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Motivation

Network failures can have a large impact

e Github: We discovered a misconfiguration on this pair of switches that caused what’s called a "bridge loop" in the
network

e Amazon: A network change was |[...] executed incorrectly [...] more "stuck” volumes and added more requests to the
re-mirroring storm

e GoDaddy: Service outage was due to a series of internal network events that corrupted router data tables.

e United Airlines: Experienced a network connectivity issue [...] interrupted the airline’s flight departures, airport
processing and reservations systems

Managing network is hard

® Mostly done by human with limited automation
e Can we provide better tools and methods for assisting sysadmins?
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Motivation

Network automation and verification

Challenges in routing

e Reachability: Can traffic from ingress port A reach egress port B?
e Loop-freedom: Are the routes implied by the forwarding rules loop-free?
e Policy: Is it ensured that traffic from A to B never goes via C?

e Waypoint enforcement: Is it ensured that traffic from A to B is always routed via a node C (e.g., intrusion detection
system or a firewall)?

Automation and formal verification

e Some routing properties can be formally verified ...
e ...butit comes at a computational cost and leaves routing configuration to sysadmin
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Motivation
Analysis of MPLS networks — Example network
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Motivation
Analysis of MPLS networks — Example network
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Motivation
Analysis of MPLS networks — Example network
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Motivation
Automated analysis of MPLS configuration

Formal verification

e Related work: NetKAT [Anderson et al., 2014], HSA [Kazemian et al., 2012], VeriFlow [Khurshid et al., 2013],
Anteater [Mai et al., 2011]

e Difficult problem: some existing tools have a super-polynomial runtime, some verification are even undecidable

Polynomial-time solution

e Proposal using Push-Down Automata to verify MPLS networks [Schmid and Srba, 2018]
e P-Rex tool available [Jensen et al., 2018]

e Validation of MPLS queries using regular expressions in the formof: <a>b <c¢ > k
e Only allows to detect but not fix configurations
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Motivation

Deep Learning

Challenges

e Can we speed-up the network verification?

e What about fixing and optimizing network configurations?
General idea

¢ Build a framework for combining analysis of MPLS networks and deep learning
e Model problem as graph and process the graph using neural networks
e Predictions of the neural network can be used to statistically infer properties of the network
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Outline

Graph Neural Network

Numerical evaluation

Conclusion

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning



Graph Neural Network
Graph encoding - Network and MPLS configuration

50 51 52

Nodes

¢ Physical network: routers and interfaces
e MPLS elements: Rules, labels, actions

60|51 51 e Query and elements of regex

Edges

61 |51 0 ¢ Relationship between nodes
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Graph Neural Network
Graph encoding - Network and MPLS configuration
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Graph Neural Network
Graph encoding - Network and MPLS configuration
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Graph Neural Network
Graph encoding - Network and MPLS configuration
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Graph Neural Network
Graph encoding - Query
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Graph Neural Network
Graph encoding - Query
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Graph Neural Network
Graph encoding - Node features

Input features Predictions

e Node type encoded as categorical feature

e Satisfiability Heuristic for verifying if a query is satisfiable
e Edges have no input feature

e Routing trace Heuristic for generating a trace of routers which
match a satisfiable query

Output features e Partial synthesis Synthesis of an MPLS configuration in order

to satisfy a quer
e Binary classification problem for some nodes yaaquery
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Graph Neural Network
Graph Neural Networks — Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict

feature of nodes oy

Algorithm
Principle o Initialize h{ according to features of nodes
e Each node has a hidden vector h, € R¥ e fort=1,..,Tdo

o a = AGGREGATE ({h{~" | u e Nor(v) })

e ...computed according to the vector of its neighbors
o h = comBINE (h{~",a{)

e ...and are propagated through the graph
e return READOUT (h{")
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Graph Neural Network
Graph Neural Networks — Implementation

Implementation (simplified)

e |nitialize hf,o) according to features of nodes Different approaches
e fort=1,..,Tdo

o AGGREGATE — a) = 3 ey D ™"

e COMBINE — h(vt) = Neural Network (h(vr’”, a(vt))

Gated-Graph Neural Network

Graph Convolution Network

r Graph Attention Networks
e READOUT — return Neural Network (h(v ))

Graph Spatial-Temporal Networks

Training — Hot area of research in the ML community

e Using standard gradient descent techniques
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Numerical evaluation

Dataset generation

e Generation of more than 90.000 topologies based on the Network Zoo [Knight et al., 2011]

e Generation of MPLS rules and queries based on random generator

e Validation of the MPLS configurations using P-Rex [Jensen et al., 2018]

e Dataset available online: https://github.com/fabgeyer/dataset-networking2019

Parameter \ Min Max Mean Median
# of routers 3 30 10.6 10 Types of queries:
# MPLS labels 8 689 225.3 174 e Ji>n<l>k
# MPLS rules 8 795 319.5 248 o < i>rXra<l,>k
Size of push-down automaton 17 37006 5441.2 2692 °
> .* I k
# of nodes in analyzed graph 36 2333 914.4 713 < '*> *ro <l
# of edges in analyzed graph 48 4000 1615.4 1261 °© < >0 <o >k

o Zli>rFro<.*>k

Table 1: Statistics about the generated dataset.
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Numerical evaluation
Baselines

Reminder on tasks

Satisfiability Heuristic for verifying if a query is satisfiable
Routing trace Heuristic for generating a trace of routers which match a satisfiable query
Partial synthesis Synthesis of an MPLS configuration in order to satisfy a query

Comparison between machine learning results with a random-based baseline

e For the Satisfiability and Routing trace tasks: random walk in the MPLS network
e For the Partial synthesis task: random choice
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Numerical evaluation
Query satisfiability - Neural Network Training
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Numerical evaluation

Routing trace - Neural Network Training
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Numerical evaluation

Runtime

Execution time per query (ms)
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Conclusion

Contributions

* Framework combining MPLS analysis and graph-based deep learning
e Fast heuristic for verifying MPLS configurations

e Prediction of actions to take to fix MPLS configurations

e First steps towards more complicated tasks and networks

e Dataset: https://github.com/fabgeyer/dataset-networking2019

Future work

e Synthesis of full MPLS configurations based on reinforcement learning
e Test and generalize our approach for other configurations, e.g., based on Segment Routing
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