤ g(x) ≤ gu (20)

with f() and g() differentiable functions w.r.t. x, and gl and
gu the upper and lower bounds for g().

To make this problem solvable in polynomial time, we apply
a commonly used technique known as relaxation, namely: the
pfi,j binary variables are relaxed as continuous variables on
the interval [0, 1]. Following Theorem 2, the end-to-end delay
bound expression of a virtual flow is then differentiable w.r.t.
the pfi,j variables. This relaxation technique transforms the
MINLP into a continuous NLP, enabling the use of NLP
methods based on gradient.

Using on the previous formulations, the following con-
strained nonlinear optimization problem is then defined:

min
pfi,j

,∀fi∈F,j∈Pfi

1

|F|
∑
i,j

delay bound(fi,j) · pfi,j (21)

s.t. 0 ≤ pfi,j ≤ 1,∀fi ∈ F , j ∈ Pfi (22)∑
j∈Pfi

pfi,j = 1,∀fi ∈ F (23)

∑
i∈T (k)

ri · pfi,j ≤ Rk,∀k ∈ S (24)

with T (k) the set of virtual flows traversing server k with
service curve βRk,Lk

, and delay bound(fi,j) the end-to-end
delay bound of the virtual flow fi,j computed with any of the
classical algebraic NC analyses (i.e. SFA or PMOO). Equa-
tion (21) minimizes the average end-to-end delay bound in
the networks. Following the previous theorems, Equations (21)
to (24) are differentiable w.r.t the relaxed pfi,j variables.

With our formulation, we also enable a wider range of
constraints and objective functions. Constraints can be added

such that a maximum delay requirement is satisfied for a given
flow, saving us a subsequent check against the requirement:∑

j∈Pfi

delay bound(fi,j) · pfi,j ≤ requirement (25)

This formulation is able to express complex objectives, en-
abling finer control over the type of solution which is required.
A popular mathematical framework for describing hard or soft
requirements on network performance (such as delay or band-
width) is the concept of utility-based network optimization
introduced in [4]. The objective function can be formulated
with nonlinear utility functions Ui for the delay bounds:

min
pfi,j

,∀i,j

∑
i

Ui

∑
j

delay bound(fi,j) · pfi,j

 (26)

with Ui a differentiable utility function mapping the delay
bonds to a utility value in the interval [0, 1].

Additionally, aspects such as the tail of the delay bound dis-
tribution can be minimized by defining the objective function:

min
pfi,j

,∀i,j
max

i

∑
j

delay bound(fi,j) · pfi,j

 (27)

As shown later in Section VII, the optimization formulation
can be applied to any curve parameter, including the service
curve parameters. This means that the optimization formula-
tion can also be defined w.r.t. scheduler characteristics.

D. Automatic differentiation and optimization

We built with the previous theorems the mathematical
foundations of DiffNC. We detail here how to put it into
practice in order to compute efficient partial derivates of the
end-to-end delay bounds w.r.t. the curves parameters.

While computer-assisted symbolic differentiation could be
used for deriving closed-form expressions of the gradient, our
initial numerical evaluations with SymPy [28] showed that this
method had difficulties scaling to networks with 100+ flows.

To overcome this scalability issues, we selected AD. It is
a family of techniques based on the calculus’ chain rule for
efficiently and accurately evaluating derivatives of numeric
functions expressed as computer programs. This technique
has gained a lot of popularity recently due its wide use in
computing packages used for machine learning [29].

For our implementation, we selected CasADi [30], a soft-
ware package enabling easy and efficient use of AD using a
syntax similar to a CAS. Thanks to its support for reverse
accumulation AD, the gradient of the objective function w.r.t.
the curves’ parameters can easily and efficiently be computed.

Combining CasADi with NC is straight-forward: We choose
an analysis such as SFA or PMOO and execute its backtracking
to derive a (min,plus)-algebraic NC term. Then we extend the
term with the pfi,j binary variables (see Section IV-B) and
explicitly solve the operations according to Lemma 1. CasADi
can now easily derive the gradient according to the underlying
NC analysis. Combined with nonlinear optimization methods

using gradients – as detailed later in Section VI-A – our
generalized network models can efficiently be optimized. Ad-
ditionally, since most optimization methods require multiple
evaluations of the objective function, CasADi also allows us
to run the NC network analysis a single time and generate a
so-called computation graph. This graph translates the delay
expressions (i.e. the objective function) to a combination of
basic operations (addition, multiplication, etc.). The objective
function can then be evaluated multiple times, without requir-
ing to run the NC-specific parts again.

Network Optimized network

s1

s2 s3

s4

s5
DiffNC
Compiler

Non-Linear
Optimizer

objective(. . .)

∇objective(. . .)

s1

s2 s3

s4

s5

Figure 2: Illustration of the system for optimizing networks.

This process is illustrated in Figure 2. A network to-be-
optimized with potential flow paths is used as input of our
framework. Based on the end-to-end delay bounds calcula-
tions, the computation tree of the objective function and its
gradient, and the constraint functions and its gradients, are then
generated and compiled. The compiled formulas are then used
as input to a nonlinear optimizer supporting the generalized
NLP presented in Equations (19) and (20).

V. NON-ALGEBRAIC NC ALTERNATIVE

DiffNC is not the first attempt at combining optimization
techniques with NC. An LP formulation of a NC model was
proposed in [3]. It converts the equations introduced in Sec-
tion III to linear constraints, under the assumption that curves
are piecewise linear functions, either concave or convex. Flows
are backtracked to derive constraints capturing, among others,
their mutual impact. Complexity grows exponentially when
computing a flow’s tight delay bound and a heuristic called
unique linear program (ULP) was proposed. The ULP was
shown to have only limited scalability [20], yet it is our only
hope for a non-algebraic NC competitor. We complement the
ULP to include our pfi,j variables and to optimize for multiple
flows. The resulting formulation is able to find configurations,
yet preliminary evaluation already shows that it scales poorly.

The ULP is based around two classes of variables. Time
variables th ∈ R+ represent departure or arrival time of bits
of data of the flows at the different servers of the network.
Function variables Ask

fi
(th) ∈ R+ represent the departure and

arrival processes of the data of flows at the different servers of
the network, i.e. the arrival and departure functions introduced
in Section III as A(t) and A′(t).

Based on these variables, the ULP translates arrival curves
from Equation (2) as linear constraints:

Ask
fi

(th+1)−Ask
fi

(th) ≤ αi(th+1 − th),∀sk, fi (28)

and similarly service curves from Equation (8) as:∑
fi

(
Ask

fi
(th+1)−Ask

fi
(th)

)
≥ βk(th+1 − th),∀sk (29)

Additional constraints representing, e.g. causality are also
added. We refer to [3] for a full formulation.

We extend here this formulation to take into account dif-
ferent paths for the flows. For each flow i and each potential
path j, we define the variables Ask

fi,j
(th) as the departure and

arrival processes of the data of the virtual flows along the path
j. The variables Ask

fi,j
(th) are constrained as in the original

formulation from [3] as if they were normal flows. Following
Equation (17), the following constraints are added:

Ask
fi,j

(th) ≤M · pfi,j ,∀sk, fi,j , th (30)

with M a large constant chosen such that αi(th+1 − th) ≤
M,∀th+1, th in the LP formulation. Using the big-M method,
Equation (30) achieves the same effect as Equation (17): the
Ask

fi,j
(th) are constrained to 0 on the paths where pfi,j = 0

– i.e. removing their impact on the delay calculation of the
other flows – and leaving them unconstrained when pfi,j = 1.

While this ULP formulation of the optimal routing problem
is attractive, it suffers from two important drawbacks: difficulty
for expressing delay constraints and optimization goals, and
poor scalability. The first drawback of this approach is that
some requirements regarding the optimization problem are
not straightforward to translate into the ULP. This drawback
mainly stems from the fact that the delay bound itself is
calculated by maximizing an expression in the ULP. This
leads to difficulty at implementing an objective function which
would minimize average delay bounds. Similarly, adding a
constraint regarding a maximum delay requirement as in
Equation (25) is not straightforward: the objective function
maximizes the delay bound, but such a constraint would result
in an underestimation of the delay bound in some cases.

Secondly, as noted in [3, 31] and subsequently numerically
illustrated in [20], the ULP is only tractable on relatively
small networks due to its exponentially growing number of
constraints. To illustrate this point, we evaluated our modified
ULP including the pfi,j variables and the constraints from
Equation (30) on a set of randomly generated networks. Details
about the networks are explained later in Section VI-C. For
the objective function, we maximize the sum of delay bounds.
We extended the ULP implementation from NCorg DNC
v2.6.2 [32] for our evaluation. Figure 3 illustrates the time
to find a solution with a time limit of 1 hour using IBM’s
CPLEX 20.1.0 on an Intel Xeon Gold 5120 at 2.2 GHz.

As expected, the solve time grows exponentially, exceeding
the one hour time limit even on small networks. This result
highlights why an alternative solution for optimizing networks
is necessary for larger networks. As a further motivating
comparison, Figure 3 also illustrates the optimization time on
the same networks with our contributed approach.

VI. NUMERICAL EVALUATION

We evaluate in this section our approach on a wide range of
networks. We illustrate its scalability and compare it against
other optimization methods.

10 20 30 40 50 60 70
10−2

10−1

100

101

102

103

104
1 hour time limit

Sum of number of servers and flows

So
lv
e
tim

e
(s
)

Modified ULP formulation w/ CPLEX
DiffNC w/ SLSQP

Figure 3: Solve time of the ULP formulation against network
size using CPLEX. The curves represent respectively the 10,
25, 50, 75 and 90 percentiles.

A. Implementation of DiffNC

Part of our DiffNC implementation was already described
in Section IV-D. We detail here the nonlinear optimization
part using gradient-based constrained optimization methods
with open-source implementations. Our implementation di-
rectly calls the respective C++ API either from the NLOpt
library [33], or the respective implementations from [34, 35].

1) NLP solvers: First, we selected sequential least squares
quadratic programming (SLSQP) based on the implementation
from [36, 33]. Secondly, we used the method of moving
asymptotes (MMA) [37] and the conservative convex separable
approximation (CCSA) method [38] in conjunction with an
augmented Lagrangian method [39, 40] in order to include
the equality constraints from Equation (16). For both algo-
rithms, the implementation from [33] is used. Finally, we
also evaluated Interior Point OPTimizer (IPOPT) [34, 41],
which is a primal-dual interior point method. For all theses
methods, integer relaxation was used. The final solution is then
converted back to integer and verified against the constraints.

2) MINLP solver: We also evaluated the Basic Open-source
Nonlinear Mixed INteger programming (BONMIN) [35], a
MINLP solver which does not explicitly require integer re-
laxation using IPOPT as sub-solver for the NLP.

Note that these are local optimization methods, each requir-
ing a starting point. For our evaluation and metrics, a single
randomly generated starting point was used.

B. Other heuristics

To benchmark our approach against potential competitors,
the following other optimization methods were selected. They
include both naïve and greedy approaches, as well as other
optimization techniques often used for solving constrained
combinatorial problems. Except for the randomized search,
a maximum of 500 evaluations of the objective function has
been defined for the heuristics described here.

1) Randomized search: In this greedy approach, a random
number of combinations of paths are chosen and evaluated.
The combination leading to the best objective is kept. In the

figures, this method is labeled as Random(M=m), with m the
number of random combinations evaluated.

2) Hop-count shortest path: For this approach, the path
minimizing the number of hops for each flow is selected. This
approach does not use other information about the network and
is equivalent to a traditional Dijkstra shortest-path algorithm.

3) Delay-based shortest path: This approach is similar to
the previous one, except that we partially take into account
the arrival and service curves in the network. For each flow
and each potential path, we perform an end-to-end SFA
NC delay analysis as if the flow was the only flow in the
network [42]. Without crosstraffic, a virtual flow’s delay is
then h(γr,B , βRj ,Lj

) = Lj + B
Rj

with Rj the minimum rate
on its path j ∈ Pi and Lj the sum of server latencies. The
path leading to the minimum end-to-end delay is selected.

4) Meta-heuristic algorithms: Various meta-heuristic opti-
mization algorithms based on nature have been proposed in the
literature such as evolutionary algorithms. For our evaluation,
we selected the following algorithms from the pygmo li-
brary [43]: artificial bee colony [44], particle swarm optimiza-
tion [45], covariance matrix adaptation-evolution strategy [46],
and exponential evolution strategy [47].

5) Non-gradient-based nonlinear optimization: Finally, we
also included compass search [48], an iterative direct search
method for global optimization.

C. Evaluated networks
To numerically evaluate our approach, we randomly gen-

erated a set of evaluation networks. First, a random amount
of servers was generated, connected in a directed graph. Each
server has a rate-latency service curve, with rate and latency
parameters randomly sampled from a uniform distribution. A
random amount of source-destination pairs was then gener-
ated for flows, each with a token-bucket arrival curve, with
rate and burst parameters randomly sampled from a uniform
distribution. For each pair, a set of virtual flows were generated
according to the available paths in the directed graph.

For each network, the minimization of the average end-to-
end delay bound of the flows is used as objective function,
computed using SFA under the assumption of arbitrary multi-
plexing. In order to ease the integration with our framework,
we implemented our own NC analysis tool in C++.

Overall, our dataset contains topologies with up to 1000
flows, matching the number of flows found in some industrial
settings [5, 6, 7]. Table I contains statistics about the dataset.

Table I: Statistics about the generated dataset

Number of Min Mean Median Max

Servers 8 17.08 16 31
Flows 5 170.67 164 1001
Virtual flows 9 355.22 343 1884
Path combinations 101.08 1046.04 1044.10 10229.08

Additionally for the numerical evaluation performed in
Section V and Figure 3, a dataset containing smaller networks
was also generated using the same approach. Table II contains
relevant statistics about this additional dataset.

Table II: Statistics about the networks used for the evaluations
in Section V and Figure 3

Number of Min Mean Median Max

Servers 3 8.68 8 18
Flows 3 9.70 9 21
Virtual flows 4 18.62 17 45
Path combinations 100.30 102.07 101.81 105.52

D. Reduction of delay bounds

We evaluate here the solution of each optimization method
presented in Section VI-B on our evaluation dataset. We use
here Equation (21) as objective function, i.e. we minimize the
average end-to-end delay bound in the networks, an objective
function found in many other related works. Such an objective
cannot be expressed in the ULP described in Section V.

We first compare then optimization methods using the result
of the hop-based shortest path approach as a baseline. We use
the relative gap of the objective function our metric, namely:

RelGapShortestPathmethod =
objectivemethod

objectiveshortest path
− 1 (31)

Since we aim at minimizing the delays, a negative value of
the relative gap means that the evaluated optimization method
achieved better results than simply using shortest path.

Results are presented in Figure 4. DiffNC with SLSQP is
able to achieve the best results compared to all the other
heuristics evaluated here. Overall, it achieved a reduction
of 27.5 % of the average delay bounds. Compared to the
evolution-based meta-heuristics, all gradient-based optimiza-
tion methods based on DiffNC achieve much better results.
Interestingly, the delay-based shortest path approach is able
to surpass the evolution-based meta-heuristics, showing that
a simple heuristic using domain knowledge about model and
analysis used in the optimization problem can be effective.

−30 −20 −10 0 10 20 30 40

DiffNC w/ SLSQP
DiffNC w/ CCSA
DiffNC w/ MMA
DiffNC w/ IPOPT

DiffNC w/ BONMIN
Delay-based Shortest Path

Expo. Evo. Strategies
Cov. Mat. Adapt. Evo. Strat.

Particle Swarm Opt.
Random(M=1000)
Random(M=500)
Compass Search

Artificial Bee Colony
Random(M=10)

Relative gap to shortest path result (%)

Figure 4: Average relative gap to the result of shortest path.
Negative values mean optimizations outperform shortest path.

Given the large number of path combinations in some net-
works (larger than 10229 in some cases), the optimal network
configurations are not known and cannot be computed in
reasonable time by simply enumerating the combinations. To
address this, we use the best result which was obtained by any

evaluated method as a baseline. We use the relative gap of the
objective function to the best objective as metric:

RelGapBestmethod =
objectivemethod

objectivebest
− 1 (32)

Additionally, as our experiments showed that DiffNC with
SLSQP outperformed all the other methods, we decided to
also run it multiple times with different randomly generated
starting points since SLSQP is a local optimization method.
This enables us to sample additional combinations, potentially
closing the gap to the optimal solution.

Results are presented in Figure 5. With an average relative
gap of 0.14 %, DiffNC with SLSQP with a single run achieves
the best results compared to all the other heuristics, outper-
forming them by at least one order of magnitude. By running
it multiple times, the relative gap was 0 %, meaning it always
outperformed all the other methods. The observations made
from Figure 4 for the other methods also apply for Figure 5.

10−1 100 101 102

DiffNC w/ SLSQP
DiffNC w/ CCSA
DiffNC w/ MMA
DiffNC w/ IPOPT

DiffNC w/ BONMIN
Delay-based Shortest Path

Expo. Evo. Strategies
Cov. Mat. Adapt. Evo. Strat.

Particle Swarm Opt.
Random(M=1000)
Random(M=500)
Compass Search

Artificial Bee Colony
Random(M=10)

Relative gap to best objective (%)

Figure 5: Average relative gap to the best objective. A value
close to zero indicates a solution close to the best one.

A detailed view of the distribution of the relative gap is
presented in Figure 6. DiffNC with SLSQP consistently out-
performs the other methods by at least an order of magnitude.

10−5 10−4 10−3 10−2 10−1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

Di
ffN

C
w/
SL
SQ
P

Di
ffN

C
w/

IP
OP

T
D
el
ay
-b
as
ed

Sh
or
te
st
Pa
th

Ra
nd
om

(M
=1

00
0)

Relative gap to best objective (%)

Pr
op

or
tio

n

DiffNC w/ SLSQP
DiffNC w/ IPOPT
Delay-based Shortest Path
Random(M=1000)

Figure 6: CDF of the relative gap to the best objective. A value
close to zero indicates a solution close to the best one.

E. Optimality gap

We evaluate the gap of DiffNC to the optimum found by
bruteforcing, restricted to networks from Table II where it
terminates within 1 h. Table III shows the results: SLSQP

without restarts found the optimum in 85.3 % of networks.
Given the limit of 500 iteration steps, we can restart the
optimization with another initial point to find a better result.
In this case, SLSQP reached even 99.53 % optimal solutions.

Table III: Optimality against a bruteforce approach

Optimum Rel. gap to Avg.
Method found bruteforce exec. time

Bruteforce - - 123.05 s
DiffNC w/ SLSQP w/o restarts 85.30 % 0.17 % 0.05 s
DiffNC w/ SLSQP w/ restarts 99.53 % 7.1× 10−4 % 0.17 s

F. Impact of computation tree construction

We evaluate here the impact of building a computation tree
of the delays performed with our implementation of DiffNC
on our dataset from Table I. As for the evaluation presented
in Section V, execution times are measured here on an Intel
Xeon Gold 5120 at 2.2 GHz.

Our system targets optimization methods where multiple
evaluations of the delay formulas are required. To avoid
recomputing the full NC term for each execution of the delay
formula, we take advantage of CasADi’s computation tree and
its compilation to assembly (x86-64 in our case). Figure 7
illustrates the total time taken for executing the NC analysis,
compiling the computed delay formula, and evaluating it N
times. For small values of N , directly executing the analysis is
actually faster since building and compiling the computation
tree takes some time. Yet, when the delay formula is required
to be executed more than about 50 times, a gain of more than
one order of magnitude in execution time can be achieved on
networks with less than 100 virtual flows. On larger networks,
this gain is less apparent due to a larger cost of generating and
compiling the computation tree.

101 102 103 104

100

101

102

Networks w/ less than 100 virtual flows

Number of evaluations

To
ta
le
xe
cu
tio

n
tim

e
(s
)

Standard NC analysis
DiffNC w/ compilation
DiffNC

101 102 103 104

101

102

103

Networks w/ more than 100 virtual flows

Number of evaluations

Standard NC analysis
DiffNC w/ compilation
DiffNC

Figure 7: Evaluation of the total execution time.

Figure 8 illustrates the individual execution time of the end-
to-end delay formulas against all the individual NC analyses
without building a computation tree or the compilation step.
Compared to executing the NC analyses directly, a gain of
about two orders of magnitude can be achieved using the
compiled computation tree. Figures 7 and 8 illustrate that
our implementation is able to take advantage of the compiled
computation tree to scale it to large networks.

102 103

10−5

10−4

10−3

10−2

10−1

100

Sum of number of servers and flows

Ex
ec
ut
io
n
tim

e
(s
)

Standard NC analysis
DiffNC analysis
Compiled analysis

102 103

Sum of number of servers and flows

DiffNC gradient
Compiled gradient

Figure 8: Execution time of the delay formulas with standard
floats, with DiffNC and execution time of the gradients.

G. Execution time

Following our discussion on the ways to optimize the com-
putation speed of DiffNC, we compare here the execution time
of optimization part of DiffNC against the other heuristics. The
durations presented here do not include the compilation time
discussed in Section VI-F. Results are presented in Figure 9.
Due to the limit of 500 evaluations of the objective function,
most of the algorithms exhibit here similar execution times.

Overall, DiffNC with CCSA is the slowest of all the
methods, with a median execution time of 40.6 s. While it is
the method with the largest computation time, it is still on par
with the other meta-heuristics, which have similar execution
time. We note that by using DiffNC with BONMIN, we are
able to reduce the execution by half, with a median execution
time of 1.21 s, making it faster than other DiffNC-methods. As
shown earlier in Figure 5, DiffNC with BONMIN is still able
to achieve a good relative gap w.r.t. the objective compared
with the other methods having similar execution times.

10−2 10−1 100 101

Hop-count Shortest Path
Delay-based Shortest Path

Random(M=10)
DiffNC w/ BONMIN

DiffNC w/ IPOPT
Random(M=500)

Particle Swarm Opt.
Compass Search

Expo. Evo. Strategies
DiffNC w/ SLSQP
Random(M=1000)

Cov. Mat. Adapt. Evo. Strat.
Artificial Bee Colony

DiffNC w/ MMA
DiffNC w/ CCSA

Median execution time (s)

Figure 9: Median execution time to find the optimal solution
once the objective function has been compiled.

Overall, our evaluations show that DiffNC is an efficient
method for optimizing networks under delay bound con-
straints, outperforming all the other optimization methods eval-
uated here, and at a reasonable computational cost. This also
applies to large networks with up to 1000 flows, illustrating
that this method scales to realistic industrial networks.

VII. DISCUSSION

A. Application to TSN

We present here an application of DiffNC to the optimiza-
tion of TSN networks, a set of standards bringing determinism
to Ethernet networks. While TSN encompasses a large set of
options, we take a simplified view of TSN’s mechanisms.

We assume the following: flows are classified into eight
priority classes. The first priority class is time scheduled,
while the other priority classes are constrained using a rate
limiter. The optimization task is then to optimize: (i) the paths,
(ii) their priorities, (iii) and the time schedule for the network.

We show here that the approach presented in Section IV-B
can be combined simultaneously with these optimization tasks.

1) Priority optimization: Priority-based scheduling can eas-
ily be modeled using NC’s left-over service curve principle [2].
To find the optimal priority for a flow, we reuse the virtual
flow principle and apply it to priorities. Namely, a virtual flow
is created for each potential priority class and assigned the
priority of the given class, as illustrated in Figure 10.

s1 s2
fprio=1fprio=2fprio=3

Figure 10: Illustration of virtual flow concept for priority.

For each flow fi, each potential path j, and each priority k,
we define pfi,j,k as a binary variable representing the choice
of path j and priority k for flow fi. The arrival curve of each
virtual flow is constrained by pfi,j,k as in Equation (17). The
sum of pfi,j,k variable is equal to 1 to enforce that only one
virtual flow is selected, as in Equation (16).

2) Schedule optimization: TSN includes a scheduling
mechanism standardized in IEEE 802.1Qbv, based on a time
schedule. As shown in various works [49, 50], this may be
modeled using NC to compute end-to-end delay bounds. For
this section, we simplify the TSN service as a TDMA schedule
modeled using the following service curve:

βTDMA(t) = R ·max

(⌊
t

c

⌋
s, t−

⌈
t

c

⌉
(c− s)

)
(33)

with c the cycle length, and s the sleep amount. It can be
demonstrated that with some loss of tightness, this service
curve can then be simplified as a rate-latency service curve:

β(t) = R
s

c
[t− (c− s)]+ (34)

The s and c parameters are free parameters constrained such
that s ≤ c. This formulation is then used in conjunction with
DiffNC, and the end-to-end delay formula is differentiable
according to the s and c parameters.

B. More complex curves

As presented in Lemma 1, our approach hinges upon
a closed-form formulation of the (min,plus) algebra as a
combination of differentiable operations. While we restricted

this paper to token-bucket and rate-latency curves, it can be
extended to more general arrival and service curves.

In most cases, the more complex curves can be upper
or lower bounded by token-bucket or rate-latency curves, as
it was shown in Section VII-A and [51]. This impacts the
tightness of the model, but simplifies the later operations. In
case of curves with a fixed number of linear segments, closed-
form solutions can also be derived, as in Lemma 1.

C. Extension to other network design problems

Other parameters from the NC analysis can also be opti-
mized. Various NC models of packet schedulers were already
proposed in the literature such as Weighted Fair Queueing [2]
or Deficit Round Robin [52]. These models are compatible
with DiffNC’s differentiability, enabling to optimize their
parameters (i.e. weights). Additionally, FIFO multiplexing
includes a θ parameter [53] which can be freely chosen. Its
optimal value may also be derived using DiffNC.

D. Use for machine learning-based NC

As noted in Section II, ML recently attracted attention in the
NC community [23, 24, 25, 26]. These approaches use neural
networks (NNs) for speeding up resource intensive analyses by
multiple orders of magnitude. While they use NC as a black
box, DiffNC can be plugged in these models. This enables
back-propagation from the bounds up to the weights of the
NNs, which has been shown to speed-up the training [54, 55].

VIII. CONCLUSION

We introduce in this paper Differential Network Calculus
(DiffNC), an extension of Network Calculus, by showing that
the (min,plus)-algebric terms derived by NC are differentiable.
The term bounding a flow’s end-to-end delay can already be
differentiated w.r.t. to curve parameters or flow priorities. Yet,
our approach also enables for network design and synthesis.

We investigate the optimization of flows paths, a task known
to be difficult due to its combinatorial nature. An extension
of NC models to include alternative flows paths allows to
differentiate w.r.t. these. We show that DiffNC with variable
relaxation is able to reformulate the optimization problem as
a constrained nonlinear optimization problem that can be opti-
mized using gradient-based methods. Our numerical evaluation
shows that DiffNC with sequential least squares quadratic
programming can reduce average delay bounds by 27.5 %
compared to shortest path routing. Moreover, a comparison
against other optimization methods for combinatorial and non-
linear optimization, demonstrates that DiffNC can outperform
global search methods and evolution-based methods.

Compared to a linear program formulation from the liter-
ature which is not tractable beyond small networks, DiffNC
is able to scale to network sizes found in industrial settings.
Our approach also enables more complex objective functions,
allowing greater flexibility for real-world applications.

The authors have provided public access to their data at
https://github.com/fabgeyer/dataset-infocom2022.

REFERENCES
[1] F. Geyer and G. Carle, “Network engineering for real-time networks:

comparison of automotive and aeronautic industries approaches,” IEEE
Commun. Mag., vol. 54, no. 2, pp. 106–112, 2016.

[2] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[3] A. Bouillard, L. Jouhet, and É. Thierry, “Tight performance bounds in
the worst-case analysis of feed-forward networks,” in Proc. of IEEE
INFOCOM, 2010.

[4] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[5] M. Boyer, N. Navet, and M. Fumey, “Experimental assessment of timing
verification techniques for AFDX,” in Proc. ERTS, 2012.

[6] D. Tămaş-Selicean, P. Pop, and W. Steiner, “Design optimization
of TTEthernet-based distributed real-time systems,” Real-Time Syst.,
vol. 51, no. 1, pp. 1–35, Jan. 2015.

[7] R. Belliardi, J. Dorr, T. Enzinger, F. Essler, J. Farkas, M. Hantel,
M. Riegel, M.-P. Stanica, G. Steindl, R. Wamßer, K. Weber, and S. A.
Zuponcic, “Use cases IEC/IEEE 60802 – v1.3,” 2018.

[8] A. Bouillard, B. Gaujal, S. Lagrange, and E. Thierry, “Optimal routing
for end-to-end guarantees using network calculus,” Performance Evalu-
ation, vol. 65, no. 11-12, pp. 883–906, 2008.

[9] B. Cattelan and S. Bondorf, “Iterative design space exploration for
networks requiring performance guarantees,” in Proc. of IEEE/AIAA
DASC, 2017.

[10] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti, “Guaranteed
services of the NoC of a manycore processor,” in Proc. of the NoCArc
Workshop, 2014.

[11] E. Schweissguth, D. Timmermann, H. Parzyjegla, P. Danielis, and
G. Muhl, “ILP-based routing and scheduling of multicast realtime traffic
in time-sensitive networks,” in Proc. of IEEE RTCSA, 2020.

[12] S. M. Laursen, P. Pop, and W. Steiner, “Routing optimization of AVB
streams in TSN networks,” ACM SIGBED Review, 2016.

[13] S. Vastag, “Modeling quantitative requirements in SLAs with network
calculus,” in Proc. of ValueTools, 2011.

[14] P. Buchholz and S. Vastag, “Toward an analytical method for SLA
validation,” Software & Systems Modeling, vol. 17, no. 2, 2018.

[15] J. Liebeherr, “Duality of the max-plus and min-plus network calculus,”
Found. Trends. Network., vol. 11, no. 3-4, pp. 139–282, 2017.

[16] M. Boyer and P. Roux, “Embedding network calculus and event stream
theory in a common model,” in Proc. of IEEE ETFA, 2016.

[17] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: A hybrid method for analyzing embedded real-time
systems,” in Proc. of ACM EMSOFT, 2009.

[18] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. of ISCAS, 2000.

[19] A. Bouillard and G. Stea, “Exact worst-case delay in FIFO-multiplexing
feed-forward networks,” IEEE/ACM Trans. Netw., 2015.

[20] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus – design and evaluation of an accurate
and fast analysis,” Proc. ACM Meas. Anal. Comput. Syst. (POMACS),
vol. 1, no. 1, pp. 16:1–16:34, 2017.

[21] A. Bouillard, “Trade-off between accuracy and tractability of network
calculus in FIFO networks,” Performance Evaluation, vol. 153, p.
102250, 2022.

[22] D.-K. Dang and A. Mifdaoui, “Timing analysis of TDMA-based net-
works using network calculus and integer linear programming,” in Proc.
of IEEE MASCOTS, 2014.

[23] F. Geyer and S. Bondorf, “DeepTMA: Predicting effective contention
models for network calculus using graph neural networks,” in Proc. of
IEEE INFOCOM, 2019.

[24] ——, “Graph-based deep learning for fast and tight network calculus
analyses,” IEEE Trans. Netw. Sci. Eng., 2020.

[25] F. Geyer, A. Scheffler, and S. Bondorf, “Tightening Network Calculus
Delay Bounds by Predicting Flow Prolongations in the FIFO Analysis,”
in Proc. of IEEE RTAS, 2021.

[26] T. L. Mai and N. Navet, “Improvements to deep-learning-based feasi-
bility prediction of switched Ethernet network configurations,” in Proc.
of RTNS, 2021.

[27] S. Bondorf and J. B. Schmitt, “Calculating accurate end-to-end delay
bounds–you better know your cross-traffic,” in Proc. of ValueTools, 2015.

[28] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake,

S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats,
F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “SymPy:
symbolic computing in Python,” PeerJ Computer Science, 2017.

[29] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” Journal of
Machine Learning Research, vol. 18, no. 153, pp. 1–43, 2018.

[30] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, 2019.

[31] A. Bouillard, “Algorithms and efficiency of network calculus,” Habilita-
tion à Diriger des Recherches, École Normale Supérieure (Paris), 2014.

[32] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a comprehensive
tool for deterministic network calculus,” in Proc. of ValueTools, 2014.

[33] S. G. Johnson, “The NLopt nonlinear-optimization package – version
2.7.0,” 2020.

[34] A. Wächter, “An interior point algorithm for large-scale nonlinear op-
timization with applications in process engineering,” Ph.D. dissertation,
Carnegie Mellon University, 2002.

[35] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann,
C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya et al., “An algorithmic
framework for convex mixed integer nonlinear programs,” Discrete
Optimization, vol. 5, no. 2, pp. 186–204, 2008.

[36] D. Kraft, “A software package for sequential quadratic programming,”
DFVLR, Institut für Dynamik der Flugsysteme, Germany, Tech. Rep.
DFVLR-FB 88-28, 1988.

[37] K. Svanberg, “The method of moving asymptotes—a new method for
structural optimization,” International journal for numerical methods in
engineering, vol. 24, no. 2, pp. 359–373, 1987.

[38] ——, “A class of globally convergent optimization methods based
on conservative convex separable approximations,” SIAM journal on
optimization, vol. 12, no. 2, pp. 555–573, 2002.

[39] M. R. Hestenes, “Multiplier and gradient methods,” Journal of optimiza-
tion theory and applications, vol. 4, no. 5, pp. 303–320, 1969.

[40] M. J. Powell, “A method for nonlinear constraints in minimization
problems,” Optimization, pp. 283–298, 1969.

[41] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[42] S. Bondorf and J. B. Schmitt, “Boosting sensor network calculus by
thoroughly bounding cross-traffic,” in Proc. of IEEE INFOCOM, 2015.

[43] F. Biscani and D. Izzo, “A parallel global multiobjective framework for
optimization: pagmo,” Journal of Open Source Software, 2020.

[44] D. Karaboğa, “An idea based on honey bee swarm for numerical
optimization,” Erciyes University, Tech. Rep. TR06, 2005.

[45] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of International Conference on Neural Networks, 1995.

[46] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary computation, 2003.

[47] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber,
“Exponential natural evolution strategies,” in Proc. of the Conference
on Genetic and Evolutionary Computation, 2010.

[48] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,” SIAM
review, vol. 45, no. 3, pp. 385–482, 2003.

[49] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis for
IEEE 802.1Qbv Time Sensitive Networks using network calculus,” IEEE
Access, vol. 6, pp. 41 803–41 815, 2018.

[50] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and M. Boyer, “Latency
analysis of multiple classes of AVB traffic in TSN with standard credit
behavior using network calculus,” IEEE Trans. Ind. Electron., vol. 68,
no. 10, 2021.

[51] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi, “Generalized
finitary real-time calculus,” in Proc. of IEEE INFOCOM, 2017.

[52] M. Boyer, G. Stea, and W. M. Sofack, “Deficit round robin with network
calculus,” in Proc. of ValueTools, 2012.

[53] R. L. Cruz, “SCED+: Efficient management of quality of service
guarantees,” in Proc. of IEEE INFOCOM, 1998.

[54] T. Rocktäschel and S. Riedel, “End-to-end differentiable proving,” in
Advances in Neural Information Processing Systems, 2017.

[55] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z.
Kolter, “End-to-end differentiable physics for learning and control,” in
Advances in Neural Information Processing Systems, 2018.

