
1

Graph-based Deep Learning for Fast and Tight
Network Calculus Analyses

Fabien Geyer and Steffen Bondorf

Abstract—Network Calculus (NC) computes end-to-end delay bounds for individual data flows in networks of aggregate schedulers. It
searches for the best model bounding resource contention between these flows at each scheduler. The literature proposes different
analyses to consider realistic behavior of networked system such as multiplexing and contention between flows in consecutive queues
even though there is no knowledge on the multiplexing discipline employed by the crossed systems (arbitrary multiplexing property).
Bounding delays in entire feed-forward networks needs to keep track of such behavior. Moreover, not a single of the existing fast NC
heuristics that are based on an algebraic analysis is strictly best. An exhaustive search for the best combination of analyses, i.e.,
contention modeling, was proposed with the Tandem Matching Analysis (TMA). Additional measures made it scale best among the NC
analyses, yet bounding delays may still require several hours of computation time. In this paper, we demonstrate the ability to couple
graph-based neural networks with NC by extending TMA with a prediction mechanism replacing the exhaustive search. We propose a
framework that learns from NC’s TMA, predicts best contention models and feeds them back to TMA where the according NC
computations are executed. We achieve provably valid bounds that are very competitive with the exhaustive TMA. We observe a
maximum relative error to TMA below 12 %, while execution times remain nearly constant and outperform TMA in differently sized
networks by several orders of magnitude.

Index Terms—Deep Learning, Network Calculus.

F

1 INTRODUCTION

D ETERMINISTIC performance bounds have seen many
applications in modern systems and a wide range

of network calculus-based solutions have been proposed.
Network Calculus (NC) can be applied to ensure deadlines
in networks for x-by-wire applications [1] as well as SDN-
enabled networks [2], for safety-critical production sys-
tems [3], or both of these [4]. Moreover, NC solutions have
been proposed for highly dynamic environments. E.g., ad-
mission control in self-modeling sensor networks [5] or sys-
tems providing customers with service level agreements [6]
for, among others, storage access [7]. Other recent examples
where dynamic events may often cause changes are cache
networks [8] and cloud computing [9]. These areas benefit
from fast computations of tight performance bounds. The
literature provides one-shot analyses for topology-agnostic
bounds [10] or bounds that hold for the specification’s worst
case [4]. Yet, these attempts are ultimately paid for with
wasted resources. Our approach aims for highest quality of
bounds as well as providing a fast analysis that considers
all details of the analyzed network1.

1.1 Problem Overview
In network calculus, a network needs to be modeled by
servers (e.g., queues or packet schedulers) whose forward-
ing capabilities for can be lower bounded. They guarantee
an output for their aggregate input of data. Individual data

• F. Geyer is with Technical University of Munich and Airbus Central Re-
search and Technology, Munich, Germany (email: fabien.geyer@tum.de).

• S. Bondorf is with Ruhr University Bochum, Faculty of Mathematics,
Bochum, Germany (email: steffen.bondorf@rub.de).

1. A first version of this work was presented at the 2019 IEEE Inter-
national Conference on Computer Communications (INFOCOM) [11].

flows traverse sequences of servers where they compete
for the forwarding resources with other flows. We do not
assume any knowledge about the way data of distinct flows
is multiplexed into shared queues at common servers. In
NC, this is called arbitrary (or blind) multiplexing. We only
assume that the FIFO order of data within individual flows
is retained when being multiplexed and forwarded. The
data put into a network by a flow is upper bounded in the
NC model. This model enables NC to compute deterministic
delay bounds.

The NC analysis will compute a bound on an indi-
vidual flow’s end-to-end delay based on such a model.
The analyzed flow is commonly known as flow of interest
(foi). Under the assumption that no knowledge about the
multiplexing of flows is available, the NC analysis must
find an internal model of flow contention that a) bounds
the realistic system’s worst-case behavior in the foi’s point
of view without adding too much pessimism and b) can be
solved with the capabilities of the available NC analyses.
The set of available analyses has been steadily extended in
order to capture different features of the modeled network
for tightening the derived delay bounds [12, 13, 14, 15].
These alternatives are all proven to result in valid delay
bounds for the foi. But among the analyses that can be
derived in an algebraic fashion, there is not a single-best
one that expresses the realistic worst-case contention model
without adding pessimism in some other regard, not even
on a tandem of two servers crossed by two flows [16]. Most
importantly for our work, we inherit the restriction to a
specific shape of curves bounding arrivals and forwarding
from [15]: arrivals must be upper-bounded by the minimum
of several token-bucket constraints and forwarding service
must be lower-bounded by the maximum of several rate-

2

latency constraints. This is, however, a constraint commonly
found in a multitude of other NC analyses, too [16, 17, 18].

All the worse for NC, such an algebraic analysis needs
to bound the impact of resource contention by transforming
the flows’ bounding curves between their respective source
to the location of contention with the analyzed foi. Curve
transformations thus require to backtrack all cross-flows,
either in aggregate or separated by worst-case priority
assumptions. Different contention models require different
flow aggregation/separation assumptions and the resulting
structures expressing dependencies of algebraic NC opera-
tions become unique. I.e., they all need to be computed.

It was shown that it is possible to exhaustively derive all
dependency structures and rank each contention model on
each tandem occurring in a network analysis. This is known
as the Tandem Matching Analysis (TMA) [19]. It achieves
high degrees of delay bound tightness by enumerating all
contention models upstream from the foi. Thus, the best
model for a downstream location and flow can be found.
TMA provides a recursive algorithm whose execution time
can exceed several hours, e.g., when analyzing networks
with >1000 servers and four times as many flows.

In this article, we present the deep-learning assisted
TMA, DeepTMA, that predicts the best contention model
with high efficacy, resulting in a high degree of delay
bound tightness. Single backtrackings have been attempted
before [14, 15], yet, we are the first to achieve considerably
faster execution times than TMA without considerably com-
promising on delay bound tightness.

1.2 Contributions

While we focus our evaluations on the novel DeepTMA
heuristic for NC’s TMA, we contribute an entire underlying
framework that combines the theories of NC [14] and a
graph-based deep learning, namely Graph Neural Networks
(GNNs) [20], as well as two of their tools [21, 22]. We assume
here feed-forward networks with rate-latency and arbitrary-
multiplexing servers, and rate-latency constrained flows,
but our approach may be extend to more complex use-cases.
DeepTMA achieves the following properties:

Deterministic bounds: We learn from NC and feed predic-
tions back to NC. We predict the best choices for decisions
made during the TMA analyses. NC stays in control and
guarantees provably correct bounds.

Our framework does not learn to predict a delay bound
but it predicts the most important decisions within the
TMA analysis, the contention models. Compared to directly
predicting a flow’s delay bound, our approach always guar-
antees for a valid worst-case bound as we continue to apply
the proven NC operations in their valid orders.

Fast execution times and high tightness: Recent work [23]
about the benefit of technical upscaling showed that TMA
cannot be parallelized easily and a speedup of only one
order of magnitude was observed. We provide an advance-
ment that improves the execution times of the analysis by
multiple order of magnitude.

Limited impact of mismatches between training and applica-
tion: Naturally, we only train our machine learning part once
before using its predictions in DeepTMA. While we chose
a reasonably large range of parameters for the involved

curve descriptions to learn from, our dataset needs to be
restricted in some dimensions. Immediately noticeable is the
type of network topologies. We use tandem, sink-tree and
random networks for training. An evalutation of the original
DeepTMA’s performance when applied to other topologies
is presented in [24], with a short excerpt in this article.

During the NC network analysis, only one delay bound
will be computed – the one for the analyzed flow. The
remaining computational effort stems from so-called arrival
bounding, the computation of bounds on flow (aggregate)
arrivals inside the network. The original DeepTMA was
only trained for and applied to minimizing the one delay
bound. In this article, we provide an evolution of DeepTMA
for arrival bounding while preventing the instantiation and
integration of a second, differently trained neural network.

1.3 Outline
The remainder of the article is organized as follows: Sec-
tion 2 presents the related work on our research direction
for network calculus and graph neural networks. Section 3
presents the theory behind our approach in more detail and
Section 4 presents our theoretical contribution on combining
both areas. In Section 5 we present the combination of tools
as well as the generation of a dataset to learn from. Sec-
tion 6 provides new machine learning-based NC heuristics
to benchmark DeepTMA against. These numerical bench-
marks are presented in Section 7, followed by observations
about the deep learning-based NC heuristics in Section 8.
Section 9 concludes our work.

2 RELATED WORK

A recent survey [25] about existing applications of machine
learning to formal verification shows that this combina-
tion can accelerate formal methods, e.g., theorem proving,
model-checking, Boolean satisfiability problems (SAT) or
satisfiability modulo theories (SMT) problems. As we show,
NC has been combined with other methods, too. So have
GNNs with formal verification. Yet, we are the first to com-
bine both TMA and GNN into a framework for deterministic
performance analysis.

2.1 NC Combined with Other Methodologies
The (min,+)-algebraic NC provides deterministic modeling
and analysis techniques. It has seen various efforts to extend
NC’s capabilities. For instance, the underlying (min,+) alge-
bra can be exchanged for (min,×) for fading channel analy-
sis [26] or for (max,+) to better fit discrete event systems [27].
Moreover, a common model for NC and event stream theory
has been developed [28] and state-based system modeling
can be integrated by pairing NC with timed automata [29].

Stochastic extensions to NC were proposed early to
deal with, e.g., traffic arrivals following a distribution that
cannot be bounded deterministically by an arrival curve.
For instance, Boole or martingale inequalities can be ap-
plied [30, 31, 32]. This branch of NC was also extended
to include statistics and statistical uncertainty to obtain
stochastic results [33, 34].

NC has been used to describe component models com-
monly found in real-time systems [35]. Delay bounds can

3

then be derived from a combination of component char-
acteristics and the network calculus model. For example,
knowledge about the busy period of a greedy process-
ing component has been used to speed up NC computa-
tions [36, 37, 38].

An optimization formulation has been derived from
the NC model that computes tight bounds in networks
without assumptions on the multiplexing of flows [17].
It first derives the dependencies between busy periods of
servers in order to partially order the mutual impact of
flows. The tight analysis requires to expand this order to
all compatible total orders. There are several algorithms
to solve this challenge. As shown in [19], the resulting
amount of total orders and therefore linear programs (LP)
to solve can quickly becoming prohibitive. [17] proposes
a heuristic that skips the expansion step and still derives
valid bounds. Its computational demand was numerically
evaluated in [19].

Recent works use machine learning to estimate service
curves from measurements [39] or to derive traffic charac-
teristics for performing dynamic resource provisioning [40].
In contrast to our work, this interfacing via service curves
cannot compute provably correct bounds on the worst-case
flow delays due to uncontrollable uncertainties introduced
by measurements and machine learning.

2.2 Deep Learning for Graphs and Formal Verification
GNNs were first introduced in [20, 41], a concept sub-
sequently refined in recent works. Gated Graph Neural
Networks (GGNNs) [42] extended this architecture with
modern practices by using Gated Recurrent Unit (GRU)
memory units [43]. Message-passing neural network were
introduced in [44], with the goal of unifying various GNN
and graph convolutional concepts. [45] formalized graph
attention networks, which enables to learn edge weights
of a node neighborhood. Finally, [46] introduced the graph
networks (GN) framework, a unified formalization of many
concepts applied in GNNs.

These concepts were applied to many domains where
problems can be modeled as graphs: chemistry with
molecule analysis [47, 44], solving the traveling sales-
man problem [48], prediction of satisfiability of SAT prob-
lems [49], or basic logical reasoning tasks and program
verification [42]. For computer networks, they have recently
been applied to prediction of average queuing delay [50]
and different non-NC-based performance evaluations of
networks [22, 51, 52, 53]. In the realm of NC, there is surpris-
ingly little work as of yet. Predating DeepTMA [11] we base
our work on, there is an effort to predict the delay bound
computed by different NC analyses by using GNNs. Each
of these analyses only considers a pre-defined contention
model whenever there are alternatives for a tandem. The
prediction is then used to only execute the most promising
analysis [54].

3 BACKGROUND

3.1 Overview of Graph Neural Networks
In this section, we detail the neural network architecture
used for training neural networks on graphs, namely the
family of architectures based on GNNs [20, 41].

Let G = (V, E) be an undirected graph with nodes v ∈ V
and edges (v, u) ∈ E . Let iv ∈ Rn and ov ∈ Rm represent
respectively the input features (e.g. node type, service or
arrival curve parameters) and output values for node v (e.g.
decision for the NC analysis). The concept behind GNNs
is called message passing, where so-called hidden represen-
tations of nodes hv ∈ Rk are iteratively passed between
neighboring nodes. Those hidden representations are prop-
agated throughout the graph using multiple iterations until
a fixed point is found or after a fixed number of iterations.
The final hidden representation is then used for predicting
properties about nodes. This concept can be formalized as:

h(t)
v = aggr

({
h(t−1)
u

∣∣∣ u ∈ NBR(v)
})

(1)

ov = out
(
h(t→∞)
v

)
(2)

h(t=0)
v = init (iv) (3)

with h
(t)
v representing the hidden representation of node v

at iteration t, aggr a function which aggregates the set of
hidden representations of the neighboring nodes NBR(v) of
v, out a function transforming the final hidden representa-
tion to the target values, and init a function for initializing
the hidden representations based on the input features.

The concrete implementations of the aggr and out func-
tions are feed-forward neural networks (FFNN), with the
addition that aggr is the sum of per-edge terms [41], such
that:

h(t)
v = aggr

({
h
(t−1)
NBR(v)

})
= f

 ∑

u∈NBR(v)

h(t−1)
u

 (4)

with f a FFNN. For init , a one-layer FFNN is used to fit the
input features to the dimensions of the hidden representa-
tions.

Gated Graph Neural Networks (GGNN) [42] were re-
cently proposed as an extension of GNNs to improve their
training. This extension implements f using a memory
unit called Gated Recurrent Unit (GRU) [43] and unrolls
Equation (1) for a fixed number of iterations. This simple
transformation allows for commonly found architectures
and training algorithms for standard FFNNs as applied in
computer vision or natural language processing. The neural
network architecture is illustrated in Figure 1.

h(0)
1
...

h(0)
n

Gated
Recurrent

Unit

h(t)
1
...

h(t)
n

 A

h(T)
1
...

h(T)
n

Feed-Forward
Neural

Network

o1
...

on

Figure 1: Gated Graph Neural Network architecture.

Formally, the propagation of the hidden representations
H(t) among neighboring nodes for one time-step is formu-

4

lated as:

H(t) =
[
h
(t)
1 , . . . ,h

(t)
|V|

]
(5)

x(t) = H(t−1)A+ ba (6)

z(t) = σ
(
Wzx

(t) +UzH
(t−1) + bz

)
(7)

r(t) = σ
(
Wrx

(t) +UrH
(t−1) + br

)
(8)

H̃(t) = tanh
(
Wx(t) +U

(
r(t) �H(t−1)

)
+ b

)
(9)

H(t) =
(
1− z(t)

)
�H(t−1) + z(t)v � H̃(t) (10)

where σ(x) = 1/(1 + e−x) is the logistic sigmoid func-
tion and � is the element-wise matrix multiplication.
Wz,Wr,W and Uz,Ur,U are trainable weight matrices,
and ba,br,bz,b are trainable bias vectors. A ∈ R|V|×|V| is
the adjacency matrix, determining the edges in the graph G.

Equation (6) corresponds to one time-step of the propa-
gation of the hidden representation of neighboring nodes to
node v, as formulated previously for GNNs in Equations (1)
and (4). Equations (7) to (10) correspond to the mathematical
formulation of a GRU cell [43], with Equation (7) represent-
ing the GRU reset gate vector, Equation (8) the GRU update
gate vector, and Equation (10) the GRU output.

In order to propagate the hidden representations
throughout the complete graph, a fixed number of iterations
of Equations (7) to (10) are performed. This extension has
been shown to outperform standard GNN which require to
run the recursion until a fixed point is found.

We also extended our neural network architecture with
an edge attention mechanism similar to the one proposed
in [45]. Thus, the neural network can give preference to
some neighbors over other ones via a trained function. For
each edge (v, u) in the graph, we define a weight parameter
ρ
(t)
v,u depending on the concatenation of h(t)

v and h
(t)
u :

ρ(t)v,u = σ
(
Wa

{
h(t)
v ,h(t)

u

}
+ ba

)
(11)

with trainable weights Wa and bias parameters ba. Equa-
tion (4) can then be rewritten as

h(t)
v =

∑

u∈NBR(v)

ρ(t−1)v,u f
(
h(t−1)
u

)
. (12)

3.2 Network Calculus

The NC model of a network is a directed graph called server
graph GNC = (VNC , ENC ,F) with servers s ∈ VNC , edges
(v, u) ∈ ENC and data flows f ∈ F . Servers represent the
forwarding locations in a network, e.g., queues or packet
schedulers. They guarantee a lower bound on data forward-
ing and thus an output quantity given an input quantity
of data. Flows travel along directed edges, crossing servers
and demanding their forwarding service. I.e., they define
the input quantity of servers. NC models this with an upper
bound on the flow’s data arrivals valid in any duration of
time. Figure 2 shows a server graph, a tandem.
Definition 1 (Tandem of Servers). A server graph T =

(VNC , ENC ,F) is called a tandem if the following prop-
erties hold: |ENC | = |VNC | − 1. For any server s ∈ VNC ,
let in(s) be the amount of directed edges ending in
server s and out(s) be the amount of edges starting in

s. On a tandem, it holds ∀s ∈ VNC | max(in(s)) =
min(1,max(out(s))) = 1.

s1 s2 s3 s4
f1

f2 f3

f4

Figure 2: Server Graph Model in NC.

In this paper, we put some additional assumptions on
the NC model:
• There cannot be cyclic dependencies between flows.

This is achieved by a restriction to feed-forward net-
works such as the tandem network of Figure 2. Any
network can be converted to a feed-forward one [55].

• When multiple flows multiplex at a server, e.g., f1, f2
and f4 at s1 in Figure 2, we do not know the resulting
order of their data. This is called arbitrary multiplexing.

• However, we assume that the order of data within a sin-
gle flow will not change by multiplexing or forwarding.

• Flows are routed along point-to-point paths.
• The NC curves that bound data arrivals and forward-

ing capabilities are restricted to certain shapes: the
minimum over multiple token buckets (like IntServ’s
TSPEC) and the maximum over multiple rate latencies,
respectively. Details can be found in [16, 17, 18].

A network calculus analysis takes such a model as the
input and computes a bound on a specific flow’s end-to-end
delay – as close to the realistic worst case as possible – with
the least computational effort possible. The analyzed flow is
called flow of interest (foi) and the set of tandem analyses
has been steadily extended in order to improve tightness
of the foi’s delay bound. Two leaps have been taken by
incorporating the Pay Bursts Only Once (PBOO) [14] and the
Pay Multiplexing Only Once (PMOO) [15] properties into
the NC analysis. Both mitigate previously added pessimism
not found in a realistic system but required by the analysis.
PBOO prevents the bound on the foi’s worst-case burstiness
to appear multiple times in the analysis as if it built up
at every server – an unrealistic contention model. PMOO
extends this to the burstiness of cross-traffic present on con-
secutive servers on the foi’s path. In NC’s interpretation as
term rewriting [56], these two analyses are reduction rules.
Their central means of transforming tandems is cutting.

Definition 2 (Cutting NC Tandems). Given a tandem T =
(VNC , ENC ,F) and a NC analysis A, a cut marks edge
e ∈ ENC such that A will analyze T as a sequence
of sub-tandems 〈Tl, Tr〉 where Tl holds all the model
information to the left of e and Tr that to the right of
e. A cutting (also called combination of cuts) is a set of
cuts on T .

Visually, the analyses implementing PBOO (Seperate
Flow Analysis, SFA [14]) and PMOO (PMOO analysis,
PMOOA [15]) proceed as depicted in Figure 3a and 3b:

All Cuts (Figure 3a): SFA cuts every edge in the NC
model along with the flows crossing it (except the foi f1).
The resulting sub-tandems are demarcated with 〈·〉 and
consist of single servers. For the cut flows, their arrivals at

5

the subsequent server need to be bounded (we denoted the
respective location with f ′i). Such a flow’s bound consists
of its initial – given burstiness – bound plus the worst-case
increase due to having crossed the previous servers.

No Cuts (Figure 3b): Without cuts, the entire tandem is
analyzed at once. Mitigating the need for deriving bounds
on flow arrivals in the network allows for achieving the
PMOO property in addition to PBOO. For details on how
to implement a no-cuts analysis, we refer the reader to [15].

〈s1〉 〈s2〉 〈s3〉 〈s4〉f1

f2 f3 f ′3

f4 f ′4 f ′′4

(a) All Cuts achieves the PBOO property.

〈s1, s2, s3, s4〉f1

f2
f3

f4

(b) No Cuts achieves the PMOO property.

Figure 3: Reduction rules in the NC analysis.

The two reduction rules are part of the algebraic NC
analysis branch. It was discovered that the algebraic analysis
pays for its ability to apply the no-cuts reduction with the
loss of server order information. As a consequence, neither
of the reduction rules are generally resulting in a tighter
delay bound than the other one. Therefore, the optimization-
based NC analysis branch was proposed [16]. Later, a tight
optimization analysis was developed [17], along with a
heuristic that promises better scalability with increasing
network size. In [19], it was shown that said heuristic may
not scale well and that it is rivaled by algebraic NC in
terms of delay bound tightness, too. The so-called Tandem
Matching Analysis (TMA) we base our work on partially
overcomes the computational effort challenges imposed by
the exhaustive search over all combinations of the reduction
rules above. See Figure 4 for two alternative rules to all cuts
and no cuts. With DeepTMA, we make the approach scale
even better by predicting the best tandem matching, i.e.,
combination of cuts, instead of exhaustively searching for it.

〈s1, s2〉 〈s3〉 〈s4〉f1

f2 f3 f ′3

f4 f ′4

〈s1〉 〈s2, s3〉 〈s4〉f1

f2 f3 f ′3

f4 f ′4

Figure 4: Some additional reduction rules applied by TMA.

4 GRAPH NEURAL NETWORK FOR NC
We develop our DeepTMA heuristic in this section. It is
based on the concept of GNN introduced in earlier. The goal

of DeepTMA is to predict the best tandem decompositions,
i.e., combinations of cuts, to use in TMA. For simplicity, we
refer to NC server graphs as networks and to the graph
model used in GNN as graphs.

The main intuition is to transform the NC server graph
and flows into an undirected graph. This graph representa-
tion is then used as input for a neural network architecture
able to process general graphs, which will then predict the
tandem decomposition resulting in the best residual service
curves. Our approach is illustrated in Figure 5. Since the
delay bounds are still computed using the formal network
calculus analysis, they inherit their provable correctness.

Network of servers
and flows

Network Calculus
TMA Analysis

Graph Transformation
and Neural Network

End-to-End
Latencies

Cuts Recommendation
Training
Points

Figure 5: Overview of the proposed approach.

4.1 Application to TMA

In order to apply the concepts described in Section 3.1
to a network calculus analysis, we model NC’s directed
network as an undirected graph. Figure 6 illustrates this
graph encoding on the network from Figure 2.

s1 s2 s3 s4

f1

f2 f3f4

Path
orderingCut

Figure 6: Transformed network of Figure 2 to the graph
model.

Each server is represented as a node in the graph, with
edges corresponding to the network’s links. Each flow is
represented as a node in the graph, too. In order to encode
the path taken by a flow in this graph, we use edges to
connect the flow to the servers it traverses. Since those
edges do not encode the order in which those servers are
traversed, so-called path ordering nodes containing the hop
count as feature are added to edges between the flow node
and the traversed server nodes. This property is especially
important in the TMA since the order, and hence position
of cuts, has a large impact on dependency structures. In
order to represent these TMA cuts, each potential cut be-
tween pairs of servers on the path traversed by the flow is
represented as a node. This cut node is connected via edges
to the flow and to the pair of servers it is associated to.

In addition to a categorical encoding of the node type
(i.e., server, flow, path ordering or cut), the input features of
each node in the graph are as follows:

6

• For each server s, parameters of its rate-latency service
curve βs(d) = max {0, rates · d− latencys} are used:
[rates, latencys]

• For each flow f , parameters of its token-bucket arrival
curve αf (d) = {ratef · d+ burstf}{d>0} (i.e., αf (d) =

0 for d ≤ 0) are used: [ratef , burstf]
• For each path ordering p, the hop count is encoded as

an integer: PathOrder
• Finally, neither cut nodes nor edges have input features

Equation (13) illustrates the matrix encoding of part of the
graph from Figure 6.

Se
rv

er

Fl
ow

Pa
th

O
rd

er

C
ut

S.
R

at
e

S.
La

te
nc

y

F.
R

at
e

F.
Bu

rs
t

H
op

co
un

t

1 0 0 0 Rsi Lsi 0 0 0 si
0 1 0 0 0 0 rfk bfk 0 fk
0 0 1 0 0 0 0 0 1 Pf1,s1

0 0 1 0 0 0 0 0 2 Pf1,s2

0 0 1 0 0 0 0 0 3 Pf1,s3

0 0 1 0 0 0 0 0 4 Pf1,s4

0 0 0 1 0 0 0 0 0 Cfk
si,sj

(13)

Note, that the above restriction to (single) rate-latency
curves for the service capabilities and (single) token-bucket
curves for arrival constraints is not a restriction of our
DeepTMA analysis. It is trivial to extend input features to
the larger set of curve parameters required to model the
curve shapes mentioned in Section 3.2.

Based on this description of the server graph, the prob-
lem of choosing the best tandem decomposition to give to
the NC analysis is formulated as a classification problem.
Namely each cut node has to be classified in two classes:
perform a cut between the pair of servers it is connected
to or not: [cut , cut]. The binary cross-entropy loss function
is used during training for this classification problem. The
other nodes of the graph are masked from the loss function.

The overall prediction to be fed back, i.e., the selection of
one out of TMA’s potential decompositions for a given foi’s
path, is defined by the set of all cut classifications for this
path. The prediction of the best decomposition for a given
tandem, starting with the foi’s path, is done by iterating
over all potential cuts and selecting the ones which have
been classified as cutting points for said tandem.

4.2 Best Contention Models Across the Entire Analysis
Figures 3 and 4 in Section 3.2 already show the need for
arrival bounding on the foi’s path – see flow labels f ′i and
f ′′i . Moreover, our sample tandem assumes that bounds on
flow arrivals are known when entering the tandem. This
need not be the case in a feed-forward network where cross-
flows traversed multiple servers before interfering with the
flow of interest. Therefore cross-flow arrivals are required to
be computed here, too. Bounding the arrivals of cross-traffic
becomes a resource intensive, recursive procedure [57, 5]. It
starts with the foi and it only terminates in feed-forward
networks when all cross-flows are backtracked to their
sources. The procedure is visualized in Figure 7.

Applying the exhaustive TMA in every recursion level
(i.e., every cycle in Figure 7) yields large computational

Contention Model for
a Tandem of n Servers

Unique Backtracking

Arrival Curve
Transformation

Bounds on
Flow Arrivals

defines up
to 2(n−1)

definesdefines

is required
to find best

Start: Flow of interest’s path Finds tandems that
need to be analyzed

D
ep

en
de

nc
y

st
ru

ct
ur

es

Figure 7: Dependency cycle defining current NC analyses.

demands. Given a tandem of length n servers, TMA tests
all 2(n−1) combinations of cuts. Visually, TMA unwinds all
loops and branches (see dashed line) that can be taken in the
cycle. On the other hand, the minimum-cost NC analysis
can be obtained by unwinding only the bare minimum of
loops: do not take optional branches by choosing a single
contention model like PBOO (SFA) or PMOO do. With
DeepTMA, we create an alternative heuristic that is not
deciding on the cut combination in a static way. Instead,
our GNN uses a range of input features to predict the best
cut combination.

The original DeepTMA of [11] was designed to predict
the best cuts for a tandem of servers, subject to minimizing
the analyzed flow’s delay bound. However, the delay bound
is only computed in the very first iteration of Figure 7’s
loop (after “Start: Flow of interest’s path”). As seen above,
any subsequent iteration will be part of the arrival bound-
ing of cross flows. In this article, we evolve DeepTMA to
also provide delay-bound-minimizing cut combinations for
the bounding cross-traffic arrivals. Our delay-bound-based
approach has the advantage of not instantiating, training
and integrating a second GNN for the purpose of arrival
bounding. Figure 8 shows that our approach is indeed
superior in the vast amount of cases and we will apply this
DeepTMA-based arrival bounding in all our evaluations.

10−1210−1110−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

70

80

90

100

Relative difference to TMA-based AB (%)

EC
D

F
(%

)

DeepTMA-based AB PMOO-based AB PBOO-based AB

Figure 8: Comparison of arrival bounding (AB) methods on
the dataset constructed in Section 5.1.

5 IMPLEMENTATION AND DATASET GENERATION

We implemented DeepTMA and the graph neural network
architecture using PyTorch [58]. The recursion from Equa-
tion (1) was dynamically unrolled for a fixed number of
iteration according to the diameters of the analyzed graphs.
Table 1 illustrates the size of the different layers used here.

7

Layer NN Type Size

init FFNN (21, 160)w + (160)b
Memory unit GRU cell (320, 320)w + (320, 160)w + (480)b
Edge attention FFNN (320, 1)w + (2)b
out hidden layers FFNN 2× {(160, 160)w + (160)b}
out final FFNN (160, 2)w + (2)b

Total: 209 764 parameters

Table 1: Size of the layers used in the GGNN. Indexes repre-
sent respectively the weights (w) and biases (b) matrices.

We analyzed each network with the NetworkCalcu-
lus.org Deterministic Network Calculator (NCorg DNC)2

version 2.6.0 and perform the exhaustive TMA analysis to
generate the best cuts combinations. A tandem decomposi-
tion is always executed for a flow of interest. But instead of
the residual service curves, we use the delay bounds for the
foi as caused by all decompositions in order to rank them.
This is because the former potentially faces problems in the
case of lost service curve strictness.

5.1 Dataset Generation
In order to train our neural network architecture, we fol-
low a traditional supervised learning approach. We ran-
domly generated a set of random topologies according to
three different random topology generators: a) tandems or
daisy-chains like in Figure 2, b) trees and c) random server
graphs following the Erdős–Rényi model [59], then made
feed-forward with the Turn Prohibition algorithm [55]. For
each created server, a rate latency service curve was gen-
erated with rate and latency parameters taken from a uni-
form distribution. A random number of flows with random
source and sink servers was added. For each flow, a token
bucket arrival curve was generated with burst and rate
parameters taken from a uniform distribution. All curve
parameters were normalized to the (0, 1] interval. In total,
172 374 different networks were generated, with a total of
more than 13 million flows, and close to 260 million tandem
decompositions. Half of the networks were used for training
the neural network, while the other half was used for the
evaluation presented later in Section 7. Table 2 summarizes
different statistics about the generated dataset. The dataset
is available online3 to reproduce our learning results.

Parameter Min Max Mean Median

of servers 2 41 14.6 12
of flows 3 203 101.2 100
of tandem combinations 2 197 196 1508.5 384
of nodes in analyzed graph 10 2093 545.2 504
of tandem combination per flow 2 65 536 19.4 4
of flows per server 1 173 18.1 10

Table 2: Statistics about the generated dataset.

6 OTHER TMA HEURISTICS

To benchmark DeepTMA, we present three additional
heuristics for the choice of TMA’s tandem decompositions.
Compared to the GNN-based proposal, those heuristics are
based on simpler algorithms.

2. Formerly known as DiscoDNC [21], see networkcalculus.org/dnc
3. https://github.com/fabgeyer/dataset-deeptma-extension

6.1 RND: Random Choice of Tandem Decomposition
The simplest heuristic is to randomly select multiple alterna-
tive tandem decompositions, where each decomposition has
the same probability of being chosen. Given any n-server
tandem, starting with the foi’s path as shown in Figure 7,
RND only selects n′ � 2(n−1) decompositions. I.e., the
RND heuristic randomly samples a small part of TMA’s
search space per tandem in the analysis. The remainder of
the analysis follows the standard NC proceeding.

6.2 Simplified Machine Learning Heuristics
While DeepTMA is based on an approach which uses the
complete information about the server graph, we propose
here a simpler machine-learning approach which uses a
simplified view of the server graph and its features. As for
DeepTMA, this heuristic uses machine learning algorithms
in order to classify each cut in the same two classes, namely
decide to perform a cut between a pair of servers or not.

This simplified approach only uses a local view of the
network, i.e. parameters of the pair of servers between
which the cut is located, named here source and sink. For
each cut in the network, we define a feature vector com-
prised of the following values:
• FlowArrival{Rate,Burst}: the parameters of the token

bucket arrival curve of the foi;
• FlowPathLen: the path length of the foi;
• CutOrder: the index of the cut in the path of the foi;
• {Source,Sink}Service{Rate,Latency}: the parameters of the

rate-latency service curves of the pair of servers;
• {Source,Sink}SumArrival{Rate,Burst}: the sum of the pa-

rameters of the arrival curves of the flows traversing
each server of the pair;

• SourceNFlows and SinkNFlows: the number of flows at
each server of the pair.

While this simplified view of the server graph per-
forms worse than the one used DeepTMA – as show later
in Section 7 – our main motivations for this simplified
approach are simplicity and explainability of the model.
Feature importance [60, 61] is more easily performed on
such simplified feature vector than on the GNN model, as
illustrated later in Section 8.

Using those feature vectors, we propose here two heuris-
tics, one based on feed-forward neural network, and one
based on random forests. Since the output of both heuristics
is a probability of making a cut, multiple tandem decompo-
sitions can be generated using the approach presented later
in Section 6.3 and Algorithm 1.

6.2.1 FFNN: Feed-Forward Neural Network Heuristic
This heuristic uses a standard multi-layer feed-forward
neural network to classify the cuts using the simplified
feature vector presented earlier. The size and number of
hidden layers of the FFNN is detailed in Table 3. We use
standard training method based on gradient descent to train
the neural network. As for DeepTMA, our implementation
is based on PyTorch [58].

6.2.2 RFC: Random Forest Classifier Heuristic
This heuristic uses random forests [60] to classify the cuts
using the simplified feature vector presented earlier. Our
implementation of this heuristic is based on scikit-learn [62].

8

2 4 6 8 10 12 14 16

0

20

40

Path length of flow

R
el

at
iv

e
er

ro
r

to
TM

A
(%

)
RND RND2 RND4 RND8 DeepTMA

(a) Comparison against RND heuristic.

2 4 6 8 10 12 14 16

0

10

20

30

Path length of flow

R
el

at
iv

e
er

ro
r

to
TM

A
(%

)

RFC RFC2 RFC4 RFC8 DeepTMA

(b) Comparison against RFC heuristic.

2 4 6 8 10 12 14 16

0

20

40

60

80

Path length of flow

R
el

at
iv

e
er

ro
r

to
TM

A
(%

)

FFNN FFNN2 FFNN4 FFNN8 DeepTMA

(c) Comparison against FFNN heuristic.

Figure 10: Relative error of DeepTMA and the heuristics presented in Section 6.

Layer Size

input (10, 64)w + (64)b
hidden layers 2× {(64, 64)w + (64)b}
out final (64, 2)w + (2)b

Total: 9154 parameters

Table 3: Size of the layers used in the FFNN. Indexes repre-
sent respectively the weights (w) and biases (b) matrices.

6.3 Generating multiple decompositions
Given a foi and a cut, the output of the machine learning-
based heuristics presented earlier is a probability of cutting.
This probability is generated by the neural networks using
the softmax function after the last layer. In case a single
tandem decomposition has to be generated, the decision of
cutting or not is made using a threshold of 50 %.

The cut probabilities may also be used in order to
generate multiple tandem decompositions as illustrated in
Algorithm 1. In case the number of tandem decompositions
is lower than the number of requested decompositions, we
simply return all combinations of cuts. Otherwise, we sam-
ple the distribution of cuts in order to generate the decom-
positions. In Section 7, we label those extended heuristics
using n as subscript, with n the number of decompositions.

Algorithm 1 Generation of n tandem decompositions for a
flow traversing L+ 1 servers.

if n ≤ 2L then return all combinations of cuts
else

for all i := 1 to n do
v ← [c1, . . . , cL] ∼ U(0, 1)L
cutsi ← I

(
v ≤

[
Pr(cutGNN

foi,1), . . . ,Pr(cut
GNN
foi,L)

])

(I is the indicator function)
return {cuts1, . . . , cutsn}

7 NUMERICAL BENCHMARKS

We evaluate in this section DeepTMA against classical NC
analyses, TMA, and the heuristics presented above. Via a
numerical evaluation, we illustrate the tightness and execu-
tion time, and highlight the usability for practical use-cases.

Unless specified otherwise, all the evaluations presented
in this section were performed on the dataset described in
Section 5.1. In order to perform the evaluation, the dataset
was split in two parts: one part was used for training the
machine learning-based heuristics, while the second part

was used to perform the numerical evaluations presented
in this section. Additionally, DeepTMA was also evaluated
on the set of network from [19] in Section 7.2, and on the set
of networks from [11] in Section 7.4.

7.1 Relative Error
We investigate in this section the resulting loss of tightness
in case a non-optimal tandem decomposition was selected
by a given heuristic. In order to quantitatively evaluate this
loss of tightness compared to TMA, we use the relative error,
defined as:

RelErr foi = (delayheuristic
foi − delayTMA

foi)/delayTMA
foi (14)

Classical NC Analyses
Figure 9 illustrates the relative error of DeepTMA against
classical NC analyses. DeepTMA-derived delay bounds are
tightest among these heuristics, deviating from TMA by no
more than 12 % in our experiments in the worst-case.

2 4 6 8 10 12 14 16

0

50

100

DeepTMA

PMOO

SFA

Path length of flow

R
el

at
iv

e
er

ro
r

to
TM

A
(%

)

DeepTMA PMOO SFA

Figure 9: Relative error of DeepTMA and existing NC
heuristics.

DeepTMA efficacy beating SFA and PMOO in the
cost/tightness-tradeoff is necessary, yet, by no means suf-
ficient to conclude that our deep-learning assisted analy-
sis framework is the best alternative to create heuristics.
SFA and PMOO were created a decade before TMA, i.e.,
they never benefited from advances that resulted in TMA.
Therefore, we base our statement on numerical benchmarks
against newly contributed ML-based heuristics for TMA.

New Heuristics
Figure 10 compares DeepTMA against the other heuristics
introduced in Section 6. Only FFNN8 and RFC8 are able
to achieve a relative error similarly small as DeepTMA on
the larger networks, yet, at a much larger computational
cost since 8 different tandem combinations and their entire
dependency structures have to be evaluated every time.

9

7.2 Scalability and robustness on larger networks
Additionally to the dataset which was presented in Sec-
tion 5.1, we also evaluate our approach on the set of net-
works used in [19]. No additional training of the GNN is
performed on this additional dataset. Table 4 summarizes
different statistics about this additional dataset. Compared
to dataset used for training, this additional set of networks
is up to two order of magnitude larger in term of number
of servers and flows per network. We evaluate here if our
approach is able to scale to such larger networks in terms of
tightness.

Parameter Min Max Mean Median

of servers 38 3626 863.0 693
of flows 152 14 504 3452.0 2772
of tandem combinations 2418 121 860 24 777.6 18 869
of nodes in analyzed graph 1358 113 162 25 137.7 19 518
of tandem combination per flow 2 512 7.3 8
of flows per server 1 467 16.4 12

Table 4: Statistics about the set of networks from [19].

Figure 11 illustrates the relative error of DeepTMA com-
pared to a random heuristic which selects the tandem de-
compositions randomly. DeepTMA achieves relative errors
that are two orders of magnitudes smaller than the random
heuristics, resulting in better end-to-end delay bound accu-
racy w.r.t. the exhaustive TMA. Although DeepTMA was
not trained on such large networks, the relative error still
stays below 0.3 % even on the larger networks. Those results
highlight that DeepTMA is indeed able to scale to networks
much larger than to those it was initially trained for.

152 472 656 1128 1456 1592 2048 2288 2960 2584 2976 3904 3528 4496 3976 5912 7504 14504

10−2

10−1

100

101

102

Number of flows in network

R
el

at
iv

e
er

ro
r

to
TM

A
(%

)

RND RND2 RND4 RND8 DeepTMA

Figure 11: Relavitve error of DeepTMA on the dataset
from [19] with much larger networks.

Additional results regarding robustness of DeepTMA
with respect to scalability on larger networks can also be
found in [24].

7.3 Training time
We illustrate in Figure 12 the evolution of the relative error
during the training phase of the GNN. As noted in Sec-
tion 5.1, this training was done 86 187 topologies. Training
duration was measured while training was done using a
Nvidia GTX 1080 Ti GPU.

7.4 Execution Times
In order to understand the practical applicability of our
heuristic, we evaluate in this section its execution time in
different settings. We define and measure the execution time

0 2 4 6 8 10 12 14 16 18 20

100

101

Training time (hours)

M
ea

n
re

la
ti

ve
er

ro
r

(%
)

Training data
Test data

Figure 12: Evolution of the relative error during training.

per network as the total time taken to process N networks
and all its flows divided byN , without including the startup
time or the time taken for initializing the network data
structures.

Classical NC Analyses
Figure 13 shows benchmarking results of DeepTMA against
the classical analysis in NC. We compare against TMA and
the established SFA [14] and PMOO [15] heuristics of NC.
These are fast as they greedily decide on a single contention
model, ignoring arrival and service curves. DeepTMA from
our framework is minimally slower than PMOO but faster
than SFA and TMA. This implies two things: first, the over-
head of querying for predictions is not necessarily large and
secondly, the contention model tends be closer to PMOO
than to SFA, consisting of tandems of multiple servers.

2 4 6 8 10 12 14 16

100

101

102

103

104 TMA

SFA

PMOO

DeepTMA
CPU

GPU

Maximum flow path length in network

Ex
ec

ut
io

n
ti

m
e

pe
r

ne
tw

or
k

(m
s)

DeepTMA (GPU) TMA PMOO
DeepTMA (CPU) SFA

Figure 13: Comparing DeepTMA to existing NC heuristics
on the dataset from [11].

TMA
Since DeepTMA can be executed on either CPU or GPU,
we first compare both platforms and their affinity at par-
allelization in Figure 14. A Nvidia GTX 1080 Ti was used
for the measurements on GPU, and an Intel Xeon E3-1270
v6 (at 3.80 GHz) for the ones on CPU. We first notice that
the execution time grows close to linearly with the size of
the network, both on CPU and GPU, which is explained by
the iterations of message passing illustrated in Equation (6)
according to the diameter of the studied graph. Execution
on GPU results in faster computation compared to CPU for
networks larger than two hops, mainly due to the better
ability of GPUs of parallelizing the numerical operations
used in neural networks.

Since both platforms offer multiple cores for parallel
execution of multiple processes, we investigate the effect of
batching, namely analyzing multiple networks in parallel.

10

Parallelization of the mathematical operations described
in Section 4 is automatically performed by PyTorch. We
present in Figure 14 the execution time without any batching
– namely only one network is processed at once – and
with batching, where the heuristic processes 64 networks
at once. On both platforms, batching results in a reduction
of processing time, which is relevant in use-cases where
multiple network configuration have to be processed.

2 4 6 8 10 12 14 16

0

20

40

CPU
w/ batching

CPU

GPU w/ batching

GPU

Maximum flow path length in network

Ex
ec

ut
io

n
ti

m
e

pe
r

ne
tw

or
k

(m
s)

CPU w/o batching GPU w/o batching
CPU w/ batching GPU w/ batching

Figure 14: Execution time of the cut recommendation part
of DeepTMA, executed on CPU or GPU, without batching
or batch sizes of 64 networks on the dataset from [11].

In addition, we measured the execution time of TMA
using the NCorg DNC [21]. The same CPU was used for
running NCorg DNC, with Oracle’s HotSpot JVM version
1.8.

Whereas Figure 14 provides insight on the computa-
tional cost of DeepTMA, Figure 15 compares it to a gener-
alized version of the heuristics presented in Section 6. Since
the selection of tandem decompositions is a fast operation in
all three pure NC heuristics, in particular compared to the
other required operations, we only illustrate the execution
time of a generic heuristic Hn selecting n decompositions
per tandem. As all analyses ultimately use the NCorg DNC
for the derivation of bounds, comparing the average exe-
cution times of Hn and DeepTMA (with batching), we can
also judge the increase of computational effort due to our
deep learning-based predictions. As expected, TMA execu-
tion times grow exponentially and Hn heuristics’ execution
times coincide with TMA as long as their n-value causes an
exhaustive search, too. An entirely CPU-bound DeepTMA
analysis is slowest in very small networks where the ex-
haustive enumeration of TMA is easily possible to execute.
Starting at a maximum flow path length of 4, it mostly
performs between H4 and H8. Yet, we saw in Section 7.1 that
RNDi i ∈ 4, 8 is outperformed by DeepTMA. DeepTMA
leveraging GPU technology for predictions only adds very
small execution times to H1 while achieving vastly better
bounds. Compared to TMA, we can observe a measured
differences in execution time growing up to four orders of
magnitude.

7.5 Memory footprint
We evaluate in Figure 16 the memory footprint of the
classical TMA against the GNN heuristic. Compared to the
classical NC analysis, the GNN requires almost an order
of magnitude less memory, even on the larger networks
with up to 14 504 flows. In summary, those results and the

2 4 6 8 10 12 14 16

100

101

102

103

104 TMA

H32

H1

DeepTMA
CPU

GPU

Maximum flow path length in network

Ex
ec

ut
io

n
ti

m
e

pe
r

ne
tw

or
k

(m
s)

DeepTMA (GPU) TMA H2 H8 H32
DeepTMA (CPU) H1 H4 H16

Figure 15: Execution times per topology for TMA, Deep-
TMA and Hn heuristics on the dataset from [11].

results from Section 7.4 illustrate that DeepTMA requires
only a fraction of the computing and memory resources of
the classical analysis, with only a minor drop in tightness.

152 472 656 1128 1456 1592 2048 2288 2584 2960 2976 3528 3904 3976 4496 5912 7504 14504

0

5

10

15
NC Analysis

GNN

Number of flows in network

M
ax

im
um

m
em

or
y

us
ag

e
(G

b)

Figure 16: Memory usage of the GNN and the TMA NC
analysis on the dataset from [11].

8 INSIGHTS INTO LEARNING APPROACHES

In order to better understand the importance of the input
features used in DeepTMA and the two other machine
learning-based heuristics proposed in this article, we per-
form in this section a sensitivity analysis of TMA and assess
DeepTMA’s features’ importance.

8.1 Sensitivity analysis
We perform here a sensitivity analysis of TMA’s cut choices
in order to better understand which parameters influence
the choice of best cuts. To numerically evaluate the sensitiv-
ity, we randomly modify the service and arrival curve pa-
rameters poriginal of our evaluation networks with a relative
scale s according to the following uniform distribution:

pnew ∼ U (poriginal(1− s), poriginal(1 + s)) (15)

We then compare the share of flows where best cuts have
changed due to the random change of curves parameters.
Results are presented in Figure 17.

The service rate parameter influences the most the choice
of cuts, where even minimal changes result in different
choices. Arrival curve parameters also impact also TMA’s
analysis, but with less magnitude than the service rate.
Finally, the service latency has almost no influence on the
choice of cuts, where even large changes of its value result
in less than 1 % of changed choices.

These observations can be explained by the fundamental
impact a cut in TMA has on the composition of sub-tandem

11

residual service that is composed to an end-to-end guaran-
teed service for the foi. On any tandem, forwarding is lower
bounded by the minimum residual rate over all servers.
Separating a subset of faster or slower servers by cutting can
therefore easily enable to make use of larger residual service
on separated sub-tandems, in particular when bounding
cross-flow arrivals. The service latency, in contrast, is an
additive factor in the residual forwarding service compu-
tation, making it considerably less impactful. Cutting a link
traversed by a cross-flow means computing an arrival curve
for said flow at this location, an output bound after having
traversed the previous sub-tandem. These output bounds
consist of the original burstiness and a burstiness increase
due to queueing. Thus, a significant change in the burstiness
increase is required to change the choice of cut set. This
is less likely to be achieved by solely modifying original
arrival curves’ rate or burstiness parameters.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

10−2

10−1

100

101

Relative scale of random change

Sh
ar

e
of

ch
an

ge
of

cu
ts

(%
) Arrival burst Arrival rate Service latency Service rate

Figure 17: Sensitivity analysis of the TMA cut choices.

8.2 Feature Importance
We use the permutation-based importance measure [60, 61]
in order to assess each feature’s importance of DeepTMA.
For each input feature presented in Sections 4.1 and 6.2,
we randomize it by randomly permuting its values in the
training set, and assess the impact it has on the relative error
of the predictions. We define the importance metric as:

Importance(Feature) = 1
|F|
∑

fi∈F

(
RelErrFeaturefi − RelErrBaseline

fi

)
(16)

with the baseline corresponding to the method without any
feature permutation. With this evaluation, we assess how
much the GNN model relies on a given feature of interest
for making its prediction.

10−4 10−3 10−2 10−1 100 101

ServiceLatency
ArrivalBurst

PathOrder
ArrivalRate
ServiceRate

Feature importance (%)

Figure 18: Feature importance according to feature permu-
tation method for DeepTMA.

DeepTMA’s features importance are presented in Fig-
ure 18. The service rate of the servers in the network have
the largest impact on the final decision of cutting. The
remaining features appear to have less importance on the

cut prediction, with almost no importance for the service
latency. These results confirm the findings presented in
Figure 17, showing that the GNN matches TMA’s sensitivity.
Figure 18 also highlights that the arrival rate is of consider-
ably larger importance than the arrival burstiness whereas
the sensitivity analysis showed slightly more impact of a
changing burstiness. The importance of the arrival rates
is natural to NC with arbitrary multiplexing: the derived
worst-case assumption is that the flow of interest is served
with the residual forwarding capabilities and the accord-
ing service curve’s latency increases fast with increasing
utilization. Thus, the (cross-traffic) arrival rates must be an
important feature.

Interesting from the NC perspective is the observation
that the order of servers (PathOrder) has a percental im-
portance two orders of magnitude lower than the service
rate. In combination, these two features constitute the very
reason for TMA (and optimization-based analyses, see [16])
to outperform the previous NC analyses.

We also assess the importance of other flows and other
servers on a cut. We perform this by assessing the number
of iterations of message passing (i.e. Equation (1)) and the
impact it has on the relative error. As for feature importance,
we compare the results according to Equation (16). Results
are presented in Figure 19. The first 4 loop iterations appear
to have the largest impact on the cut decision, meaning
that the cut decision is mainly based on information from
servers close to the cut. We notice that the importance drops
sharply after 5 iterations, and converges after 15 iterations.
This indicates that servers and flows farther away from the
cut decision are less relevant to the cut decision – an insight
to potential further improvement of DeepTMA’s tradeoff
between computational effort and relative error.

2 4 6 8 10 12 14 16 18 20

10−1

100

101

Number of message passing iterations

Fe
at

ur
e

im
po

rt
an

ce
(%

)

Figure 19: Importance of message passing iterations.

We evaluate also the features importance of the FFNN
heuristic in Figure 20. Overall, those results confirm the ones
presented for DeepTMA, namely that the service rate of
the servers have the largest impact on the cutting decision.
Interestingly, the impact of the other flows is more related
to the aggregated arrival burst (SourceSumArrivalBurst and
SinkSumArrivalBurst) than the aggregated arrival rate com-
pared to DeepTMA. Finally, as for DeepTMA, the position
of the cut in the path of the flow is not relevant.

Finally, we also evaluate the features importance of the
RFC heuristic in Figure 21. The results for the RFC heuristic
are in line with the ones from DeepTMA and exhibit as
similar ranking than for the FFNN. Overall, Figures 18, 20
and 21 confirm existing results of the NC analysis presented
in Section 8.1, namely its sensitivity to service rate and the
importance of other flows.

12

0 2 4 6 8 10 12 14 16 18

SourceServiceLatency
SinkServiceLatency

FlowArrivalBurst
FlowArrivalRate

CutOrder
SinkSumArrivalRate

SourceSumArrivalRate
FlowPathLen
SinkNFlows

SourceNFlows
SinkSumArrivalBurst

SourceSumArrivalBurst
SinkServiceRate

SourceServiceRate

Feature importance (%)

Figure 20: Feature importance according to feature permu-
tation method for the FFNN heuristic.

5 10 15 20 25

CutOrder
FlowArrivalBurst
FlowArrivalRate

FlowPathLen
SinkNFlows

SinkServiceLatency
SourceServiceLatency

SourceNFlows
SinkSumArrivalRate

SourceSumArrivalRate
SinkSumArrivalBurst

SourceSumArrivalBurst
SinkServiceRate

SourceServiceRate

Feature importance (%)

Figure 21: Feature importance according to feature permu-
tation method for the random forests classifier.

9 CONCLUSION

We contribute a new framework that combines network
calculus and deep learning. The first heuristic created with
our framework is the DeepTMA, deep learning-assisted
TMA, a fast network analysis for deterministic end-to-end
delay bounds. It solves the main bottleneck of the existing
TMA, namely its exponential execution time growth with
network size, by using predictions for effectively selecting
the contention models in the network calculus analysis.
Via a numerical evaluation, we show that our heuristic is
accurate and produces end-to-end delay bounds which are
almost as tight as TMA, with an execution time several
orders of magnitude smaller than TMA and a memory
footprint an order of magnitude smaller. DeepTMA is as fast
as or faster than previously widespread methods – namely
SFA and PMOO – even when analyzing larger networks,
but with a gain in tightness exceeding 50 % in some cases.
Numerical evaluations on large networks with up to 14 000
flows also illustrate that our approach is able to scale despite
having being trained on much smaller networks.

Our work is based on a transformation of the network
of servers and flows crossing them into a graph which
is analyzed using Graph Neural Networks. Our method
outperforms simpler ML-based methods, justifying the use
of a more complex machine learning method. Finally some
insights into the learning is also given via an evaluation of
feature importance, confirming existing results of NC.

REFERENCES

[1] F. Geyer and G. Carle, “Network engineering for real-time net-
works: comparison of automotive and aeronautic industries ap-
proaches,” IEEE Commun. Mag., vol. 54, no. 2, 2016.

[2] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour,
and D. Simeonidou, “An analytical model for software defined
networking: A network calculus-based approach,” in Proc. of IEEE
Globecom, 2013.

[3] X. Jin, N. Guan, J. Wang, and P. Zeng, “Analyzing multimode
wireless sensor networks using the network calculus,” Journal of
Sensors, vol. 2015, Article ID 851608.

[4] J. W. Guck, A. Van Bemten, and W. Kellerer, “DetServ: Network
models for real-time QoS provisioning in SDN-based industrial
environments,” IEEE Trans. Netw. Service Manag., vol. 14, no. 4,
2017.

[5] S. Bondorf and J. B. Schmitt, “Boosting sensor network calculus
by thoroughly bounding cross-traffic,” in Proc. of IEEE INFOCOM,
2015.

[6] S. Vastag, “Modeling quantitative requirements in SLAs with
network calculus,” in Proc. of ICST ValueTools, 2011.

[7] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “PriorityMeister: Tail latency QoS for shared networked
storage,” in Proc. of ACM SoCC, 2014.

[8] E. J. Rosensweig and J. Kurose, “A network calculus for cache
networks,” in Proc. of IEEE INFOCOM, 2013.

[9] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message latency in the cloud,” in Proc. of ACM SIGCOMM, 2015.

[10] A. Charny and J.-Y. Le Boudec, “Delay bounds in a network with
aggregate scheduling,” in Proc. of QoFIS, 2000.

[11] F. Geyer and S. Bondorf, “DeepTMA: Predicting effective con-
tention models for network calculus using graph neural net-
works,” in Proc. of INFOCOM, 2019.

[12] R. L. Cruz, “A calculus for network delay, part I: Network ele-
ments in isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1, 1991.

[13] “A calculus for network delay, part II: Network analysis,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, 1991.

[14] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer-Verlag,
2001.

[15] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving perfor-
mance bounds in feed-forward networks by paying multiplexing
only once,” in Proc. of GI/ITG MMB, 2008.

[16] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under
arbitrary multiplexing: When network calculus leaves you in the
lurch. . . ,” in Proc. of IEEE INFOCOM, 2008.

[17] A. Bouillard, L. Jouhet, and É. Thierry, “Tight performance bounds
in the worst-case analysis of feed-forward networks,” in Proc. of
IEEE INFOCOM, 2010.

[18] A. Bouillard and G. Stea, “Exact worst-case delay in FIFO-
multiplexing feed-forward networks,” IEEE/ACM Trans. Net.,
vol. 23, no. 5, 2015.

[19] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus – design and evaluation of an
accurate and fast analysis,” Proc. ACM Meas. Anal. Comput. Syst.
(POMACS), vol. 1, no. 1, 2017.

[20] M. Gori, G. Monfardini, and F. Scarselli, “A new model for
learning in graph domains,” in Proc. of IEEE IJCNN, 2005.

[21] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a comprehensive
tool for deterministic network calculus,” in Proc. of EAI ValueTools,
2014.

[22] F. Geyer, “Performance evaluation of network topologies using
graph-based deep learning,” in Proc. of EAI ValueTools, 2017.

[23] A. Scheffler, M. Fögen, and S. Bondorf, “The deterministic network
calculus analysis: Reliability insights and performance improve-
ments,” in Proc. of IEEE CAMAD, 2018.

[24] F. Geyer and S. Bondorf, “On the Robustness of Deep Learning-
predicted Contention Models for Network Calculus,” in Proc. of
IEEE ISCC, 2020.

[25] M. Amrani, L. Lúcio, and A. Bibal, “ML + FV = ♥? A survey on
the application of machine learning to formal verification,” 2018,
arxiv:1806.03600.

[26] H. Al-Zubaidy, J. Liebeherr, and A. Burchard, “A (min, ×) network
calculus for multi-hop fading channels,” in Proc. of IEEE INFO-
COM, 2013.

[27] J. Liebeherr, “Duality of the max-plus and min-plus network
calculus,” Found. Trends. Network., vol. 11, no. 3-4, 2017.

[28] M. Boyer and P. Roux, “Embedding network calculus and event

13

stream theory in a common model,” in Proc. of IEEE ETFA, 2016.
[29] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time

analysis and timed automata: A hybrid method for analyzing
embedded real-time systems,” in Proc. of ACM EMSOFT, 2009.

[30] C.-S. Chang, Performance Guarantees in Communication Networks.
Springer, 2000.

[31] F. Ciucu, A. Burchard, and J. Liebeherr, “A network service curve
approach for the stochastic analysis of networks,” in Proc. of ACM
SIGMETRICS, 2005.

[32] F. Ciucu, F. Poloczek, and J. B. Schmitt, “Sharp per-flow delay
bounds for bursty arrivals: The case of FIFO, SP, and EDF schedul-
ing,” in Proc. of IEEE INFOCOM, 2014.

[33] M. A. Beck, S. A. Henningsen, S. B. Birnbach, and J. B. Schmitt,
“Towards a statistical network calculus – dealing with uncertainty
in arrivals,” in Proc. of IEEE INFOCOM, 2014.

[34] F. Dong, K. Wu, and V. Srinivasan, “Copula analysis for statistical
network calculus,” in Proc. of IEEE INFOCOM, 2015.

[35] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. of ISCAS, 2000.

[36] N. Guan and W. Yi, “Finitary real-time calculus: Efficient perfor-
mance analysis of distributed embedded systems,” in Proc. of IEEE
RTSS, 2013.

[37] K. Lampka, S. Bondorf, and J. B. Schmitt, “Achieving efficiency
without sacrificing model accuracy: Network calculus on compact
domains,” in Proc. of IEEE MASCOTS, 2016.

[38] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi, “Gen-
eralized finitary real-time calculus,” in Proc. of IEEE INFOCOM,
2017.

[39] S. K. Khangura, M. Fidler, and B. Rosenhahn, “Neural networks
for measurement-based bandwidth estimation,” in Proc. of IFIP
Networking, 2018.

[40] Q. Xu, J. Wang, and K. Wu, “Learning-based dynamic resource
provisioning for network slicing with ensured end-to-end perfor-
mance bound,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, 2020.

[41] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE Trans. Neural Netw.,
vol. 20, no. 1, 2009.

[42] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in Proc. of ICLR, 2016.

[43] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation,” in Proc. of EMNLP, 2014.

[44] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. of NIPS,
2017.

[45] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proc. of ICLR, 2018.

[46] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. San-
toro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learning, and
graph networks,” 2018, arxiv:1806.01261.

[47] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional
networks on graphs for learning molecular fingerprints,” in Proc.
of NIPS, 2015.

[48] M. Prates, P. H. C. Avelar, H. Lemos, L. C. Lamb, and M. Y.
Vardi, “Learning to solve NP-complete problems: A graph neural
network for decision TSP,” Proc. of the AAAI Conf. on AI, 2019.

[49] D. Selsam, M. Lamm, B. Bunz, P. Liang, L. de Moura, and D. L.
Dill, “Learning a SAT solver from single-bit supervision,” 2018,
arxiv:1802.03685.

[50] K. Rusek and P. Cholda, “Message-passing neural networks learn
Little’s law,” IEEE Commun. Lett., 2018.

[51] F. Geyer, “DeepComNet: Performance evaluation of network
topologies using graph-based deep learning,” Elsevier Performance
Evaluation, vol. 130, 2018.

[52] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and
A. Cabellos-Aparicio, “RouteNet: Leveraging Graph Neural Net-
works for network modeling and optimization in SDN,” 2019,
arxiv:1910.01508.

[53] T. Suzuki, Y. Yasuda, R. Nakamura, and H. Ohsaki, “On estimating
communication delays using graph convolutional networks with
semi-supervised learning,” in Proc. of IEEE ICOIN, 2020.

[54] F. Geyer and G. Carle, “The case for a network calculus heuristic:
Using insights from data for tighter bounds,” in Proc. of NetCal,
2018.

[55] D. Starobinski, M. Karpovsky, and L. A. Zakrevski, “Application
of network calculus to general topologies using turn-prohibition,”
IEEE/ACM Trans. Netw., vol. 11, no. 3, 2003.

[56] M. Boyer, “NC-maude: A rewriting tool to play with network
calculus,” in Proc. of ISoLA, 2010.

[57] S. Bondorf and J. B. Schmitt, “Calculating accurate end-to-end
delay bounds – you better know your cross-traffic,” in Proc. of
EAI ValueTools, 2015.

[58] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in PyTorch,” in NIPS Autodiff Workshop, 2017.

[59] P. Erdős and A. Rényi, “On random graphs. i,” Publicationes
Mathematicae, vol. 6, 1959.

[60] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
2001.

[61] A. Fisher, C. Rudin, and F. Dominici, “Model class reliance: Vari-
able importance measures for any machine learning model class,
from the "rashomon" perspective,” 2018.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, 2011.

ACKNOWLEDGMENTS

Fabien Geyer’s work was partially supported by the
German-French Academy for the Industry of the Future.
Steffen Bondorf’s work was partially funded by a Carl-Zeiss
Foundation fellowship, carried out in the Distributed Com-
puter Systems Lab at TU Kaiserslautern, Germany, and in
the Network Research Laboratory at University of Toronto,
Canada. Furthermore, Steffen Bondorf partially carried out
this work during the tenure of an ERCIM ‘Alain Bensoussan’
Fellowship Programme in the Dept. of Information Security
and Communication Technology at NTNU Trondheim, Nor-
way, and partially in the Faculty of Mathematics’ Center of
Computer Science at Ruhr University Bochum, Germany.

Fabien Geyer is currently with Airbus Central
Research & Technologies and Technical Univer-
sity of Munich working on methods for network
analytics, network performances and architec-
tures. He received the master of engineering
in telecommunications from Telecom Bretagne,
Brest, France in 2011 and the Ph.D. degree
in computer science from Technische Univer-
sität München (TUM), Munich, Germany in 2015.
His research interests include novel methods for
data-driven networking, formal methods for per-

formance evaluation and modeling of networks.

Steffen Bondorf is the Assistant Professor of
Distributed and Networked Systems in the Fac-
ulty of Mathematics at Ruhr University Bochum,
Germany. Steffen received his Dr.-Ing. in Com-
puter Science from TU Kaiserslautern, Germany,
in 2016. After graduation, he was a Carl-Zeiss
Fellow at TU Kaiserslautern, a research fellow
in the School of Computing at National Univer-
sity of Singapore and an ERCIM Fellow in the
Dept. of Information Security and Communica-
tion Technology at NTNU Trondheim, Norway.

Steffen’s research interests are in performance modeling and analysis
of communication networks.

