DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Fabien Geyer'2 and Stefan Schmid?

IFIP Networking 2019

Tuesday 215! May, 2019

1 Chair of Network Architectures and Services 2 Airbus Central R&T 3Faculty of Computer Science,
Technical University of Munich (TUM) Munich University of Vienna, Austria

¢ wnjversitat
. wien

TUTI AIRBUS

Motivation

Network failures can have a large impact

e Github: We discovered a misconfiguration on this pair of switches that caused what’s called a "bridge loop" in the
network

e Amazon: A network change was |[...] executed incorrectly [...] more "stuck” volumes and added more requests to the
re-mirroring storm

e GoDaddy: Service outage was due to a series of internal network events that corrupted router data tables.

e United Airlines: Experienced a network connectivity issue [...] interrupted the airline’s flight departures, airport
processing and reservations systems

Managing network is hard

® Mostly done by human with limited automation
e Can we provide better tools and methods for assisting sysadmins?

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 2

Motivation

Network automation and verification

Challenges in routing

e Reachability: Can traffic from ingress port A reach egress port B?
e Loop-freedom: Are the routes implied by the forwarding rules loop-free?
e Policy: Is it ensured that traffic from A to B never goes via C?

e Waypoint enforcement: Is it ensured that traffic from A to B is always routed via a node C (e.g., intrusion detection
system or a firewall)?

Automation and formal verification

e Some routing properties can be formally verified ...
e ...butit comes at a computational cost and leaves routing configuration to sysadmin

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 3

Motivation
Analysis of MPLS networks — Example network

PUSH SWAP SWAP POP

(52w
22

POP

Vv Vv

° N N

MPLS Configuration

Vg

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

4

Motivation
Analysis of MPLS networks — Example network

N 10 ¢ 1y
(VU 20 %) 4

30[11
30[21

y v 3111
> 6) 3121 \

V7

Fast Reroute Around 1 Failure

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 4

Motivation
Analysis of MPLS networks — Example network

@L®s@ @

40[30]11
40/30

\ 30[11 / \ 31[11 /v7
3021 \ &) 3121 L/

Fast Rerouting may lead to inefficient paths

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 4

Motivation
Automated analysis of MPLS configuration

Formal verification

e Related work: NetKAT [Anderson et al., 2014], HSA [Kazemian et al., 2012], VeriFlow [Khurshid et al., 2013],
Anteater [Mai et al., 2011]

e Difficult problem: some existing tools have a super-polynomial runtime, some verification are even undecidable

Polynomial-time solution

e Proposal using Push-Down Automata to verify MPLS networks [Schmid and Srba, 2018]
e P-Rex tool available [Jensen et al., 2018]

e Validation of MPLS queries using regular expressions in the formof: <a>b <c¢ > k
e Only allows to detect but not fix configurations

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Motivation

Deep Learning

Challenges

e Can we speed-up the network verification?

e What about fixing and optimizing network configurations?
General idea

¢ Build a framework for combining analysis of MPLS networks and deep learning
e Model problem as graph and process the graph using neural networks
e Predictions of the neural network can be used to statistically infer properties of the network

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Outline

Graph Neural Network

Numerical evaluation

Conclusion

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Graph Neural Network
Graph encoding - Network and MPLS configuration

50 51 52

Nodes

¢ Physical network: routers and interfaces
e MPLS elements: Rules, labels, actions

60|51 51 e Query and elements of regex

Edges

61 |51 0 ¢ Relationship between nodes

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Graph Neural Network
Graph encoding - Network and MPLS configuration

50 51 52

60|51 51

@ 61[51 @

Router

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Graph Neural Network
Graph encoding - Network and MPLS configuration

Input label Action Label for Swap

50 — Rule | Swap — 51

50 e 52
Input Output
interface interface
L@ 0@
O O

51

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 8

Graph Neural Network
Graph encoding - Network and MPLS configuration

52
60|51 51

61 |51

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 8

Graph Neural Network
Graph encoding - Query

50 (o™ 51\ 52

<50> v1 .* <52>

Initial label Final label

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Graph Neural Network
Graph encoding - Query

50 m 51 m 52 <50+51> vl . v2 <.>

m /‘\ Final- label
O—®)——0

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Graph Neural Network
Graph encoding - Node features

Input features Predictions

e Node type encoded as categorical feature

e Satisfiability Heuristic for verifying if a query is satisfiable
e Edges have no input feature

e Routing trace Heuristic for generating a trace of routers which
match a satisfiable query

Output features e Partial synthesis Synthesis of an MPLS configuration in order

to satisfy a quer
e Binary classification problem for some nodes yaaquery

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 10

Graph Neural Network
Graph Neural Networks — Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict

feature of nodes oy

Algorithm
Principle o Initialize h{ according to features of nodes
e Each node has a hidden vector h, € R¥ e fort=1,..,Tdo

o a = AGGREGATE ({h{~" | u e Nor(v) })

e ...computed according to the vector of its neighbors
o h = comBINE (h{~",a{)

e ...and are propagated through the graph
e return READOUT (h{")

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Graph Neural Network
Graph Neural Networks — Implementation

Implementation (simplified)

e |nitialize hf,o) according to features of nodes Different approaches
e fort=1,..,Tdo

o AGGREGATE — a) = 3 ey D ™"

e COMBINE — h(vt) = Neural Network (h(vr’”, a(vt))

Gated-Graph Neural Network

Graph Convolution Network

r Graph Attention Networks
e READOUT — return Neural Network (h(v))

Graph Spatial-Temporal Networks

Training — Hot area of research in the ML community

e Using standard gradient descent techniques

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Numerical evaluation

Dataset generation

e Generation of more than 90.000 topologies based on the Network Zoo [Knight et al., 2011]

e Generation of MPLS rules and queries based on random generator

e Validation of the MPLS configurations using P-Rex [Jensen et al., 2018]

e Dataset available online: https://github.com/fabgeyer/dataset-networking2019

Parameter \ Min Max Mean Median
of routers 3 30 10.6 10 Types of queries:
MPLS labels 8 689 225.3 174 e Ji>n<l>k
MPLS rules 8 795 319.5 248 o < i>rXra<l,>k
Size of push-down automaton 17 37006 5441.2 2692 °
> .* I k
of nodes in analyzed graph 36 2333 914.4 713 < '*> *ro <l
of edges in analyzed graph 48 4000 1615.4 1261 °© < >0 <o >k

o Zli>rFro<.*>k

Table 1: Statistics about the generated dataset.

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

https://github.com/fabgeyer/dataset-networking2019

Numerical evaluation
Baselines

Reminder on tasks

Satisfiability Heuristic for verifying if a query is satisfiable
Routing trace Heuristic for generating a trace of routers which match a satisfiable query
Partial synthesis Synthesis of an MPLS configuration in order to satisfy a query

Comparison between machine learning results with a random-based baseline

e For the Satisfiability and Routing trace tasks: random walk in the MPLS network
e For the Partial synthesis task: random choice

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

Numerical evaluation
Query satisfiability - Neural Network Training

1
0.8
> Baseline (mean)
g
=
Q
2 06
—— Train
0.4 —— Test
\
10 15 20 25 30 35

Training iterations (X 10%)

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

15

Numerical evaluation

Routing trace - Neural Network Training
vV T\ A
0.8
> Baseline (mean)
Q
<
=
=}
3
< 0.6
—— Train
— Test
0.4 T T T T
0.5 1 1.5 2 2.5 3

Training iterations (x10°)

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 16

Numerical evaluation

Runtime

Execution time per query (ms)

103

102

10!

P-Rex (CPU)

DeepMPLS (GPU)

5 10 15 20 25
Size of push-down automaton (x10?)

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

30

17

Conclusion

Contributions

* Framework combining MPLS analysis and graph-based deep learning
e Fast heuristic for verifying MPLS configurations

e Prediction of actions to take to fix MPLS configurations

e First steps towards more complicated tasks and networks

e Dataset: https://github.com/fabgeyer/dataset-networking2019

Future work

e Synthesis of full MPLS configurations based on reinforcement learning
e Test and generalize our approach for other configurations, e.g., based on Segment Routing

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

https://github.com/fabgeyer/dataset-networking2019

[Anderson et al., 2014] Anderson, C. J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C., and Walker, D. (2014).
Netkat: Semantic foundations for networks.
SIGPLAN Not., 49(1).

[Jensen et al., 2018] Jensen, J. S., Krogh, T. B., Madsen, J. S., Schmid, S., Srba, J., and Thorgersen, M. T. (2018).
P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures.
In Proc. 14th International Conference on emerging Networking EXperiments and Technologies (CONEXT).

[Kazemian et al., 2012] Kazemian, P, Varghese, G., and McKeown, N. (2012).
Header space analysis: Static checking for networks.
In Proc. of USENIX NSDI.
[Khurshid et al., 2013] Khurshid, A., Zou, X., Zhou, W., Caesar, M., and Godfrey, P. B. (2013).
Veriflow: verifying network-wide invariants in real time.
In Proc. of USENIX NSDI, pages 15-27.

[Knight et al., 2011] Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., and Roughan, M. (2011).

The Internet Topology Zoo.
IEEE Journal on Selected Areas in Communications, 29(9):1765-1775.
[Mai et al., 2011] Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P, and King, S. T. (2011).
Debugging the data plane with anteater.
In ACM SIGCOMM Computer Communication Review, volume 41 (4), pages 290-301.
[Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009).
The Graph Neural Network Model.
IEEE Transactions on Neural Networks, 20(1):61-80.
[Schmid and Srba, 2018] Schmid, S. and Srba, J. (2018).
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks.
In Proc. of IEEE INFOCOM.

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning

20

