
Tightening Network Calculus Delay Bounds by
Predicting Flow Prolongations in the FIFO Analysis

Fabien Geyer∗† Alexander Scheffler‡ Steffen Bondorf‡
∗Technical University of Munich

Munich, Germany

†Airbus Central R&T
Munich, Germany

‡Faculty of Mathematics, Center of Computer Science
Ruhr University Bochum, Germany

Abstract—Network calculus offers the means to compute
worst-case traversal times based on interpreting a system as a
queueing network. A major strength of network calculus is its
strict separation of modeling and analysis frameworks. That is, a
model is purely descriptive and can be put into multiple different
analyses to derive a data flow’s worst-case traversal time bound.
One of the recent results in this category is the so-called flow
prolongation. Flow prolongation actively manipulates the internal
model of the analysis by virtually extending the path of flows,
i.e., by deliberately creating a more pessimistic setting of resource
contention between flows. It was shown that flow prolongation
can theoretically decrease worst-case traversal time bounds under
certain assumptions. Yet, due to its exhaustive search, it was also
shown that flow prolongation does not scale and it might not
even have an impact in larger queueing networks. In this paper
we introduce DeepFP, an approach to make the analysis scale
by predicting flow prolongations using a graph neural network.
In our evaluation, we show that DeepFP can improve results in
networks of FIFO queues considerably, where the delay bound
can be reduced by 13.7 % in large FIFO networks at negligible
additional cost on the execution time of the analysis.

I. INTRODUCTION

Nowadays, many newly developed networked systems aim
to provide some kind of performance guarantee – prime
examples are those in the automotive and avionics sector [1] as
well as factory automation [2]. Applications in these domains
that rely on network performance care about one important
property: the worst-case traversal time, i.e., the end-to-end
delay, of data communication. Safety-critical applications that
are crucial for the entire system’s certification even need to
show guaranteed upper bounds on the end-to-end delay.

Network Calculus (NC) offers a framework for this purpose.
It consists of two parts: modeling and analysis. For best results,
i.e., tight delay bounds, both should be developed in lockstep
to prevent mismatches in their capabilities. Unfortunately,
this has not always been the case and the analysis needs to
catch up. Some easy to model network characteristics such
as multicast flows [3] or ring topologies [4, 5] have only
seen more detailed treatment recently. Thanks to the analysis’
independence of the descriptive model, other characteristics
also found their way into the analysis. Most prominent are the
properties Pay Bursts Only Once (PBOO) [6] and Pay Multi-
plexing Only Once (PMOO) [7] that prevent the analysis from
assuming data flows to exhibit stop-and-go behavior and/or
overtake each other multiple times when crossing a sequence
of servers (so-called tandems). In general, improvements to the
NC tandem analysis tried to remove pessimistic assumptions

Exhaustive search

Original network

s2s1 s3 s4

foi

f1

f2

FP Alternative 1
s2s1 s3 s4

foi

f1

f2
FP Alternative n

s2s1 s3 s4

foi

f1

f2
. . .

NC Analysis NC Analysis. . .

delay1 delayn
delayFP = min(delay1, . . . , delayn)

Original network

s2s1 s3 s4

foi

f1

f2

Prediction
s2s1 s3 s4

foi

f1

f2

Graph transf. + GNN

NC Analysis

delayDeepFP(a) (b)

Figure 1: Comparison between the (a) original FP [11] with
O(nm) NC analyses and (b) our DeepFP with one prediction.

from its internal model in order to improve the derived delay
bounds for the original, user-provided model. Unfortunately,
this also lead to the situation that none of the fast, algebraic
NC analyses is strictly best. A search for the most suitable
analysis is often advised [8, 9, 10]. Novel analysis features
try to narrow down the amount of potentially best analyses.

An entirely different approach was recently presented with
the Flow Prolongation (FP) feature [11]. It actively converts
the network model given to the NC analysis to a more
pessimistic one that circumvents limitations of the NC analysis
capabilities. The analysis derives algebraic NC terms bounding
a flow’s delay. The amount of terms grows exponentially with
the network size and none of them computes the tightest bound
for all data flow descriptions. All need to be derived and
solved [9]. The analysis has to compute a multitude of valid
delay bounds to find the minimum among them. FP not only
increases the amount of algebraic terms (and thus bounds), it
also complicates the prediction of a term’s added pessimism.

FP is conceptually straight-forward: assume cross-flows take
more hops than they actually do. Nonetheless FP is a powerful
feature to add to a NC analysis, it was even adopted in
the Stochastic Network Calculus [12]. Unfortunately, finding
the best prolongation alternative is prone to a combinatorial
explosion. On each tandem of length n with m cross-flows,
there are O(nm) alternatives to prolong flows. Even with a
deep understanding of the NC analysis applied to reduce FP
alternatives it could not be made to scale to larger models [11].

A novel approach to overcome exhaustive searches in the
algebraic NC analysis was recently proposed: Graph Neural
Network (GNN) predictions for NC term creation. This can

be used to make the NC analysis scale by restricting the
exhaustive search to few alternatives [13, 14]. We base our
contribution on this work, presenting DeepFP illustrated in
Figure 1.

By demonstrating that we can make the FP analysis scale
this way, we also reveal that its impact on the derived delay
bound is very sensitive to the network model’s assumptions.
The foremost contribution of this paper is the FP analysis of
FIFO networks. Under this assumption and applying the state-
of-the-art algebraic Least Upper Delay Bound (LUDB) anal-
ysis [15, 16], we derive entirely new conditions for beneficial
flow prolongations, train the GNN and acquire significantly
improved delay bounds.

Our results can be applied to any system designed around
FIFO-multiplexing and -forwarding of data. Most notable are
Ethernet-based networks like Avionics Full-DupleX Ethernet
(AFDX) or IEEE Time-Sentitive Networking (TSN). Even
though they follow the "FIFO per priority queue" design, their
NC model is essentially a FIFO system model. Our results can
be combined with existing works on service modeling of the
specific schedulers used in those systems.

This paper is organized as follows: Section II presents
the related work and Section III gives an overview on NC
analyses. In Section IV, we show how FP can improve bounds
in FIFO multiplexing networks as well as the challenge it
imposes. Section V provides the DeepFP method to make FP
applicable to a wide range of networks. Section VI evaluates
DeepFP and Section VII concludes the paper.

II. RELATED WORK

NC and RTC: Network Calculus takes a purely descriptive
model of a network of queueing locations and data flows (see
Appendix A). The NC analysis then computes a bound on
the worst-case delay for a certain flow, the flow of interest
(foi) (see Appendix B). A variant of NC that focuses on
(embedded) real-time systems is the so-called Real-Time Cal-
culus (RTC) [17]. Equivalence between the slightly differing
resource descriptions has been proven in [18]. What remains
is the difference in modeling of the “network” and the analysis
thereof. RTC models networks of components such as the
Greedy Processing Component (GPC) [19, 20]. Each com-
ponent represents a macro, i.e., a fixed sequence of algebraic
NC operations to apply to its input. Thus, the model already
encodes the analysis. Moreover, this component modeling
mostly restricts the analysis to strict priority multiplexing, yet,
efforts to incorporate advanced properties such as PBOO and
PMOO can be found in the literature [21, 22]. We, in contrast,
aim for a model-independent improvement of the automatic
derivation of a valid order of NC operations – the process
called NC analysis – for networks of FIFO multiplexing
systems. First results on this topic in NC [6, 23] were refined
to the LUDB analysis [15, 16]. Later works entirely replace
the algebraic NC analysis with an optimization one [24, 25], a
mixed integer linear programming formulation that introduces
forbiddingly large computational effort. Current efforts try to
improve it by trading off delay bound tightness [26].

Flow Prolongation (FP): We pair FP with LUDB’s DEB-
ORAH tool to counteract its main tightness-compromising
problem, thus considerably improving delay bounds. There
has been one previous mention of FP in FIFO networks:
[15] briefly shares the observation that, if prolonged, a cross-
flow can be aggregated with the foi – independent of the
LUDB problem we tackle. This can be combined with our
contribution. We leave its investigation to future work.

Prolonging at the front may also be possible, but only in
the arbitrary multiplexing PMOO analysis [27].

Graph Neural Networks: GNNs were first introduced in [28,
29] and [30] presents a framework that formalizes many
concepts applied in GNNs in a unified way. GNNs were
already proposed as an efficient method for speeding up
exhaustive searches or similar NP-hard problems such as the
traveling salesman problem [31]. A recent survey [32] about
existing applications of machine learning to formal verification
shows that this combination can accelerate formal methods,
e.g., theorem proving, model-checking, Boolean satisfiability
(SAT) or satisfiability modulo theories (SMT) problems.

For computer networks, they have recently been applied to
prediction of average queuing delay [33] and different non-
NC performance evaluations of networks [34, 35, 36, 37]. [38]
recently used GNNs for predicting the feasibility of scheduling
configurations in Ethernet networks.

NC and GNN: DeepTMA was proposed in [13, 39] as a
framework where GNNs were used for predicting the best
contention model to use whenever there are alternatives for a
tandem. DeepFP and DeepTMA are closely related: both meth-
ods use a graph transformation and a GNN to replace a com-
putationally expensive exhaustive search. While DeepTMA
targeted the Tandem Matching Analysis (TMA) [9], DeepFP
focuses on FP and therefore we need to design a different
graph transformation to connect NC and the GNN. Moreover,
DeepTMA was shown to scale to large networks with up to
14 000 flows [39] in follow-up improvements of the method.

III. NETWORK CALCULUS ANALYSES

The main objective of NC is to derive a bound on the flow
of interst’s (foi’s) end-to-end delay, subject to interference and
queuing. The resulting order of data in a shared queue when
two different flows multiplex is a main concern of the NC
analysis. NC generally differentiates between no assumption
at all, so-called arbitrary multiplexing, and FIFO multiplexing.
Given curves β lower bounding available forwarding service
and α upper bounding arriving data (see Appendix A), NC
can compute lower bounds on a foi’s residual service.

Theorem 1 (Residual Service Curve): Consider a server s
that offers a strict service curve β. Assume flows f1 and f2
with arrival curves α1 and α2, respectively, traverse the server.
We can compute the service curve for guaranteed residual
service for f1, subject to multiplexing of flows at s, as

β1(t) = [β(t)− α2(t)]
↑ =: β 	 α2 (1)

for arbitrary multiplexing and as

β1(t, θ) = [β(t)−α2(t−θ)]↑ ·1{t>θ} =: β	θα2,∀θ ≥ 0 (2)

for FIFO multiplexing [40, Theorem 4]. 1{condition} denotes
the indicator function (1 if the condition is true, 0 otherwise)
and [g(x)]↑ = sup0≤z≤x g(z) is the non-decreasing closure of
function g(x) defined on positive real values.

In a FIFO multiplexing server, the residual service depends
on the flow of interest (f1 in Theorem 1). Yet, it is desired
to be computed seemingly independent of it as with arbitrary
multiplexing. θ encodes the FIFO worst cases for any foi. It
thus defines an infinite set of (valid) residual service curves.

A. PMOO, the Analysis for Arbitrary Multiplexing

An important discovery in the evolution of analysis capa-
bilities was that, even assuming arbitrary multiplexing, cross-
flows’ worst-case burstiness need not be assumed to fully
collide with the foi at each server. This is known as Pay
Multiplexing Only Once (PMOO) [7]. To achieve this, the
proposed PMOO analysis computes a residual service curve
for an entire tandem of servers.

The PMOO analysis has a disadvantage when analyzing
feed-forward networks. To handle demultiplexing on the foi’s
path, cross-flows interfering on different foi-subpaths need to
be analyzed in a demultiplexed fashion in the entire feed-
forward analysis. At shared servers before the foi’s path, that
creates mutually exclusive worst-case assumptions [41]. For an
example, see Figure 2 where at server s1 each cross-flow, f1
and f2, would compute a residual service curve to demultiplex
from the other.

B. DEBORAH, the Analysis Tool for FIFO Multiplexing

For the analysis of FIFO multiplexing tandems, there are
two challenges:
a) implementing the PMOO principle and
b) finding the best setting for the free θ parameter in the
residual service curve computation.

The Least Upper Delay Bound (LUDB) analysis [42, 15, 16]
tackles both. As its name suggests, b) is achieved by finding
the smallest among many alternative delay bounds (similar to
Figure 1(a)). To do so, LUDB converts the problem of setting
all θ in the algebraic NC term into several linear programs.
This conversion strictly requires the modeling curves to be
affine, a restriction we inherit in this paper.

The more important part for our flow prolongation is the
current solution to challenge a). LUDB does not necessarily
achieve a full implementation of the PMOO principle. It
is very susceptible to the nesting of flows on the analyzed
tandem. In general, a tandem is called nested if any two
flows have disjunct paths or one flow is completely included
in the path of the other flow. For example, in Figure 2(a),
f2 is completely included in the path of f1 but neither are
completely included in the foi’s path. If flows form a non-
nested interference pattern as f1 and f2 in Figure 3(a), then
LUDB needs to cut the tandem into a sequence of sub-
tandems, each with a nested interference pattern. At these cuts,
a tighness-reducing computation to bound the arrivals of cross-
flows needs to be executed. It adds the cross-flow burstiness
to all sub-tandem residual service curve computations and

s1 s2 s3 s4

foi

f1

f2

(a)

s1 s2 s3 s4

foi

f1

f2

(b)

Figure 2: (a) Example tandem network shown in Figure 1 and
(b) indication of all its potential flow prolongation alternatives

PMOO is not achieved. Therefore, we aim at reducing the
amount of cuts.

Last, the DEBORAH tool has been developed to implement
LUDB [43] for tandem networks only. We extended it to
analyze feed-forward networks in our numerical evaluations.

C. Flow Prolongation

Flow Prolongation was designed as an add-on feature to
mitigate the PMOO analysis’s problem described above [11].
FP is, however, a generic approach that is independent of any
multiplexing assumption. More formally, it is defined by:

Corollary 1 (Delay Increase due to FP): Assume a tandem
T defined by the foi’s path. Let the foi be f1 and let there
be cross-flows on T . A prolongation of cross-flows to create
tandem TFP increases the end-to-end delay of f1 on TFP.

Proof 1: Wlog assume a single cross-flow f2 to be pro-
longed over one additional server s where f1 is present, too.
Compared to T , s in TFP multiplexes incoming data of f2 with
data of f1 in its queue. s either forwards this data of f2 after
f1, causing no increase of f1’s delay on TFP, or it forwards at
least parts of the data of f2 before f1, causing an additional
queuing delay to f1.

Corollary 1 shows that FP is a conservative transformation
adding pessimism to the network model that increases the foi’s
delay. For delay bounds, it holds that:

Corollary 2 (FP Delay Bound Validity): Assume a tandem
T defined by the flow of interest’s path. Let TFP be derived
from T by flow prolongation. Then, the bound on the foi’s
worst-case delay in TFP is a bound on the foi’s delay on T .

Proof 2: Per Corollary 1, we know that the foi’s end-to-end
delay will not decrease by FP. Thus, the tight delay bound in
TFP will exceed the tight delay bound on T and any potentially
untight bound derived for TFP bounds the foi’s delay on T .

Take the sample tandem in Figure 2(a), where bounding
the arrivals of data flows f1 and f2 is required at their first
location of interference with the foi, server s2. Assuming
arbitrary multiplexing, the PMOO analysis suffers from the
segregation effect [41], both flows assume to only receive
service after the respective other flow was forwarded by server
s1 – an unattainable pessimistic forwarding scenario in the
analysis-internal view on the network. FP tries to steer the
analysis such that it does not have to apply this pessimism
by prolonging flows inside the analysis: the dashed lines in
Figure 2(b), depict potential prolongations of the two flows’
paths. Each prolongation alternative that matches their sinks
will allow for their aggregate treatment at s1, mitigating the
problem. Yet, this adds interference to the foi. Therefore, we
search for the best prolongation alternative trading off both

s1 s2 s3

f2

foi
f1

(a)

s1 s2 s3

f2

foi
f1

(b)

Figure 3: (a) Tandem network and (b) its prolonged version

aspects. This search approach does not scale, neither are there
hopes that PMOO delay bounds improve much [11].

IV. FLOW PROLONGATION IN THE NC FIFO ANALYSES

In this Section, we address the question of how flow
prolongation can improve the NC-derived worst-case delay
bound for a flow of interest in the FIFO analysis.

In the PMOO analysis, demultiplexing is the dominant
problem that causes a loss of tightness. While the problem
of demultiplexing applies to the LUDB analysis for FIFO
networks, too, it suffers from yet another and more impactful
problem that we address with flow prolongation: the lack of the
PMOO property. To implement the property, an analysis needs
to first create an end-to-end view on a tandem. LUDB, and
thus the DEBORAH tool, cannot achieve this for non-nested
interference patterns (see Figure 3(a)). It can only analyze
nested tandems in a PMOO fashion where cross-flow paths
do not overlap.

To apply LUDB nonetheless, the tandem is cut into a
sequence of sub-tandems with nested interference patterns. In
Figure 3, the tandem can be cut before or after server s2. Either
alternative has the very same drawback: a cross-flow is cut,
too, and to get it onto the subsequent sub-tandem, an explicit
bound on its arrivals has to be computed. This is achieved
with the deconvolution � (see Appendix B) or Theorem 2 in
Section IV-A, adding the cross-flow’s original burst term to
the analysis once more – PMOO is not achieved. Let server
si provide service βi and let flow fj put αj data into the
network. The respective (min,plus)-analysis terms using � as
derived by DEBORAH which bound the foi’s delay are:

h(αfoi, (β1	θα1)⊗(((β2	θ (α1�(β1	θαfoi)))⊗β3)	θα2))
(3)

for the cut left of s2 and for the cut right to it:

h(αfoi, ((β1 ⊗ (β2 	θ α2))	θ α1)

⊗(β3 	θ (α2 � (β2 	θ ((αfoi + α1)� β1))))). (4)

Curves and binary (min,plus)-operations are defined in Ap-
pendix A. For this example, it is already sufficient to note that
every occurrence of the deconvolution � reduces the tightness
of the computed delay bound.

In this paper, we devise an alternative strategy to create a
tandem with nested interference only and thus less cuts, less
occurrences of � and more PMOO property implementation:
flow prolongation. By prolonging cross-flow f1 in this small
sample tandem by another hop, we create the one shown
in Figure 3(b). Without overlapping interference, the foi’s
DEBORAH-derived delay bound becomes:

h(αfoi + α1, β1 ⊗ ((β2 ⊗ β3)	θ α2)) (5)

20 40 60 80 100
0

10

20

30 T = 0

T = 0.1

T = 10

Utilization at server s2 (%)

Im
pr

ov
em

en
t(

%
)

Figure 4: Delay bound improvements by using FP in the
DEBORAH analysis of the network in Figure 3

By its lack of deconvolutions, i.e., single appearances of each
involved flow’s arrival curve, the term clearly shows that
the PMOO principle is implemented. Yet, at the expense of
aggregating the foi with its cross-flow f1

1. We have tested
this new instantiation of flow prolongation to improve the
DEBORAH-derived LUDB bounds for different curve settings
in the network shown in Figure 3. Service curves were set to
βR=30,T and arrival curves to γr= u

10 ,0.1
where u denotes the

utilization 3r
R at the server that always sees three flows, s2, and

varying latencies. Note, that our setting guarantees for finite
delay bounds. Figure 4 shows the results.

FP for the DEBORAH analysis, henceforth called
DEBORAH-FP, is a very promising approach to implement the
PMOO property in the algebraic NC analysis. Its application
vastly differs from the PMOO analysis in arbitrary multiplex-
ing. Put simple, the necessary preconditions for FP to have a
positive impact on each analysis are as follows:
• For the PMOO analysis, prolong cross-flows that start at

the same server to the same last server.
• For the DEBORAH analysis, prolong cross-flows that

start at different servers to the same last server.

A. DEBORAH in feed-forward FIFO networks

For the analysis of feed-forward FIFO networks, we inte-
grated DEBORAH into the NetworkCalculus.org Determinis-
tic Network Calculator (NCorg DNC) [44] as its feed-forward
analysis already provides the required decomposition of the
network into a sequence of tandems [45]. Second, LUDB only
computes delay bounds but we can use DEBORAH for bound-
ing arrivals of cross-traffic by using the following theorem, an
alternative to the deconvolution-based computation:

Theorem 2 (Output From Delay [46]): Consider a tandem
of servers T that offers a service curve β. Assume flow f with
arrival curve α traverses T , experiencing a delay bounded by
d. Then α′(t) = α(t+ d) bounds the output of f from T .

The impact of our contribution does not rely on this
rather inaccurate bounding technique. We put flow prolonged

1DEBORAH can only work with a single flow (aggregate) per distinct path
on the tandem. Input to DEBORAH needs to be formatted accordingly. In case
a cross-flow has the same path as the foi we thus get an aggregate delay bound
instead of computing a residual service curve for the foi – an alternative
derivation of a valid upper delay bound that now implements PMOO, too.
Either is subject to overly pessimistic interference assumptions.

tandems into the DEBORAH tool that applies a more re-
fined computation internally if the tandem is non-nested. Yet,
DEBORAH does not expose this computation to the user.

A recent overview on further NC tools can be found in [47].
We also investigated another tool2 for the analysis of FIFO
networks, which uses a linear program (LP) to compute the
delay bound. Our evaluations showed that it scaled insuffi-
ciently for inclusion in our numerical evaluation, even on small
networks with 20 flows, mainly due to the large number of LP
constraints generated, confirming previous results [9].

B. The Challenge to Apply Flow Prolongation

As mentioned in Section I and illustrated in Figures 1(a)
and 2, on each tandem of length n with m cross-flows, FP
may explore O(nm) prolongation alternatives. It was shown
for arbitrary multiplexing that exhaustive FP analysis does not
scale in feed-forward networks [11]. Due to their similarity,
the scaling problem also holds when applying DEBORAH-FP.

1) Restricting the Application of FP: The most straight-
forward trade-off between delay bound tightness and compu-
tational complexity is, of course, to restrict the use of FP inside
the NC analysis. We deviate from an exhaustive use of FP on
every tandem to a selective use where it has the most impact
on the delay bound. It turned out that this is achieved by
only applying FP to the analysis of the foi, not for bounding
the arrivals of its cross-flows. This creates the FPfoi variants
PMOO-FPfoi and DEBORAH-FPfoi. Figure 5 illustrates the
delay bound gap between PMOO-FP and PMOO-FPfoi, and
between DEBORAH-FP and DEBORAH-FPfoi, namely:

delay bound gap =
delayFPfoi

foi − delayFP
foi

delayFP
foi

(6)

For more than 99 % of the studied flows, the delay bound is
unchanged. On average, the relative error is only of 0.58 % for
PMOO and 1.18 % for DEBORAH. Those values illustrate that
the loss of tightness of using FPfoi instead of FP is minimal.

0 2 4 6 8 10 12 14 16

99
99.2
99.4
99.6
99.8
100

Delay bound gap to exhaustive FP analysis (%)

CD
F

(%
)

PMOO-FPfoi
DEBORAH-FPfoi

Figure 5: Delay bound gap of FPfoi analyses based on the
evaluation dataset presented in Section V-D

In order to see the impact on the execution time of running
flow prolongations only on the foi’s analysis, Figure 6 illus-
trates the relative execution time of FP against FPfoi, namely:

Relative execution time =
Execution time FP

Execution time FPfoi
(7)

2https://github.com/annebouillard/NetCalBounds based on [24, 25]

PMOO-FPfoi is 1.3 times faster than PMOO-FP in average,
while there is almost no difference in execution time between
DEBORAH-FP and DEBORAH-FPfoi.

1 2 3 4
0

20

40

60

80

100

Relative execution time between FP and FPfoi

CD
F

(%
)

PMOO-FP vs. PMOO-FPfoi
DEBORAH-FP vs. DEBORAH-FPfoi

Figure 6: Relative execution time of a flow’s analysis based
on the evaluation dataset presented in Section V-D

2) PMOO-FP’s explored alternatives: We can reasonably
reduce the use of FP to a single tandem. On this tandem,
the amount of prolongation alternatives to explore can be
further reduced. In practice, not all cross-flows go over only
the first server such that they can also be prolonged to any
following one. Moreover, PMOO-FP already cuts out all those
alternatives that cannot impact the analysis by circumventing
the need to carry over demultiplexing – as described in the
necessary FP precondition above. Similarly, we improved
DEBORAH-FP to not prolong if there is no potential to
convert a non-nested interference pattern to a nested one.
Still, the amount of prolongation alternatives for the dataset
evaluated in this paper is forbiddingly large, see Figure 7.
Note for a large number of cross-flows, networks may have
been excluded from this preliminary evaluation due to a 1
hour deadline set for computing data. As expected, we get an
exponential scaling between the number of cross-flows and the
number of explored alternatives.

0 10 20
100

101

102

103103

104

Number of cross-flows

#
of

ex
pl
or
ed

al
te
rn
at
iv
es

PMOO-FPfoi
Experiment data
Fit: 1.45m

0 10 20
Number of cross-flows

DEBORAH-FPfoi

Experiment data
Fit: 1.46m

Figure 7: Relation between the number of cross-flows and the
number of explored prolongation alternatives by PMOO-FPfoi
and DEBORAH-FPfoi

Overall, we need a better way to find the best prolongation
alternative that improves the delay bound to be derived. In
this paper, we propose DeepFP that can be trained on either a
PMOO-FPfoi or a DEBORAH-FPfoi dataset to predict the best
alternative(s). We show that DeepFP makes the FP feature
scale, that PMOO-FPfoi provides only minor improvements

over PMOO and that, in contrast, FP has a considerable impact
on the LUDB analysis when coupled with its implementation,
DEBORAH, to DEBORAH-FPfoi.

V. EFFECTIVE FP PREDICTIONS WITH A GNN

We make the FP analysis scale with GNN predictions and
show that the impact vastly depends on the multiplexing
assumption. We develop our universal DeepFP heuristic in this
section, based in part on the work proposed in DeepTMA [13,
14]. As illustrated in Figure 1 and Algorithm 1, the main
intuition behind DeepFP is to avoid the exhaustive search
for the best prolongation by limiting it to a few alternatives.
The heuristic’s task is then only to predict the best flow
prolongations, which are then fed to the NC analysis. This
ensures that the bounds provided are formally valid.

Algorithm 1 DeepFP analysis of network N and flow ffoi

G := graphTransformation(N , ffoi) → see Algorithm 2
prolongations := GNN(G) → see Section V-A
Np := networkWithFlowProlongations(N , prolongations)
return Network Calculus analysis of Np and ffoi

For DeepFP, we used a Graph Neural Network (GNN) as
heuristic, since it was shown in DeepTMA to be a fast and
efficient method. We define networks to be in the NC modeling
domain and to consist of servers, crossed by flows. We refer to
the model used in GNN as graphs. Our heuristic transforms the
networks into graphs, which are processed by the GNN. The
output of the GNN is then fed to PMOO-FPfoi or DEBORAH-
FPfoi, which finally performs the NC analysis on the subset of
combinations suggested by the GNN.

A. Graph Neural Networks

As for DeepTMA, we use the framework of GNNs in-
troduced in [28, 29]. They are a special class of neural
networks for processing graphs and predict values for nodes or
edges depending on the connections between nodes and their
properties. The idea behind GNNs is called message passing,
where so-called messages – i.e., vectors of numbers hv ∈ Rk –
are iteratively updated and passed between neighboring nodes.
Those messages are propagated throughout the graph using
multiple iterations. We refer to [48] for a formalization of
many concepts recently developed around GNNs.

As with DeepTMA, we selected Gated Graph Neural Net-
works (GGNN) [49] for our model, with the addition of edge
attention. For the edge attention mechanism, we selected an
approach similar to [50], where each edge (u, v) in the input
graph is weighted with a parameter λ(u,v) ∈ (0, 1), such that:

λ
(t)
(u,v) = σ

(
FFNN

({
h(t)
u ,h(t)

v

}))
(8)

with FFNN a feed-forward neural network h
(t)
v representing

the message from node v at iteration t, σ the sigmoid function,

and {·, ·} the concatenation. In summary, the hidden node
update function becomes:

h(t)
v = GRU

h(t−1)
v ,

∑
u∈NBR(v)

λ
(t−1)
(u,v) h

(t−1)
u

 (9)

with NBR(v) of v the set of neighbors of node v, and GRU
a Gated Recurrent Unit (GRU) [51].

B. Model transformation

Since we work with a machine learning method, we need
an efficient data structure for describing a NC network which
can be processed by a neural network. We chose undirected
graphs, as they are a natural structure for describes networks
and flows. Due to their dynamic sizes, networks of any sizes
may be analyzed using our method.

s1 s2 s3 s4

f2

f1 foi

Prolong?

Figure 8: Graph encoding of the network from Figure 2(a)

We follow Algorithm 2 for this graph transformation, also
illustrated and applied in Figure 8 on the network from
Figure 2(a). Each server is represented as a node in the graph,
with edges corresponding to the network’s links. The features
of a server node are its service curve parameters, namely its
rate and latency. Each flow is represented as a node in the
graph, too. The features of a flow node are its arrival curve
parameters, namely its rate and burst. Additionally, the foi
receives an extra feature representing the fact that it is the
analyzed flow.

Algorithm 2 Graph transformation of network N for flow ffoi

G := empty undirected graph
for all server si in network N do G.addNode(si)
for all link (si, sj) in network N do G.addEdge(si, sj)
for all flow fi in network N do
G.addNode(fi)
for all server sj in fi.path() do G.addEdge(fi, sj)

for all flow fi in network N excluding ffoi do
for all server sj in ffoi.path() do

if prolongation P sjfi of flow fi to sj is valid then
G.addNode(P sjfi)
G.addEdges((fi, P

sj
fi

), (P sjfi , sj))
return G

To encode the path taken by a flow in this graph, we use
edges to connect the flow to the servers it traverses. Compared

to the original DeepTMA graph model from [13], we simplify
one aspect: we do not include path ordering nodes that tell
us the order of servers on a crossed tandem. DeepTMA was
shown to benefit only marginally from the effort to incorporate
this additional information [14] and we confirmed the same
behavior in preliminary DeepFP numerical evaluations.

To represent the flow prolongations, prolongation nodes
(P sjfi) connecting the cross-flows to their potential prolonga-
tion sinks are added to the graph. Those nodes contain the
hop count according to the foi’s path as main feature – this is
sufficient to later feed the prolongation into the NC analysis,
path ordering nodes are not required for this step either.

The last server of a cross-flow’s unprolonged path is also
represented as a node (s3 for f1 and s2 for f2 in Figure 8).
Those nodes represent the choice to not prolong a flow.

Based on this graph representation, we define two classifi-
cation problems for the neural network. The first one is decide
if it is worthwhile to apply the prolongation algorithm or not.
For this, we use a binary classification of the foi node.

The second classification problem is to decide where to
prolong the flows if necessary, by applying a binary classi-
fication on the prolongation nodes. Namely for each cross-
flow f and each potential sink s, the neural network assigns a
score Pf,s between 0 and 1 to the corresponding prolongation
node. For each flow, the prolongation node with the highest
score decides which sink to use for prolonging the flow.
As illustrated in Figure 1(b), those predictions are then fed
to PMOO-FPfoi or DEBORAH-FPfoi, which finally performs
the NC analysis. Since the GNN might also choose not to
prolong, the standard PMOO or DEBORAH analyses are only
performed if explicitly requested by the GNN.

C. Implementation

We implemented the GNN used in DeepFP using Py-
Torch [52] and pytorch-geometric [53]. Optimal parameters for
the neural network size and the parameters for training were
found using hyper-parameter optimization. Table I illustrates
the size of the GNN used for the evaluation in Section VI.

Layer NN Type Size

init FFNN (11, 96)w + (96)b
Memory unit GRU cell (96, 96)w + 2× {(288, 96)w + (96)b}
Edge attention FFNN (192, 96)w + (96)b + (192, 96)w + (1)b
out hidden layers FFNN 2× {(96, 96)w + (96)b}
out final layer 1 FFNN (96, 1)w + (1)b
out final layer 2 FFNN (96, 1)w + (1)b

Total: 104 455 parameters

Table I: Size of the GNN used in Section VI. Indexes represent
respectively the weights (w) and biases (b) matrices

D. Dataset generation

To train our neural network architecture using a supervised
learning method, we generated a set of random tandem topolo-
gies (as to check the FP preconditions of Section IV). For
each created server, a rate-latency service curve was generated
with uniformly random rate and latency parameters. A random

number of flows was generated with random source and
sink servers. For each flow, a token-bucket arrival curve was
generated with uniformly random burst and rate parameters.
All curve parameters were normalized to the (0, 1] interval.

For each generated topology, the NCorg DNC v2.6.1 [44]
is then used for analyzing each flow and record the different
iterations of PMOO-FPfoi and DEBORAH-FPfoi. Namely we
extract the combinations of flow prolongations which resulted
in the lowest end-to-end delay during the exhaustive search.
Each analysis is run with a maximum deadline of 1 hour.

We extended the NCorg DNC tool to integrate the DEB-
ORAH tool. For our evaluations, we run DEBORAH in so-
called STA mode (Single Tandem Analysis) [16] instead of
the default MSA (Multiple Sub-tandem Analysis). The MSA
mode computes per-sub-tandem delay bounds and adds them
up. In this mode, DEBORAH cannot be used to implement
the PMOO principle, not even the PBOO one. Yet, STA
has a worse execution time since more variables have to be
optimized simultaneously.

Since PMOO-FPfoi and DEBORAH-FPfoi may not bring any
benefits compared to PMOO or DEBORAH, either due to
no alternatives for prolonging flows or no end-to-end delay
improvement by any alternative, we restrict the dataset to
networks and flows where FP is applicable (i.e., flows with
prolongation options). Table II contains statistics about the
generated dataset. In total approximately 54 000 flows were
generated and evaluated for the training dataset, and 10 000 for
the numerical evaluation presented in Section VI. The dataset
is available online3 to reproduce our learning results.

Parameter Min Max Mean

of servers 4 10 7.8
of flows 5 35 24.5
of cross-flows 1 21 4.1
of prolong. comb. (PMOO-FPfoi) 2 4024 16.8
of prolong. comb. (DEBORAH-FPfoi) 2 131072 247.1
Flow path length 3 9 4.1
Number of nodes in graph 11 128 43.3

Table II: Statistics about the generated dataset

E. Neural network training

We use standard gradient descent techniques to train our
GNN, using the binary cross-entropy loss function, namely
the optimization goal is to minimize:

loss(T, P) =
∑
f∈F,s∈Sf (Tf,s logPf,s + (1− Tf,s) log (1− Pf,s))

(10)
with T sf representing the target score for the prolongation, with
1 if it is selected for prolongation and 0 otherwise.

We follow a standard supervised learning approach for train-
ing the neural network. Since the choice of flow prolongations
may have multiple equally-optimal solutions, the choice of
which target solution to provide as training data for the neural
network is not obvious. In other words, the target vector Tf,s
in Equation (10) has to be defined according to a single

3https://github.com/fabgeyer/dataset-rtas2021

solution, but multiple equally good solutions are available.
In our experiments, training the GNN on a single solution
resulted in poor convergence of the model.

To provide target vectors which enable the neural network
to be trained efficiently, we use here a concept inspired by
hindsight loss [54, 55]. We dynamically find the correct target
vector T which is the closest to the predicted score by the
neural network and use it in the loss function. The loss
function introduced in Equation (10) becomes:

L = min
T∈τopt

loss(T, P) (11)

where τopt is the set of flow prolongation choices leading to
an optimal solution.

Since we address two FP instantiations that are even orthog-
onal as seen in their preconditions to have a positive impact,
we define two versions of DeepFP as PMOO-DeepFPfoi and
DEBORAH-DeepFPfoi. The same graph representation and
features are used regardless of the NC analyses, but two
different training processes and resulting trained weights of
the GNN are produced.

F. Flow prolongation choices

To improve the outcome of a DeepFP analysis at a small
computational cost, we propose here to use the prediction
vector of the GNN to generate multiple flow prolongation
combinations. Those combinations are then analyzed using the
NCorg DNC and the combination leading to the lowest end-
to-end delay is kept. We name this extension DeepFPk where
k corresponds to the number of combinations generated.

First, we consider the prediction vector of the GNN as a
vector of probabilities of where to prolong flows. A categorical
distribution parameterized by those probabilities is generated
for each cross-flow and used to generate the k combinations.

This first version of DeepFPk does not make use of the ex-
pert knowledge mentioned in Section IV-B2, where some com-
binations are excluded from PMOO-FPfoi’s and DEBORAH-
FPfoi’s exhaustive searches since they are known to be of lower
quality than other combinations. In other words, the GNN can
choose a combination of flow prolongations which might not
have been explored by PMOO-FPfoi’s or DEBORAH-FPfoi’s
exhaustive search. This reflects the generally observed wish
to apply machine learning to a dataset without becoming an
expert in the domain and without tailoring the dataset to learn
from accordingly.

Last, we describe a second extension of DeepFP, called
DeepFP+ which is able to use this expert knowledge. In
order to avoid selecting those excluded combinations, we
define a matrix of explored combinations C containing
their target vectors, with dimensions (# of combinations,
of prolongation nodes). Using the prediction vector Pf,s
from the GNN, we compute a vector containing a score for
each combination:

CombinationScores = C ×
[
Pfi,sk · · ·Pfj ,sl

]T
(12)

To generate k combinations, we select the top-k combinations
having the best scores in the CombinationScores vector.

We numerically evaluate later in Sections VI-B and VI-D
the impact of DeepFP+ in terms of tightness and additional
execution time of enumerating the combinations used by
PMOO-FPfoi and DEBORAH-FPfoi.

VI. NUMERICAL EVALUATION

Our numerical evaluation aims to answer two questions:
1) How much delay bound improvement can FP achieve?
2) How well does the GNN predict the FP alternative?

As FP does not scale well and we therefore proposed DeepFP
in the first place, both aspects are naturally intertwined.

In the following, we show details about DeepFP perfor-
mance in terms of tightness as well as execution time. Im-
provements in both will directly be applicable to and have an
impact on any real-world application of the NC methodology.
In order to illustrate the benefits of DeepFP, we also do a
comparison against a heuristic which randomly selects one
or multiple prolongation alternatives – a low-effort, non-
expert alternative to add FP to an analysis. We label this
heuristic as RNDk in this section, with k being the number of
random alternatives evaluated. At first, we use DeepFP without
the extension using additional expert knowledge described in
Section V-F. All evaluations presented here were done with
the evaluation dataset described in Section V-D, except for
Section VI-C which used larger networks.

A. Accuracy and delay bound gap

To quantitatively evaluate the performance of our approach,
we use the relative gap between the delay bound given by
PMOO-FPfoi and DEBORAH-FPfoi and the delay bound given
by a heuristic, incl. the non-FP original analysis:

delay bound gapFP
foi =

delayheuristic
foi − delayFPfoi

foi

delayFPfoi
foi

(13)

A value of delay bound gapFP
foi close to zero indicates that the

heuristic produced a tight result compared to the exhaustive
search. Larger values indicate that the heuristic chose a bad
prolongation, i.e. the bound is loose.

The results are shown in Figure 9. First to note is that FP
does not have a significant impact in PMOO – we confirm the
finding of [11] in a larger evaluation by observing an average
gap between PMOO-FPfoi and PMOO of just 3.7 %. Neither
the random heuristic nor DeepFP can thus achieve a consider-
able delay bound improvement, although the predictions taken
are very accurate.

For DEBORAH-FP, we can report a completely different
picture. Having brought the FP property to the DEBORAH
analysis had a huge impact on the delay bound tightness. We
see that an average gap of 60.75 % between DEBORAH and
DEBORAH-FPfoi analysis results was opened when adding
the exhaustive FPfoi feature. Moreover, reducing the effort by
random selection of prolongation alternatives did not perform
well, even RND16 leaves an average gap of 11.68 %. On the
other hand, our DeepFP closes this gap successfully. Even the
version with a single prediction pushes the gap down to 2.57 %

0 20 40 60

DeepFP4
DeepFP2
DeepFP
RND16
RND8
RND4
RND2
RND

Non-FP Analysis

0.53%
0.82%
1.17%
1.20%
1.74%
2.58%
3.75%
5.24%

3.70%

Delay gap to PMOO-FPfoi (%)
0 20 40 60

2.15%
2.34%
2.57%

11.68%
17.56%

25.70%
35.49%

46.92%
60.75%

Delay gap to DEBORAH-FPfoi (%)

Figure 9: Average delay bound gap of heuristics against
PMOO-FPfoi and DEBORAH-FPfoi

such that an increase of proposed prolongation alternatives
does not have a big impact anymore.

More detailed results are presented in Figure 10, where we
illustrate the delay bound gap of DeepFP, the random heuristic
and standard PMOO or DEBORAH analyses, confirming our
findings that DEBORAH-FPfoi is a big improvement over
DEBORAH and DeepFP is the key to its efficient application.

0 5 10 15 20
0

20

40

60

80

100

Delay gap to PMOO-FPfoi delay (%)

CD
F

(%
)

DeepFP RND
RND2 RND4
RND8 RND16
PMOO DEBORAH

0 5 10 15 20
Delay gap to DEBORAH-FPfoi delay (%)

Figure 10: Delay bound gap of heuristics against PMOO-FPfoi
and DEBORAH-FPfoi

The accuracy of DeepFP is shown in Figure 11. For each
analyzed flow in the test dataset, the method is accurate if the
computed end-to-end delay bound is equal to the best end-to-
end delay bound computed by PMOO-FPfoi or DEBORAH-
FPfoi. In average, DeepFP is able to predict the correct pro-
longation for 69.6 % of the flows for PMOO-FPfoi and 60.9 %
for DEBORAH-FPfoi. Generating multiple combinations as
introduced in Section V-F increases the accuracy to 75.3 %
and 64.3 % respectively for k = 4. In comparison, the random
heuristic with one choice achieves only 14.5 % and 8.7 %
respective accuracy. DeepFP is making more reasonable, more
accurate predictions.

B. Impact of additional expert knowledge for DeepFP+

We introduced DeepFP+ in Section V-F, an extension of
DeepFP making additional use of expert knowledge to ex-
plicitly filter out prolongation combinations which are known
to be of lower quality. We numerically compare DeepFP and
DeepFP+ in Figures 12 and 13. As expected, DeepFP+ is
able to achieve a better accuracy for both PMOO-FPfoi and
DEBORAH-FPfoi. Nevertheless, while the delay bound gap
of DeepFP+ to the exhaustive search of DEBORAH-FPfoi is
indeed reduced compared to DeepFP, DeepFP achieves better

0 20 40 60

DeepFP4
DeepFP2
DeepFP
RND16
RND8
RND4
RND2
RND

Non-FP Analysis

75.3%
72.4%

69.6%
51.6%

43.2%
33.1%

23.6%
14.5%
14.5%

Accuracy wrt PMOO-FPfoi (%)
0 20 40 60

64.3%
62.2%

60.9%
38.1%

30.0%
21.8%

14.6%
8.7%

5.8%

Accuracy wrt DEBORAH-FPfoi (%)

Figure 11: Accuracy of DeepFP, the random heuristic, and the
non-FP analyses

Parameter Min Max Mean

of servers 2 16 8.7
of flows 5 254 162.3
Flow path length 1 16 3.2

Table III: Statistics about the larger generated dataset

results than DeepFP+ for PMOO-FPfoi. This means that the
expert knowledge of reducing the state of possible solutions
might not be necessary.

0 20 40 60 80

DeepFP+

DeepFP+
2

DeepFP+
4

DeepFP
DeepFP2
DeepFP4

81.25%

85.17%

87.94%

69.63%

72.38%

75.30%

Accuracy to PMOO-FPfoi (%)
0 20 40 60 80

83.83%

90.24%

93.40%

63.13%

63.84%

65.48%

Accuracy to DEBORAH-FPfoi (%)

Figure 12: Accuracy of DeepFP+ and DeepFP

0 1 2

DeepFP+
4

DeepFP+
2

DeepFP+

DeepFP4
DeepFP2
DeepFP

1.13%

1.19%

1.32%

0.53%

0.82%

1.17%

Delay gap to PMOO-FPfoi (%)
0 1 2

0.90%

0.99%

1.21%

2.15%

2.34%

2.57%

Delay gap to DEBORAH-FPfoi (%)

Figure 13: Average delay bound gap of DeepFP+ and DeepFP

The additional computational cost of using DeepFP+ will
be evaluated later in Figure 17.

C. Scalability on larger networks

To evaluate the scalability of our approach with respect
to the network size, we also evaluated DeepFP on networks
with a larger number of servers and flows. The same random
network generator as for the training dataset is used, but the
number of servers and flows is scaled to larger values. Statis-
tics about this additional dataset are presented in Table III. The
training data used for the GNN is unchanged, namely we still
restrict it to the smaller networks introduced in Section V-D
and Table II.

The results of the exhaustive PMOO-FPfoi and DEBORAH-
FPfoi are not available here due to their too long execution
time, taking multiple days per network to compute in some
cases. Instead, we use here the standard PMOO and DEB-
ORAH analyses in order to evaluate the gain in tightness of
using DeepFP. As in Equation (13), we define the delay bound
gap to PMOO and DEBORAH (i.e. the analyses without the
FP property) as:

delay bound gapnon-FP
foi =

delaynon-FP
foi − delayheuristic

foi

delaynon-FP
foi

(14)

A large positive value of delay bound gapnon-FP
foi indicates that

the heuristic with the FP property gained tightness over the
standard PMOO or DEBORAH analysis. In the opposite, a
negative value indicates that the bound is less tight.

Numerical results are summarized in Figure 14. For the
PMOO analysis, the random heuristic results in a negative
delay bound gap in average, namely the resulting delay bounds
are worse than by simply using the standard PMOO analysis,
even for the larger values of k = 32. Despite this, DeepFP
is able to achieve an average gain in tightness of 1.06 % for
PMOO. For the DEBORAH analysis, the random heuristic
results in a gain in tightness of only 0.25 %, where DeepFP is
able to achieve a gain of 13.74 %.

−10 0 10

DeepFP4
DeepFP2
DeepFP
RND32
RND16
RND8
RND4
RND2
RND

1.27%
1.07%
0.68%

-3.55%
-4.37%
-5.87%
-6.64%
-7.59%
-9.81%

Delay gap to PMOO (%)
−10 0 10

15.67%
15.65%
15.61%

4.52%
3.54%

2.61%
1.59%

0.55%
-0.41%

Delay gap to DEBORAH (%)

Figure 14: Average delay bound gap of DeepFP to standard
PMOO and DEBORAH on the larger networks

Overall, these results illustrate that a simple random choice
is not sufficient to improve tightness using flow prolongations.
DeepFP is able to accurately choose flow prolongations result-
ing in a gain in tightness, even on larger networks than the
ones it is was trained on.

D. Execution time

To understand the practical applicability of our heuristic, we
evaluate in this section its execution time in different settings.
We define and measure the execution time per network as the
total time taken to analyze all its flows, without including the
startup time or the time taken for initializing the network data
structures. The execution times were measured on a server
with dual AMD EPYC 7542 CPU. The GNN was executed
using GPU acceleration with a Nvidia GTX 1080 Ti, while
the NC analysis is still executed on CPU. No batching was
used, i.e. the GNN analyzes one network at a time.

We first illustrate the average relative execution time of the
FP analyses against the non-FP analysis in Figure 15, namely:

Execution time FP

Execution time non-FP
(15)

This measure helps us understand the cost of using FP. In
average, DeepFP with GPU acceleration is approximately an
order of magnitude faster than PMOO-FPfoi, and almost three
orders of magnitude faster than DEBORAH-FPfoi. Taking
into account the tightness of the method illustrated earlier in
Figure 9, those results show that DeepFP is able to achieve a
good balance between tightness and computational cost.

DeepFP without GPU acceleration is approximately an
order of magnitude faster than DEBORAH-FPfoi, making it
still an appealing solution despite it’s slower execution time.
In the case of PMOO-FPfoi, DeepFP is actually slower than
the exhaustive analysis.

101 102 103

DeepFP (GPU)
DeepFP2 (GPU)
DeepFP4 (GPU)
DeepFP (CPU)

DeepFP2 (CPU)
DeepFP4 (CPU)

RND
RND2
RND4
RND8

RND16
Exhaustive FP

Runtime ratio vs. PMOO
101 102 103

Runtime ratio vs. DEBORAH

Figure 15: Average relative execution time of different analy-
ses

Second, we evaluate the execution time of the GNN in
comparison to the total execution time of the analysis. We
use the following measure:

Execution time GNN

Total execution time (GNN +NC)
(16)

Results are presented in Figure 16. When taking advantage
of the GPU acceleration, the GNN prediction takes 17.2 % in
average of the analysis for PMOO-DeepFPfoi, and 2.46 % in
average for DEBORAH-DeepFPfoi.

Without GPU acceleration, the GNN prediction takes 91.4 %
in average of the analysis for PMOO-DeepFPfoi, and 64.3 %
in average for DEBORAH-DeepFPfoi. From Figures 9 and 16,
we conclude that DeepFP is mostly attractive in case GPU
acceleration is used for the GNN. Despite this drawback, we
note that various techniques may be used to speed-up neural
network inference on CPU, such as by reducing the size of
the GNN, or using mixed-precision floats.

Finally, we evaluate the execution time of the additional
enumeration of prolongation combinations used by DeepFP+.
As for the GNN part, we use the following measure:

Execution time Enum.

Total execution time (Enum.+GNN +NC)
(17)

0 20 40 60 80 100
0

25

50

75

100

PM
OO

-D
ee

pF
P fo

i
(G

PU
)

D
EB

O
RA

H
-D

ee
pF

P f
oi

(G
PU

)

PM
O

O
-D

ee
pF

P f
oi

(C
PU

)

DEB
ORAH-D

ee
pF

P foi
(C

PU
)

Relative execution time of the GNN for DeepFP (%)

CD
F

(%
)

PMOO-DeepFPfoi (GPU) PMOO-DeepFPfoi (CPU)
DEBORAH-DeepFPfoi (GPU) DEBORAH-DeepFPfoi (CPU)

Figure 16: Relative execution time of the GNN for DeepFP

Results are presented in Figure 17. In average, the enumeration
of prolongation combinations takes 7.22 % of the execu-
tion time for PMOO-DeepFP+, and 4.17 % for DEBORAH-
DeepFP+. This illustrates that the gains in tightness of
DeepFP+ can be achieved at a small computational cost.

10−2 10−1 100 101 102
0

20

40

60

80

100

PM
O

O
-D

ee
pF

P+

DEB
ORA

H-D
ee

pF
P+

Share of execution time for DeepFP+’s combinations enumeration (%)

CD
F

(%
)

PMOO-DeepFP+

DEBORAH-DeepFP+

Figure 17: Relative execution time of the GNN for DeepFP

E. Feature importance and sensitivity analysis

We perform here a sensitivity analysis of the choices of
flows prolongation of PMOO-FPfoi and DEBORAH-FPfoi to
better understand which parameters influence the decision
for the best combination. To numerically evaluate this, we
randomly modify the curve parameters poriginal with a relative
scale ε according to the following uniform distribution:

pnew ∼ U (poriginal(1− ε), poriginal(1 + ε)) (18)

We then compare the share of flows where the best combina-
tion of flows prolongation have changed due to the random
change of curves parameters.

Results are presented in Figure 18. We note that the server’s
rate has the largest impact on the choice of flows prolongation.
Arrival curve parameters also impact also the flows prolonga-
tions, but with less magnitude than the service rate. Finally,
the service latency has almost no influence on the choice of
prolongations, where even large changes of its value result
in less than a 1 % change for arbitrary multiplexing, or no
changes at all for DEBORAH-FPfoi. The service latency, in

0 0.2 0.4
0

5

10

15

Relative scale of change

Sh
ar

e
of

ch
an

ge
of

pr
ol

on
ga

tio
ns

(%
) PMOO-FPfoi

0 0.2 0.4
Relative scale of change

for DEBORAH-FPfoi

Flow burst Flow rate Server latency Server rate

Figure 18: Sensitivity analysis of the NC analyses

contrast, is an additive factor in the residual forwarding service
computation, making it considerably less impactful.

We use the permutation-based importance measure [56, 57]
in order to assess each feature’s importance for DeepFP. For
each input feature presented in Section V-C, we randomize
it by randomly permuting its values in the evaluation set, and
assess the impact it has on the relative error of the predictions.
We define the feature importance as:

delay bound gapFeature
foi − delay bound gapBaseline

foi (19)

with delay bound gapBaseline
foi corresponding to the delay

bound gap of DeepFP without column permutation.
Results are presented in Figure 19. As expected from the

sensitivity analysis, the server rate is the feature having the
largest impact on the prediction of the GNN. The other features
have almost two orders of magnitude less importance.

10-1 100 101

Flow rate
Server latency

Flow burst
Hop count
Server rate

Feature importance (%)

PMOO-DeepFPfoi

10-1 100 101

Feature importance (%)

DEBORAH-DeepFPfoi

Figure 19: Feature importance of DeepFP

VII. CONCLUSION

We introduced DeepFP in this paper, an approach for
making the NC analysis feature Flow Prolongation scale.
FP can be paired with either of the two predominant flow
multiplexing assumptions, arbitrary or FIFO, and we show
that it is most impactful when bounding the flow of interest’s
delay (compared to bounding cross-flow arrivals). As each
multiplexing assumption’s analysis must be trained differently,
we devise two analyses: PMOO-FPfoi for arbitrary multi-
plexing and DEBORAH-FPfoi for FIFO multiplexing. The
latter is based on the novel insight that FP can improve the
implementation of the PMOO property in the current LUDB
FIFO analysis and thus its tool DEBORAH. Our numerical

results show considerably tighter delay bounds of this state-
of-the-art algebraic NC FIFO analysis, the average gap to
the classic non-FP delay bound rises to 60.75 % – yet at the
expense of computational effort. DeepFP predictions solve this
problem. We achieve an average accuracy of 69.6 % (PMOO-
DeepFPfoi) and 60.9 % (DEBORAH-DeepFPfoi), resulting in
an average relative gap to PMOO-FPfoi of only 1.17 %, and
of only 2.57 % to the exhaustive DEBORAH-FPfoi in our first
dataset. When scaling to larger networks, where the existing
PMOO-FP was known to struggle with computational effort,
DeepFP still works. Without considerable loss of prediction
accuracy we gain delay bound tightness of 1.06 % compared
to standard PMOO, and 13.7 % compared to DEBORAH. In
conclusion, we show that FP can considerably tighten NC
delay bounds derived for FIFO multiplexing networks and that
the proposed GNN-based DeepFP allows to apply it to larger
networks.

APPENDIX

NETWORK CALCULUS BACKGROUND [6, 58]

A. Network Calculus System Model

NC models a network as a directed graph of connected
queueing locations, the so called server graph. A server offers a
resource, in communication networks forwarding of data, and
a buffer to queue incoming demand, the data. Data is put into
the network by flows. We assume unicast flows with a single
source server and a single sink server as well as a fixed route
between them. Flows’ forwarding demand is characterized by
functions cumulatively counting their data,

F+
0 =

{
f : R+ → R+ | f(0)=0, ∀s ≤ t : f(t)≥f(s)

}
.

(20)
Let functions A(t) ∈ F+

0 denote a flow’s data put into a
server and let A′(t) ∈ F+

0 be the flow’s data put out of, both
in the time interval [0, t). We require the input/output relation
to preserve causality by ∀t ∈ R+ : A(t) ≥ A′(t).

NC refines this model to one that uses bounding functions.
These univariate functions (called curves) are defined indepen-
dent of the start of observation, solely based on the duration of
the interval of observation. By convention, let curves be in F0

that simply extends the definition of F+
0 by ∀t ≤ 0 : f(t)=0.

Definition 1 (Arrival Curve): Given a flow with input
function A, a function α ∈ F0 is an arrival curve for A iff

∀ 0 ≤ d ≤ t : A(t)−A(t− d) ≤ α(d). (21)

Opposite to data arrivals, the forwarding service offered by
some system S is modeled with a lower bounding curve. S can
be a single server as above or – after applying transformations
from Appendix B – a combination of multiple servers.

Definition 2 (Service Curve): If the service by system S for
a given input A results in an output A′, then S offers a service
curve β ∈ F0 iff

∀t : A′(t) ≥ inf
0≤d≤t

{A(t− d) + β(d)}. (22)

Definition 3 (Strict Service Curve): System S offers a strict
service curve β to a flow if, during any busy period of duration
d, the output of the flow is at least equal to β(d) ∈ F0.

In this paper, we restrict the set of curves to affine curves
(the only type that can be used with the LUDB analysis). These
curves are suitable to model token-bucket shaped data flows
γr,b : R+ → R+ | γr,b (0)= 0, ∀

d>0
γr,b(d)= b+ r · d, r, b ≥ 0,

where b bounds the worst-case burstiness and r the arrival
rate. Secondly, rate-latency service can be modeled by affine
curves βR,T : R+ → R+ |βR,T (d) = max{0, R · (d − T)},
T ≥ 0, R > 0 where T upper bounds the service latency and
R lower bounds the forwarding rate.

B. Algebraic Network Calculus Analysis

The NC analysis aims to derive a bound on the worst-
case delay that a specific flow of interest (foi) experiences
on its path. Service curves on that path are shared by all
flows crossing the respective server yet an arrival curve is
only known at the respective flow’s source server. To derive
the foi’s end-to-end delay bound from such a model, the NC
analysis relies on (min,plus)-algebraic curve manipulations.

Definition 4 (NC Operations): The (min,plus)-algebraic
aggregation, convolution and deconvolution of two functions
f, g ∈ F0 are defined as

aggregation: (f + g) (d) = f (d) + g (d), (23)
convolution: (f ⊗ g) (d) = inf

0≤u≤d
{f(d− u) + g(u)}, (24)

deconvolution: (f � g) (d) = sup
u≥0
{f(d+ u)− g(u)}. (25)

Aggregation of arrival curves creates a single arrival curve
for their multiplex. With convolution, a tandem of servers can
be treated as a single system providing a single service curve.
Deconvolution allows to compute an arrival curve bound on
a flow’s (or flow aggregate’s) A′(t) after crossing a system.
Delay and backlog can be bounded as follows:

Theorem 3 (Performance Bounds): Consider a system S
that offers a service curve β. Assume a flow f with arrival
curve α traverses the system. Then we obtain the following
performance bounds for f :

backlog: ∀t ∈ R+ : B (t) ≤ (α� β) (0) (26)
delay: ∀t ∈ R+ : D (t) ≤ inf {d ≥ 0 | (α� β) (−d) ≤ 0}

=: h(α, β) (27)

When bounding the residual service for a flow of interest
(Theorem 1), there are some subtleties to note: the requirement
on the service curve β to be strict strongly depends on the
assumed multiplexing behavior. Arbitrary multiplexing needs
it, FIFO does not [6]. Moreover, the arbitrary multiplexing
residual service curve is not strict. In general, arbitrary multi-
plexing results are bounding those of any other multiplexing
assumption. Compared to FIFO, we see that the residual
service curves are equal for θ = 0, but for any θ > 0, the FIFO
multiplexing can potentially give considerably more residual
forwarding service.

ACKNOWLEDGMENTS The authors would like to thank the
anonymous shepherd for the feedback and support.

REFERENCES

[1] F. Geyer and G. Carle, “Network engineering for real-time
networks: comparison of automotive and aeronautic industries
approaches,” IEEE Commun. Mag., vol. 54, no. 2, pp. 106–112,
2016.

[2] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth,
F. Golatowski, D. Timmermann, and J. Schacht, “Survey on
real-time communication via Ethernet in industrial automation
environments,” in Proc. of IEEE ETFA, 2014.

[3] S. Bondorf and F. Geyer, “Generalizing network calculus anal-
ysis to derive performance guarantees for multicast flows,” in
Proc. of EAI ValueTools, 2016.

[4] A. Amari and A. Mifdaoui, “Worst-case timing analysis of ring
networks with cyclic dependencies using network calculus,” in
Proc. of IEEE RTCSA, 2017.

[5] L. Thomas, J.-Y. Le Boudec, and A. Mifdaoui, “On cyclic
dependencies and regulators in time-sensitive networks,” in
Proc. of IEEE RTSS, 2019.

[6] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet. Springer-
Verlag, 2001.

[7] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving
performance bounds in feed-forward networks by paying mul-
tiplexing only once,” in Proc. of GI/ITG MMB, 2008.

[8] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under
arbitrary multiplexing: When network calculus leaves you in the
lurch. . . ,” in Proc. of IEEE INFOCOM, 2008.

[9] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost
of deterministic network calculus – design and evaluation of an
accurate and fast analysis,” Proc. ACM Meas. Anal. Comput.
Syst. (POMACS), vol. 1, no. 1, pp. 16:1–16:34, 2017.

[10] M. Boyer, A. Graillat, B. Dupont de Dinechin, and J. Migge,
“Bounding the delays of the MPPA network-on-chip with net-
work calculus: Models and benchmarks,” Performance Evalua-
tion, vol. 143, 2020.

[11] S. Bondorf, “Better bounds by worse assumptions – improving
network calculus accuracy by adding pessimism to the network
model,” in Proc. of IEEE ICC, 2017.

[12] P. Nikolaus and J. Schmitt, “Improving delay bounds in the sto-
chastic network calculus by using less stochastic inequalities,”
in Proc. of EAI ValueTools, 2020.

[13] F. Geyer and S. Bondorf, “DeepTMA: Predicting effective
contention models for network calculus using graph neural
networks,” in Proc. of IEEE INFOCOM, 2019.

[14] ——, “On the robustness of deep learning-predicted contention
models for network calculus,” in Proc. of IEEE ISCC, 2020.

[15] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea, “Estimating the
worst-case delay in FIFO tandems using network calculus,” in
Proc. of ICST ValueTools, 2008.

[16] ——, “Numerical analysis of worst-case end-to-end delay
bounds in FIFO tandem networks,” Real-Time Systems, vol. 48,
no. 5, pp. 527–569, 2012.

[17] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus
for scheduling hard real-time systems,” in Proc. of ISCAS, 2000.

[18] A. Bouillard, L. Jouhet, and É. Thierry, “Service curves in
network calculus: dos and don’ts,” INRIA, Tech. Rep. RR-7094,
2009.

[19] N. Guan and W. Yi, “Finitary real-time calculus: Efficient
performance analysis of distributed embedded systems,” in
Proc. of IEEE RTSS, 2013.

[20] Y. Tang, N. Guan, W. Liu, L. T. X. Phan, and W. Yi, “Revisiting
GPC and AND connector in real-time calculus,” in Proc. of
IEEE RTSS, 2017.

[21] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi,
“Generalized finitary real-time calculus,” in Proc. of IEEE
INFOCOM, 2017.

[22] Y. Tang, Y. Jiang, X. Jiang, and N. Guan, “Pay-burst-only-once
in real-time calculus,” in Proc. of IEEE RTCSA, 2019.

[23] M. Fidler and V. Sander, “A parameter based admission con-
trol for differentiated services networks,” Computer Networks,
vol. 44, no. 4, pp. 463–479, 2004.

[24] A. Bouillard and G. Stea, “Exact worst-case delay for FIFO-
multiplexing tandems,” in Proc. of EAI ValueTools, 2012.

[25] ——, “Exact worst-case delay in FIFO-multiplexing feed-
forward networks,” IEEE/ACM Trans. Net., vol. 23, no. 5, pp.
1387–1400, 2015.

[26] A. Bouillard, “Trade-off between accuracy and tractability of
network calculus in FIFO networks,” 2020, arxiv:2010.09263.

[27] S. Bondorf and F. Geyer, “Virtual cross-flow detouring in
the deterministic network calculus analysis,” in Proc. of IFIP
Networking, 2020.

[28] M. Gori, G. Monfardini, and F. Scarselli, “A new model for
learning in graph domains,” in Proc. of IEEE IJCNN, 2005.

[29] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE Trans.
Neural Netw., vol. 20, no. 1, pp. 61–80, 2009.

[30] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. San-
toro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learning, and
graph networks,” 2018, arxiv:1806.01261.

[31] M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y.
Vardi, “Learning to solve NP-complete problems: A graph
neural network for decision TSP,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 4731–
4738.

[32] F. Wang, Z. Cao, L. Tan, and H. Zong, “Survey on learning-
based formal methods: Taxonomy, applications and possible
future directions,” IEEE Access, vol. 8, pp. 108 561–108 578,
2020.

[33] K. Rusek and P. Cholda, “Message-passing neural networks
learn Little’s law,” IEEE Commun. Lett., 2018.

[34] F. Geyer, “Performance evaluation of network topologies using
graph-based deep learning,” in Proc. of EAI ValueTools, 2017.

[35] ——, “DeepComNet: Performance evaluation of network
topologies using graph-based deep learning,” Performance Eval-
uation, 2018.

[36] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and
A. Cabellos-Aparicio, “RouteNet: Leveraging graph neural net-
works for network modeling and optimization in SDN,” vol. 38,
no. 10, pp. 2260–2270, 2020.

[37] T. Suzuki, Y. Yasuda, R. Nakamura, and H. Ohsaki, “On
estimating communication delays using graph convolutional
networks with semi-supervised learning,” in Proc. of IEEE
ICOIN, 2020.

[38] T. L. Mai and N. Navet, “Deep learning to predict the feasibility
of priority-based Ethernet network configurations,” University
of Luxembourg, Tech. Rep., 2020.

[39] F. Geyer and S. Bondorf, “Graph-based deep learning for fast
and tight network calculus analyses,” IEEE Transactions on
Network Science and Engineering, 2020.

[40] R. L. Cruz, “SCED+: Efficient management of quality of service
guarantees,” in Proc. of IEEE INFOCOM, 1998.

[41] S. Bondorf and J. B. Schmitt, “Should network calculus relo-
cate? an assessment of current algebraic and optimization-based
analyses,” in Proc. of QEST, 2016.

[42] L. Lenzini, E. Mingozzi, and G. Stea, “Delay bounds for FIFO
aggregates: A case study,” Comput. Commun., vol. 28, no. 3,

pp. 287––299, Feb. 2005.
[43] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea, “DEBORAH:

A tool for worst-case analysis of FIFO tandems,” in Proc. of
ISoLA, 2010.

[44] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a com-
prehensive tool for deterministic network calculus,” in Proc. of
EAI ValueTools, 2014.

[45] ——, “Calculating accurate end-to-end delay bounds – you
better know your cross-traffic,” in Proc. of EAI ValueTools,
2015.

[46] R. L. Cruz, “A calculus for network delay, part I: Network
elements in isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1,
pp. 114–131, 1991.

[47] B. Zhou, I. Howenstine, S. Limprapaipong, and L. Cheng, “A
survey on network calculus tools for network infrastructure in
real-time systems,” IEEE Access, vol. 8, 2020.

[48] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,” in Proc.
of NIPS, 2017.

[49] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in Proc. of ICLR, 2016.

[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” in Proc. of ICLR,
2018.

[51] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine

translation,” in Proc. of EMNLP, 2014.
[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An imperative style, high-performance deep learning library,” in
Proc. of NeurIPS, 2019.

[53] M. Fey and J. E. Lenssen, “Fast graph representation learning
with PyTorch Geometric,” in Proc. of ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019.

[54] A. Guzman-Rivera, D. Batra, and P. Kohli, “Multiple choice
learning: Learning to produce multiple structured outputs,” in
Proc. of NIPS, 2012.

[55] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization
with graph convolutional networks and guided tree search,” in
Proc. of NIPS, 2018.

[56] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, 2001.

[57] A. Fisher, C. Rudin, and F. Dominici, “All models are wrong,
but many are useful: Learning a variable’s importance by
studying an entire class of prediction models simultaneously,”
Journal of Machine Learning Research, vol. 20, no. 177, pp.
1–81, 2019.

[58] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic
Network Calculus: From Theory to Practical Implementation.
John Wiley & Sons, Ltd, 2018.

