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Abstract—Network calculus computes end-to-end delay bounds
for individual data flows in networks of aggregate schedulers.
It searches for the best model bounding resource contention
between these flows at each scheduler. Analyzing networks,
this leads to complex dependency structures and finding the
tightest delay bounds becomes a resource intensive task. The
exhaustive search for the best combination of contention models
is known as Tandem Matching Analysis (TMA). The challenge
TMA overcomes is that a contention model in one location of
the network can have huge impact on one in another location.
These locations can, however, be many analysis steps apart from
each other. TMA can derive delay bounds with high degree of
tightness but needs several hours of computations to do so. We
avoid the effort of exhaustive search altogether by predicting
the best contention models for each location in the network.
For effective predictions, our main contribution in this paper
is a novel framework combining graph-based deep learning and
Network Calculus (NC) models. The framework learns from NC,
predicts best NC models and feeds them back to NC. Deriving
a first heuristic from this framework, called DeepTMA, we
achieve provably valid bounds that are very competitive with
TMA. We observe a maximum relative error below 6 %, while
execution times remain nearly constant and outperform TMA in
moderately sized networks by several orders of magnitude.

I. INTRODUCTION

A. Motivation

Deterministic performance bounds have seen many appli-
cations in modern systems and a wide range of network
calculus-based solutions have been proposed. Network Cal-
culus (NC) can be applied to ensure deadlines in networks
for x-by-wire applications [1] as well as SDN-enabled net-
works [2], for safety-critical production systems [3], or both
of these [4]. Moreover, NC solutions have been proposed for
highly dynamic environments. E.g., admission control in self-
modeling sensor networks [5] or systems providing customers
with service level agreements [6] for, among others, storage
access [7]. Other recent examples where dynamic events
may often cause changes are cache networks [8] and cloud
computing [9]. These areas benefit from fast computations
of tight performance bounds. The literature provides one-shot
analyses for topology-agnostic bounds [10] or bounds that hold
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Figure 1: Dependency cycle defining current NC analyses.

for the specification’s worst case [4]. Yet, these attempts are
ultimately paid for with wasted resources. Our approach does
not compromise on bound quality by providing a fast analysis
that considers all details of the analyzed network.

B. Background

In network calculus, a network needs to be modeled by
servers (e.g. queues or packet schedulers) whose forwarding
capabilities are lower bounded by service curves. These curves
are derived for each server’s respective aggregate scheduler.
Data flows traverse sequences of servers where they compete
for resources with other flows. Multiplexing and reordering in
queues can occur arbitrarily but deterministic bounds can be
computed as data arrivals are bounded by arrival curves. The
arrival curves are, however, only known at a flow’s first server.

Given such a network model, the NC analysis computes a
bound on an individual flow’s end-to-end delay. This flow is
known as flow of interest (foi) and NC must derive a model
for resource contention from this flow’s point of view. NC
offers multiple network analysis methods to derive contention
models that discriminate against the foi. These alternatives are
all proven to result in valid delay bounds for the foi. But there
is not a single-best contention model that can be expressed
with NC, not even on a simple tandem of servers. All the worse
for NC, it needs to bound the impact of all transformations of
all flows’ arrival curves up to the location of contention to rank
the contention models. Curve transformations, in turn, require
to backtrack all flows, either in an aggregate or separated by
worst-case priority assumptions. Different contention models
require different flow aggregation/separation assumptions and
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Figure 2: Comparison of DeepTMA to existing NC heuristics.

the resulting structures expressing dependencies of NC op-
erations become unique. This cycle is shown in Figure 1.
An analysis must execute at least one complete recursion,
terminating upon reaching all backtracked flows’ sources.

It was shown that it is possible to exhaustively derive all
dependency structures and rank each contention model on
each tandem occurring in a network analysis. This is known
as the Tandem Matching Analysis (TMA) [11]. It achieves
high degrees of delay bound tightness by enumerating all
contention models upstream from the foi. Thus, the best model
for a downstream location and flow can be found. In other
words, TMA unwinds all loops that can be taken in the cycle
in Figure 1. This is very costly. The amount of alternative
contention models on a single tandem of n servers is 2(n−1).
TMA provides a recursive algorithm whose execution time
can exceed several hours, e.g., when analyzing networks with
>1000 servers and four times as many flows on many-core
platforms that compromise on per-core performance [11].

In this paper, we present the deep-learning assisted TMA,
DeepTMA, that predicts the best contention model with high
efficacy, resulting in a high degree of delay bound tightness
although we only start a single backtracking in Figure 1. Single
backtrackings have been attempted before, yet, we are the
first to achieve considerably faster execution times than TMA
without considerably compromising on delay bound tightness.

C. Contributions

While we focus our evaluations on the novel DeepTMA
heuristic for NC’s tandem matching analysis, we contribute
an entire underlying framework that combines the theories of
NC [12] and a graph-based deep learning, namely Graph Neu-
ral Networks (GNNs) [13], as well as two of their respective
tools [14, 15]. DeepTMA achieves the following properties:

a) Deterministic bounds: We learn from NC and feed
predictions back to NC. We predict the best choices for
decisions made during the NC analyses. NC stays in control
and guarantees provably correct bounds.

Our deep learning framework does not learn to predict a
delay bound but it predicts the most important decisions within
an analysis, the contention models. Compared to directly pre-
dicting a flow’s delay bound, our approach always guarantees
for a valid worst-case bound as we continue to apply the
proven NC operations in their valid orders.

b) Fast execution times and high tightness: Figure 2
shows first benchmarking results of DeepTMA. We compare
against TMA and the established SFA [12] and PMOO [16]
heuristics of NC. These are fast as they greedily decide
on a single contention model, ignoring arrival and service
curves. DeepTMA from our framework is minimally slower
than PMOO but faster than SFA and TMA. Moreover, recent
work [17] showed that the TMA cannot be parallelized easily
and a speedup of only one order of magnitude was observed.
In terms of delay bound tightness (relative error to TMA), all
heuristics outperform a consistent worst choice of contention
models. DeepTMA-derived delay bounds are tightest among
these heuristics, deviating from TMA by no more than 6 % in
our experiments.

DeepTMA efficacy beating SFA and PMOO in the
cost/tightness-tradeoff is necessary, yet, by no means sufficient
to conclude that our deep-learning assisted analysis framework
is the best alternative to create heuristics. SFA and PMOO
were created a decade before TMA, i.e., they never benefited
from advances that resulted in TMA. Therefore, we base
our statement on numerical evaluations benchmarking against
newly contributed non-deep-learning TMA heuristics from the
NC framework.

c) Train once, apply infinitely often: Naturally, we only
train our machine learning part once before using its predic-
tions in DeepTMA. While we chose a reasonably large range
of parameters for arrival and service curves to learn from, we
restricted our dataset to simple topologies (tandems and sink
trees). The results shown above are achieved by predicting
the best contention model for bounding each flow’s delay in
different, independently created tandems and sink trees.

d) Portability: While we combined two existing tools
whose dependencies must be met, our combination of both
theories enforces no dependencies. It is generally portable to
any platform used in an area mentioned in the beginning.
For instance, Figure 2 shows results for execution on CPU or
GPU. Moreover, efficient deep learning libraries are becoming
increasingly available in a variety of programming languages.

D. Outline

The remainder of the paper is organized as follows: Sec-
tion II presents the NC theory, covering modeling and the
TMA, that we will express as a graph analysis task and
combine with GNNs in Section III. In Section IV we present
the combination of tools and the generation of a dataset to
learn from. Section V provides new NC heuristics in order



to benchmark DeepTMA against modern non-deep-learning
approaches in Section VI. Section VII presents the related
work on our research direction for network calculus and graph
neural networks before Section VIII concludes our work and
gives an outlook.

II. NETWORK CALCULUS

NC models resource provision and demand with non-
negative, wide-sense increasing functions from the set

F0 =
{
f : R→ R+

∞
∣∣ f (0) = 0, ∀s ≤ t : f(s)≤f(t)

}
,

R+
∞ := [0,+∞) ∪ {+∞}. Functions of F0 are also used for

the bounding curves of NC. Arrival curves upper bound data
arrivals and service curves lower bound forwarding guarantees.

Definition 1 (Arrival Curve): Let the data arrivals of a
flow over time be characterized by function A(t) ∈ F0, where
t ∈ R+

∞. Then, an arrival curve α(d) ∈ F0 for A(t) must fulfill

∀t∀d, 0 ≤ d ≤ t : A(t)−A(t− d) ≤ α(d),

i.e., it must bound the flow’s data arrivals in any duration d.
Definition 2 ((Strict) Service Curve): If, during any period

with backlogged data of duration d, a server s with input
function A guarantees an output of at least β(d) ∈ F0, then
it is said to offer a (strict) service curve β.

The network calculus was cast in a (min,+)-algebra [12]
with the following operations:

Definition 3 ((min,+) Operations): Network calculus applies
(min,+)-algebraic operations to compute curve transforma-
tions bounding the worst-case outcome of certain scenarios:
• Flow Aggregation: (α1 + α2)(d) = α1(d) + α2(d)
• Server Crossing: (α� β)(d) = supu≥0 {α(d+ u)− β(u)}
• Residual Service: (β 	 α)(d) = sup0≤u≤d {β(u)− α(u)}
• Server Concat.: (β1 ⊗ β2)(d) = inf0≤u≤d{β1(d−u)+β2(u)}
where α, α1, α2 are arrival and β, β1, β2 are service curves.

These curve transformations guarantee for deterministic
results. For a network such as the tandem shown in Figure 3,
there are multiple valid orders of operations. Each corresponds
to a model of contention that imposes a dependency structure.
That structure, in turn, defines contention models upstream.

s1 s2 s3 s4
f1

f2 f3

f4

Figure 3: Example tandem network in the NC model.

Definition 4 (Contention Model): The network calculus
contention model for a tandem of servers defines its orders
of operations that provide a residual service guaranteed to a
flow crossing said tandem. Any concatenation of sub-tandem
residual service is a valid contention model for the tandem.

Suppose f3 in Figure 3 is the flow of interest to be ana-
lyzed. Its tandem decompositions are defined by subtandem-
separating cuts located between crossed servers:

all cuts: decomposition into 1-server tandems s3 and s4 or
no cuts: entire 2-server tandem consisting of s3 and s4.
On any tandem, any number and placement of cuts results in
a valid tandem decomposition. Their exhaustive enumeration
is known as Tandem Matching Analysis (TMA) [11]. The
two cases shown here are special. The former corresponds
to the classical Separated Flow Analysis (SFA) [12]. It con-
catenates per-server residual service bounds by computing
(β3 	 (α3,1 + α3,4))⊗ (β4 	 α4,1), where the first index de-
notes server location and the second one of arrival curves
is the flow id. The latter contention model is known as
the Pay Multiplexing Only Once (PMOO) [16] analysis that
computes f3’s residual service for the concatenated tandem:
(β3 ⊗ β4)	′ {α3,1, α3,4}. Note the adapted residual service
operation from [11] and the set of separated flows it subtracts.

Next, we need to bound the arrivals of flows to an analyzed
tandem as required for the residual service curve computation
under a specific contention model.

Definition 5 (Dependency Structure): A dependency struc-
ture is a set of sequences that bound arrival curve transforma-
tions up to a tandem of servers.

The dependency structure is subject to the contention
model’s requirements regarding flow aggregation, separation
and duplication. It is created by unwinding the cycle shown
in Figure 1; potentially under contention modeling restrictions
(SFA or PMOO). In our example, SFA can bound f1 and f4
aggregately up to s3, i.e., on the tandem of servers s1 and s2.
Note, that either of the two decompositions as above can be
best due to the interference of f2. Additionally, SFA needs a
separate arrival curve for f1 at s4 – it is not possible to separate
flows after their aggregate crossing of a server was bounded
and we do not assume additional network elements alleviating
this problem like per-flow shapers [12] or interleaved traffic
regulators [18]. PMOO depends on separate bounds for f1 and
f4 for the same reason. Both flows cross the s1,s2-tandem and
can thus benefit from either contention model due to f2. Yet,
PMOO does not check the SFA contention model / tandem
decomposition. Last, note that TMA computes results for all
these contention models and dependency structures to find the
best one. Depending on the employed hardware, executing
the TMA can take multiple hours. For example, analyzing a
network with about 1500 servers and four times as many flows
was shown to take close to 2 hours on a compute server [11].
Therefore, we aim to avoid this huge effort with predictions.

III. GRAPH NEURAL NETWORK FOR NC

We develop our DeepTMA heuristic in this section. It
is based on the concept of Graph Neural Network (GNN)
introduced in [13, 19]. The goal of DeepTMA is to predict
the best tandem decompositions, i.e., contention models, to
use in TMA. We define networks to be in the NC modeling
domain and to consist of servers, crossed by flows. We refer
to the model used in GNN as graphs. The main intuition is to
transform the networks into graphs. Those graph representa-
tions are then used as inputs for a neural network architecture



able to process general graphs, which will then predict the
tandem decomposition resulting in the best residual service
curve. Our approach is illustrated in Figure 4. Since the delay
bounds are still computed using the formal network calculus
analysis, they inherit their provable correctness.

Network of servers
and flows

Network Calculus
TMA Analysis

Graph Transformation
and Neural Network

End-to-End
Latencies

Cuts Recommendation
Training
Points

Figure 4: Overview of the proposed approach.

A. Overview of Graph Neural Networks

In this section, we detail the neural network architecture
used for training neural networks on graphs, namely the family
of architectures based on GNNs [13, 19].

Let G = (V, E) be an undirected graph with nodes v ∈ V
and edges (v, u) ∈ E . Let iv and ov represent respectively
the input features and output values for node v. The con-
cept behind GNNs is called message passing, where hidden
representations of nodes hv are iteratively passed between
neighboring nodes. Those hidden representations are propa-
gated throughout the graph using multiple iterations until a
fixed point is found. The final hidden representation is then
used for predicting properties about nodes. This concept can
be formalized as:

h(t)
v = aggr

({
h(t−1)
u

∣∣∣ u ∈ NBR(v)
})

(1)

ov = out
(
h(t→∞)
v

)
(2)

h(t=0)
v = init (iv) (3)

with h
(t)
v representing the hidden representation of node v at

time t, aggr a function which aggregates the set of hidden
representations of the neighboring nodes NBR(v) of v, out
a function transforming the final hidden representation to the
target values, and init a function for initializing the hidden
representations based on the input features.

The concrete implementations of the aggr and out functions
are feed-forward neural networks (FFNN), with the addition
that aggr is the sum of per-edge terms [19], such that:

h(t)
v = aggr

({
h
(t−1)
NBR(v)

})
=

∑
u∈NBR(v)

f
(
h(t−1)
u

)
(4)

with f a FFNN. For init , a one-layer FFNN is used to fit the
input features to the dimensions of the hidden representations.

Gated Graph Neural Networks (GGNN) [20] were recently
proposed as an extension of GNNs to improve their training.
This extension implements f using a memory unit called
Gated Recurrent Unit (GRU) [21] and unrolls Equation (1)
for a fixed number of iterations. This simple transformation

allows for commonly found architectures and training algo-
rithms for standard FFNNs as applied in computer vision or
natural language processing. The neural network architecture
is illustrated in Figure 5.
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Figure 5: Gated-graph neural network architecture.

Formally, the propagation of the hidden representations
among neighboring nodes for one time-step is formulated as:

x(t) = H(t−1)A+ ba (5)

z(t) = σ
(
Wzx

(t) +UzH
(t−1) + bz

)
(6)

r(t) = σ
(
Wrx

(t) +UrH
(t−1) + br

)
(7)

H̃(t) = tanh
(
Wx(t) +U

(
r(t) �H(t−1)

)
+ b

)
(8)

H(t) =
(
1− z(t)

)
�H(t−1) + z(t)v � H̃(t) (9)

where σ(x) = 1/(1+e−x) is the logistic sigmoid function and
� is the element-wise matrix multiplication. Wz,Wr,W and
Uz,Ur,U are trainable weight matrices, and ba,br,bz,b are
trainable bias vectors. A ∈ R|V|×|V| is the graph adjacency
matrix, determining the edges in the graph G.

Equation (5) corresponds to one time-step of the propa-
gation of the hidden representation of neighboring nodes to
node v, as formulated previously for GNNs in Equations (1)
and (4). Equations (6) to (9) correspond to the mathematical
formulation of a GRU cell [21], with Equation (6) representing
the GRU reset gate vector, Equation (7) the GRU update gate
vector, and Equation (9) the GRU output.

In order to propagate the hidden representations throughout
the complete graph, a fixed number of iterations of Equa-
tions (6) to (9) are performed. This extension has been shown
to outperform standard GNN which require to run the iteration
until a fixed point is found.

We also extended our neural network architecture with an
attention mechanism similar to the one proposed in [22]. Thus,
the neural network can give preference to some neighbors over
other ones via a trained function. For each edge (v, u) in the
graph, we define a weight parameter ρ(t)v,u depending on the
concatenation of h(t)

v and h
(t)
u :

ρ(t)v,u = σ
(
Wa

{
h(t)
v ,h(t)

u

}
+ ba

)
(10)

with trainable weights Wa and bias parameters ba. Equa-
tion (4) can then be rewritten as

h(t)
v =

∑
u∈NBR(v)

ρ(t−1)v,u f
(
h(t−1)
u

)
. (11)



B. Application to TMA

In order to apply the concepts described in Section III-A to
a network calculus analysis, we model NC’s network into a
graph. Figure 6 illustrates this graph encoding on the network
from Figure 3.

s1 s2 s3 s4

f1

f2 f3f4

Path
orderingCut

Figure 6: Transformed network of Figure 3 to the graph model.

Each server is represented as a node in the graph, with edges
corresponding to the network’s links. Each flow is represented
as a node in the graph, too. In order to encode the path taken
by a flow in this graph, we use edges to connect the flow
to the servers it traverses. Since those edges do not encode
the order in which those servers are traversed, so-called path
ordering nodes are added to edges between the flow node
and the traversed server nodes. This property is especially
important in the TMA since the order, and hence position of
cuts, has a large impact on dependency structures. In order to
represent these TMA cuts, each potential cut between pairs of
servers on the path traversed by the flow is represented as a
node. This cut node is connected via edges to the flow and to
the pair of servers it is associated to.

In addition to a categorical encoding of the node type (i.e.,
server, flow, path ordering or cut), the input features of each
node in the graph is as follows:

• For each server s, parameters of its service curve βs(d) =
max {0, rates · d− latencys} are used: [rates, latencys]

• For each flow f , parameters of its arrival curve αf (d) =
{ratef · d+ burstf}{d>0} (i.e., αf (d) = 0 for d ≤ 0)
are used: [ratef , burstf ]

• For each path ordering p, the hop count is encoded as a
categorical one-hot vector: [hop = 1, . . . , hop = n]

• Finally, cut nodes do not have input features

Note that in case more complex arrival or service curve shapes
than affine curves [23] are studied, those input features can be
extended to represent the additional curve parameters. Last
note that edges have no features in this graph encoding.

Since the goal of our machine learning approach is to predict
which tandem decomposition will result in the tightest bound,
only the nodes presenting cuts have output features. We encode
this problem as a classification problem, namely each cut node
has to be classified in two classes: perform a cut between
the pair of servers it is connected to or not: [cut , cut ]. The
overall prediction to be fed back, i.e., the selection of one out
of TMA’s potential decompositions for a given foi’s path, is
defined by the set of all cut classifications for this path.

IV. IMPLEMENTATION AND DATASET GENERATION

A. Technical Implementation

We implemented DeepTMA using Tensorflow. For the pur-
pose of computational efficiency, passing of hidden repre-
sentation between neighboring nodes was implemented with
sparse operations using the graph’s adjacency list instead of
the graph’s adjacency matrix requiring dense operations. The
recursion from Equation (1) was unrolled for a fixed number
of iteration according to the diameters of the analyzed graphs.
Table I illustrates the size of the different layers used here.

Layer NN Type Size

init FFNN (21, 160)w + (160)b
Memory unit GRU cell (320, 320)w + (320, 160)w + (480)b
Edge attention FFNN (320, 1)w + (2)b
out hidden layers FFNN 2× {(160, 160)w + (160)b}
out final FFNN (160, 2)w + (2)b

Total: 209 766 parameters

Table I: Size of the different layers used in the GGNN. Indexes
represent respectively the weights (w) and biases (b) matrices.

We analyzed each network with the DiscoDNC [14] version
2.4. A tandem decomposition is always executed for a flow of
interest. But instead of the residual service curves, we use
the delay bounds for the foi as caused by all decompositions
in order to rank them. This is because the former potentially
faces problems in the case of lost service curve strictness.

B. Dataset Generation

In order to train our neural network architecture, we ran-
domly generated a set of topologies, tandems like in Figure 3
and tree topologies. For each created server, a rate latency
service curve was generated with uniformly random rate and
latency parameters. A random number of flows with random
source and sink servers was added. Note that in our topologies,
there cannot be cyclic dependency between the flows. For
each flow, a token bucket arrival curve was generated with
uniformly random burst and rate parameters. All curve param-
eters were normalized to the (0, 1] interval. In total, 100 000
different networks were generated, with a total of more than 2
million flows, and close to 60 million tandem decompositions.
Half of the networks were generated following tandem topolo-
gies, and half following tree topologies. Table II summarizes
different statistics about the generated dataset. The dataset is
available online1 to reproduce our learning results.

Parameter Min Max Mean Median

# of servers 2 41 14.2 12.0
# of flows 1 63 23.0 18.0
# of flows per server 1 44 5.8 4.6
# of tandem combinations 2 113 100 596.2 134.0
# of tandem combination per flow 2 32 768 25.9 4.0
# of nodes in analyzed graph 6 717 159.0 127.0

Table II: Statistics about the generated dataset.

1https://github.com/fabgeyer/dataset-infocom2019



V. TMA HEURISTICS FROM THE NC FRAMEWORK

As we will detail in Section VII, there is no other combi-
nation of NC and deep learning for deterministic performance
analysis. Nor is there any other combination of NC or deep
learning with a third methodology for fast delay bounding.
To benchmark DeepTMA, we present three new heuristics for
the choice of TMA’s tandem decompositions. All are derived
from the NC framework to showcase its potential to find the
tightest end-to-end delay bound without exhaustive analysis.

A. RND: Random Choice of Tandem Decomposition

The simplest heuristic is to select multiple alternative tan-
dem decompositions randomly following a uniform distribu-
tion. Given any n-server tandem, starting with the foi’s path
as shown in Figure 1, RND only selects n′ � 2(n−1) decom-
positions. I.e., the RND heuristic randomly samples a small
part of TMA’s search space per tandem in the analysis. The
remainder of the analysis follows the standard NC proceeding.

B. PLH: Path Length of Flows up to Location of Interference

Due to the exponential growth of the number of tandem
decompositions, the chance of randomly selecting the tandem
decomposition resulting in the tightest bound decreases expo-
nentially with the number of servers traversed by the foi. In
this second heuristic, we use the intuition that the probability
of a cut depends on the cross-flow at each server and the
fact that the arrival curve of cross-flows depends on the path
traversed. In order to define it, we use h, the number of servers
that each cross-flow crossed before reaching this location,
and empirically fit the probability Pr(cut |havg) with havg the
average of h over all cross-flows. In homogeneous sink-tree
networks, this heuristic can even obtain a precise ranking of
flow arrival curves as well as the relative differences between
them due to the lack of flow demultiplexing [5].

C. HCH: Hop Count Heuristic

This last heuristic is based on the probability of cutting a
tandem according the number of traversed servers as observed
in our data set. In order to correctly parametrize this location,
we empirically fit a distribution Pr(cut |l, p) predicting the best
cut for each path length l and cut position p. The procedure
for generating a tandem cut is illustrated in Algorithm 1.
As in Section V-A, multiple tandem decompositions may be
generated and evaluated.

Algorithm 1 Decomposition using experimental probability.

v ← [c1, . . . , cl] ∼ U(0, 1)l
cuts ← I (v ≤ [Pr(cut |l, 1), . . . ,Pr(cut |l, l)])

(I is the indicator function)

VI. NUMERICAL EVALUATION

We evaluate in this section DeepTMA against the heuristics
presented above. Via a numerical evaluation, we illustrate the
tightness and execution time of DeepTMA and highlight its
usability for practical use-cases.
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Figure 7: Accuracy of DeepTMA and the new heuristics.

A. Prediction Accuracy

Since multiple tandem decompositions may be valid and
since we know the tightest bounds from TMA, we define the
accuracy for a given foi and a given method as 1 if the tandem
decomposition predicted by the method resulted in the tightest
delay bound, and 0 otherwise. We evaluate in Figure 7 the
outcome of the different heuristics evaluated on our dataset.

Figure 7a compares DeepTMA against the RND heuristic
presented in Section V-A, namely random choices of tandem
decomposition. We also evaluate the case where multiple
random tries are evaluated and the one leading to the tightest
delay bound is kept (labeled by the index in the figure). We
note in Figure 7a that DeepTMA achieves average accuracies
larger than 50 % even for flows where the possible number
of tandem decomposition goes up to 32 768. Compared to this
heuristic, DeepTMA achieves much better accuracies for flows
with a larger number of hop.

Figure 7b compares DeepTMA against the PLH heuristic
presented in Section V-B, namely the cross-flow statistics
heuristic. This heuristic achieves better accuracy compared to
the previous one, but it still fails to reach good accuracy for
networks with a large number of cuts.

Finally, Figure 7c compares DeepTMA against the HCH
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Figure 8: Relative error of DeepTMA and the heuristics presented in Section V.

heuristic presented in Section V-C, namely the hop count
statistics heuristic. We notice that this heuristic achieves better
accuracy for networks with a larger number of hops compared
to the two previous heuristics. Nevertheless, DeepTMA still
achieves better results for larger topologies.

Overall, that DeepTMA achieves better prediction accuracy
than the pure NC heuristics. This indicates that the choice
of tandem decomposition is more complex than captured by
indicators such as hop count or cross-flow statistics.

B. Relative Error

While we highlighted in the previous section that the
accuracy of our machine learning approach diminishes as the
number of hops becomes larger, we investigate in this section
the resulting loss of tightness in case a non-optimal tandem
decomposition was selected. In order to quantitatively evaluate
this loss of tightness, we use the relative error, defined as

relative error foi =
delayheuristic

foi − delayTMA
foi

delayTMA
foi

(12)

Since TMA always produces the tightest delay bound among
the evaluated heuristics, this relative error is always positive.

Figure 8 compares DeepTMA against the other heuristics.
Although the accuracy of DeepTMA dropped to 50 % for
larger networks, the impact of these failures to predict the
optimal decomposition only results in a relative error below
6 %. The results and comparison between DeepTMA and the
other heuristics are in line with those presented in Figure 7.
Only PLH32 and HCH32 are able to achieve a relative error
similarly small as DeepTMA, yet, at a much larger computa-
tional cost since 32 different tandem combinations and their
entire dependency structures have to be evaluated every time.

C. Execution Times

In order to understand the practical applicability of our
heuristic, we evaluate in this section its execution time in
different settings. We define and measure the execution time
per network as the total time taken to process N networks and
all its flows divided by N , without including the startup time
or the time taken for initializing the network data structures.

Since DeepTMA can be executed on either CPU or GPU, we
first compare both platforms and their affinity at parallelization
in Figure 9. A Nvidia GTX 1080 Ti was used for the measure-
ments on GPU, and an Intel Xeon E3-1270 v6 (at 3.80 GHz)
for the ones on CPU. We first notice that the execution time
grows close to linearly with the size of the network, both on
CPU and GPU, which is explained by the iterations of message
passing illustrated in Equation (5) according to the diameter
of the studied graph. Execution on GPU results in faster
computation compared to CPU for networks larger than two
hops, mainly due to the better ability of GPUs of parallelizing
the numerical operations used in neural networks.

Since both platforms offer multiple cores for parallel ex-
ecution of multiple processes, we investigate the effect of
batching, namely analyzing multiple networks in parallel.
Parallelization of the mathematical operations described in
Section III is automatically performed by Tensorflow. We
present in Figure 9 the execution time without any batching
– namely only one network is processed at once – and
with batching, where the heuristic processes 64 networks at
once. On both platforms, batching results in a reduction of
processing time, which is relevant in use-cases where multiple
network configuration have to be processed.
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Figure 9: Execution time of the cut recommendation part of
DeepTMA, executed on CPU or GPU, without batching or
batch sizes of 64 networks.

In addition, we measured the execution time of TMA using
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DiscoDNC. The same CPU was used for running DiscoDNC,
with Oracle’s HotSpot JVM version 1.8.

Whereas Figure 9 provides insight on the computational
cost of DeepTMA, Figure 10 compares it to a generalized
version of the heuristics presented in Section V. Since the
selection of tandem decompositions is a fast operation in
all three pure NC heuristics, in particular compared to the
other required operations, we only illustrate the execution
time of a generic heuristic Hn selecting n decompositions per
tandem. As all analyses ultimately use the DiscoDNC for the
derivation of bounds, comparing the average execution times
of Hn and DeepTMA (with batching), we can also judge the
increase of computational effort due to our deep learning-
based predictions. As expected, TMA execution times grow
exponentially and Hn heuristics’ execution times coincide with
TMA as long as their n-value causes an exhaustive search,
too. An entirely CPU-bound DeepTMA analysis is slowest
in very small networks where the exhaustive enumeration of
TMA is easily possible to execute. Starting at a maximum
flow path length of 4, it mostly performs between H4 and
H8. Yet, we saw in Sections VI-A and VI-B that RNDi,
PLHi and HCHi, i ∈ 4, 8 are outperformed by DeepTMA.
DeepTMA leveraging GPU technology for predictions only
adds very small execution times to H1 while achieving vastly
better bounds. Compared to TMA, we can observe a measured
differences in execution time growing up to four orders of
magnitude.

Last, note the comparison between DeepTMA, TMA, SFA
and PMOO that was already presented in Figure 2 as it
highlights efficiency compared to established NC analyses.

VII. RELATED WORK

A recent survey [24] about existing applications of machine
learning to formal verification shows that this combination
can accelerate formal methods, e.g., theorem proving, model-
checking or SAT-SMT problems. As we show, NC has been
combined with other methods, too. So have GNNs with formal
verification. Yet, we are the first to combine both TMA and
GNN into a framework for deterministic performance analysis.

1) Network Calculus Combined with Other Methodologies:
The (min,+)-algebraic NC provides deterministic modeling

and analysis techniques. It has seen various efforts to extend
NC’s capabilities. For instance, the underlying (min,+) algebra
can be exchanged for (min,×) for fading channel analysis [25]
or for (max,+) to better fit discrete event systems [26]. More-
over, a common model for NC and event stream theory has
been developed [27] and state-based system modeling can be
integrated by pairing NC with timed automata [28].

NC has been used to describe component models commonly
found in real-time systems [29]. Delay bounds can then be
derived from a combination of component characteristics and
the network calculus model. For example, knowledge about
the busy period of a greedy processing component has been
used to speed up NC computations [30].

An optimization formulation has been derived from the
NC model that computes tight bounds in networks without
assumptions on the multiplexing of flows [31]. It first derives
the dependencies between busy periods of servers in order to
partially order the mutual impact of flows. The tight analysis
requires to expand this order to all compatible total orders.
This is, however, computationally infeasible. A heuristic was
proposed. It uses the initially derived partial order but it, too,
was shown to become computationally infeasible [11].

Recent work uses machine learning to estimate service
curves from measurements [32]. In contrast to our work, this
interfacing via service curves cannot compute provably correct
bounds on the worst-case flow delays due to uncontrollable un-
certainties introduced by measurements and machine learning.

2) Deep Learning for Graphs and Formal Verification:
GNNs were first introduced in [13, 19], a concept subsequently
refined in recent works. GGNNs [20] extended this architec-
ture with modern practices by using GRU memory units [21].
Message-passing neural network were introduced in [33], with
the goal of unifying various GNN and graph convolutional
concepts. [22] formalized graph attention networks, which
enables to learn edge weights of a node neighborhood.

These concepts were applied to many domains where prob-
lems can be modeled as graphs: chemistry with molecule
analysis [34, 33], jet physics and elementary particles [35],
prediction of satisfiability of SAT problems [36], or basic
logical reasoning tasks and program verification [20]. For
computer networks, they have recently been applied to pre-
diction of delay bounds [37] and performance evaluation of
networks with TCP flows for predicting average flow band-
width [15, 38].

VIII. CONCLUSION

We contribute a new framework that combines network
calculus and deep learning. The first heuristic created with
our framework is the DeepTMA, deep learning-assisted TMA,
a fast network analysis for deterministic end-to-end delay
bounds. It solves the main bottleneck of the existing TMA,
namely its exponential execution time growth with network
size, by using predictions for effectively selecting the con-
tention models in the network calculus analysis. Our work
is based on a transformation of the network of servers and
flows crossing them into a graph which is analyzed using



Graph Neural Networks. Via a numerical evaluation, we show
that our heuristic is accurate and produces end-to-end bounds
which are almost as tight as TMA. DeepTMA is as fast as
or faster than previously widespread methods – namely SFA
and PMOO – even when analyzing larger networks, but with
a gain in tightness exceeding 50 % in some cases.

Future Work Directions: Our deep-learning assisted NC
framework of Section III is already able to create other
heuristics than DeepTMA. For instance, DeepTMAn with n
decompositions suggested per tandem or a heuristic predicting
the most computationally efficient decomposition if multiple
ones will provide best results. Moreover, it can be further
optimized by finding the best number of variables for the
graph neural network as well as its bottleneck. Learning from
a dataset including feed-forward networks, more complex
curve shapes than the simple affine ones [23], or from/for
FIFO-multiplexing networks [39] or entirely non-FIFO [40] is
already possible, too.

Secondly, our framework is highly extensible. With some
minor additions, it can predict if an optional feature of the
NC analysis might be beneficial at a certain point. Examples
are the alternative output bound formulation of [41] and
flow prolongation [42]. Exhaustive flow prolongation is only
feasible on single tandems, yet, learning from those can be
sufficient as we show in our paper. Another direction is to
predict a bound on the necessary domain of curves [30, 43].
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