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Motivation

Network failures can have a large impact

• Github: We discovered a misconfiguration on this pair of switches that caused what’s called a "bridge loop" in the

network

• Amazon: A network change was [...] executed incorrectly [...] more "stuck" volumes and added more requests to the

re-mirroring storm
• GoDaddy: Service outage was due to a series of internal network events that corrupted router data tables.

• United Airlines: Experienced a network connectivity issue [...] interrupted the airline’s flight departures, airport

processing and reservations systems

Managing network is hard

• Mostly done by human with limited automation
• Can we provide better tools and methods for assisting sysadmins?
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Motivation
Network automation and verification

Challenges in routing

• Reachability: Can traffic from ingress port A reach egress port B?
• Loop-freedom: Are the routes implied by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A to B never goes via C?
• Waypoint enforcement: Is it ensured that traffic from A to B is always routed via a node C (e.g., intrusion detection

system or a firewall)?

Automation and formal verification

• Some routing properties can be formally verified . . .
• . . . but it comes at a computational cost and leaves routing configuration to sysadmin
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Motivation
Analysis of MPLS networks – Example network
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Motivation
Automated analysis of MPLS configuration

Formal verification

• Related work: NetKAT [Anderson et al., 2014], HSA [Kazemian et al., 2012], VeriFlow [Khurshid et al., 2013],
Anteater [Mai et al., 2011]

• Difficult problem: some existing tools have a super-polynomial runtime, some verification are even undecidable

Polynomial-time solution

• Proposal using Push-Down Automata to verify MPLS networks [Schmid and Srba, 2018]
• P-Rex tool available [Jensen et al., 2018]
• Validation of MPLS queries using regular expressions in the form of: < a > b < c > k

• Only allows to detect but not fix configurations
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Motivation
Deep Learning

Challenges

• Can we speed-up the network verification?
• What about fixing and optimizing network configurations?

General idea

• Build a framework for combining analysis of MPLS networks and deep learning
• Model problem as graph and process the graph using neural networks
• Predictions of the neural network can be used to statistically infer properties of the network
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Graph Neural Network
Graph encoding - Network and MPLS configuration
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Graph Neural Network
Graph encoding - Network and MPLS configuration
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Graph Neural Network
Graph encoding - Network and MPLS configuration
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Graph Neural Network
Graph encoding - Network and MPLS configuration
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Graph Neural Network
Graph encoding - Query
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Graph Neural Network
Graph encoding - Query
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Graph Neural Network
Graph encoding - Node features

Input features

• Node type encoded as categorical feature
• Edges have no input feature

Output features

• Binary classification problem for some nodes

Predictions

• Satisfiability Heuristic for verifying if a query is satisfiable
• Routing trace Heuristic for generating a trace of routers which

match a satisfiable query
• Partial synthesis Synthesis of an MPLS configuration in order

to satisfy a query
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Graph Neural Network
Graph Neural Networks – Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict
feature of nodes ov

Principle

• Each node has a hidden vector hv œ Rk

• . . . computed according to the vector of its neighbors
• . . . and are propagated through the graph

Algorithm

• Initialize h(0)
v according to features of nodes

• for t = 1, ... , T do
• a(t)

v = AGGREGATE

!)
h(t≠1)

u | u œ Nbr(v)
*"

• h(t)
v = COMBINE

!
h(t≠1)

v , a(t)
v

"

• return READOUT

!
h(T )

v

"

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 11



Graph Neural Network
Graph Neural Networks – Implementation

Implementation (simplified)

• Initialize h(0)
v according to features of nodes

• for t = 1, ... , T do
• AGGREGATE æ a(t)

v =
P

uœNbr(v) h(t≠1)
u

• COMBINE æ h(t)
v = Neural Network

!
h(t≠1)

v , a(t)
v

"

• READOUT æ return Neural Network

!
h(T )

v

"

Training

• Using standard gradient descent techniques

Different approaches

• Gated-Graph Neural Network
• Graph Convolution Network
• Graph Attention Networks
• Graph Spatial-Temporal Networks
• . . .

æ Hot area of research in the ML community

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 12



Numerical evaluation
Dataset generation

• Generation of more than 90.000 topologies based on the Network Zoo [Knight et al., 2011]
• Generation of MPLS rules and queries based on random generator
• Validation of the MPLS configurations using P-Rex [Jensen et al., 2018]
• Dataset available online: https://github.com/fabgeyer/dataset-networking2019

Parameter Min Max Mean Median

# of routers 3 30 10.6 10
# MPLS labels 8 689 225.3 174
# MPLS rules 8 795 319.5 248
Size of push-down automaton 17 37006 5441.2 2692
# of nodes in analyzed graph 36 2333 914.4 713
# of edges in analyzed graph 48 4000 1615.4 1261

Table 1: Statistics about the generated dataset.

Types of queries:
• < li > ri < lo > k

• < li > ri .ú ro < lo > k

• < li > . .ú ro < lo > k

• < .ú > ri .ú ro < lo > k

• < li > ri .ú ro < .ú > k
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Numerical evaluation
Baselines

Reminder on tasks

Satisfiability Heuristic for verifying if a query is satisfiable
Routing trace Heuristic for generating a trace of routers which match a satisfiable query

Partial synthesis Synthesis of an MPLS configuration in order to satisfy a query

Comparison between machine learning results with a random-based baseline

• For the Satisfiability and Routing trace tasks: random walk in the MPLS network
• For the Partial synthesis task: random choice

F. Geyer and S. Schmid — DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning 14



Numerical evaluation
Query satisfiability - Neural Network Training
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Numerical evaluation
Routing trace - Neural Network Training
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Numerical evaluation
Runtime
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Conclusion

Contributions

• Framework combining MPLS analysis and graph-based deep learning
• Fast heuristic for verifying MPLS configurations
• Prediction of actions to take to fix MPLS configurations
• First steps towards more complicated tasks and networks
• Dataset: https://github.com/fabgeyer/dataset-networking2019

Future work

• Synthesis of full MPLS configurations based on reinforcement learning
• Test and generalize our approach for other configurations, e.g., based on Segment Routing
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