
The Case for a Network Calculus Heuristic:
Using Insights from Data for Tighter Bounds

Fabien Geyer
Technical University of Munich (TUM)

D-85748 Garching b. München, Germany
Email: fgeyer@net.in.tum.de

Georg Carle
Technical University of Munich (TUM)

D-85748 Garching b. München, Germany
Email: carle@net.in.tum.de

Abstract—Deterministic network calculus offers a framework
for providing guaranteed bounds on end-to-end delay and buffer
usage in computer networks. Various network analysis methods
have been proposed in order to reduce the impact of burstiness
or multiplexing and provide tight performance bounds. Yet,
the choice of which analysis method to use given a network
to analyze is not straightforward as it has been shown in the
literature that corner cases exist leading to poor tightness. We
propose in this paper to take a new look at this question using
insights from data and confirm that there is no clear winner
when deciding which method to use. Based on those first results,
we make the case for a network calculus heuristic in order to
predict the bounds produced by a given network analysis method.
Our main contribution is a heuristic based on graph-based deep
learning, which is able to directly process networks of servers and
flows. Via a numerical evaluation, we show that our proposed
heuristic is able to accurately predict which analysis method will
produce the tightest delay bound. We also demonstrate that the
computational cost of our heuristic makes it of practical use,
with average runtimes one or two order of magnitude faster
than traditional analysis methods.

I. INTRODUCTION

Performance guarantees are an essential part of network
architecture and design in real-time networks such as safety
critical systems [1]. In the case of large Ethernet networks,
deterministic network calculus (DNC) [2] has been success-
fully used as a mathematical framework for validating and
guaranteeing end-to-end delay requirements and buffer sizes.
An important aspect of such framework is to achieve good
tightness, namely minimizing the gap due to the pessimism
of a method and the real worst-case. Various network analysis
methods have been investigated in the literature to address this,
by either focusing on specific effects such as multiplexing [3]
or using methods based on optimization [4]. Yet, no clear
guideline has been proposed with regards to choosing the
appropriate method given a network to analyze.

To address this question, we propose in this paper to take
a new look at this problem from the perspective of data. In
a first step, we confirm previous results on corner cases of
network analyses by evaluating them on randomly generated
feed-forward networks. Based on those findings, we propose a
heuristic for network calculus analyses using a neural network
able to process graphs in order to predict the end-to-end
latency bound of a given analysis method. Our heuristic is
based on a transformation from the feed-forward server graph
and the flows crossing it to a general graph which can then

be analyzed using recent techniques from neural networks
focused on graph analysis.

We demonstrate via a numerical evaluation that our trained
neural network is able to predict end-to-end latency bounds
with a relative median error of 2.5 %. While the predictions
of the neural network cannot be directly used for giving
performance guarantees, we show that such heuristic can be
used for deciding which network analysis method to apply
given a network and a flow of interest. Compared to a strategy
of using only one analysis method, using our heuristic as a
selection of which method to use leads to a relative reduction
of the end-to-end delay bound of 12.79 % in average. Finally,
we also evaluate the runtime of our heuristic and show that
it is one order of magnitude faster than a standard network
analysis method, highlighting its usability in practice.

The rest of this paper is organized as follows. We first
give an overview of network calculus in Section II and
investigate the state of the different network analysis methods
using numerical evaluations. We present in Section III our
heuristic based on graph-based deep learning. In Section IV,
we numerically evaluate our approach and show an application
of our heuristic. Related research studies are presented in
Section V. Finally, Section VI concludes our work.

II. DETERMINISTIC NETWORK CALCULUS

We present in this section a brief overview over determinis-
tic network calculus and a numerical evaluation of its different
network analysis methods. In DNC, a flow corresponds to
unidirectional communications between a source and a desti-
nation, modeled as a function of its cumulative arrival of data.
In order to compute bounds on flows, we are interested in the
functions A(t) corresponding to the data arriving in a given
server s at time t, and A′(t) the amount of data processed by
the server at time t. Using this formalism, the following delay
definition can then be derived:

Definition 1 (Flow delay): Assume a flow with input A and
crosses a server s and results in the output A′. The (virtual)
delay for a data unit arriving until time t is

D(t) = inf{τ ≥ 0 | A(t) ≤ A′(t+ τ)}

Instead of directly working with A, DNC makes use of the
concept of arrival curves, which is a function bounding the
maximal arrivals of a flow:



Definition 2 (Arrival curve): Given a flow with input A, a
function α is an arrival curve for A iff

A(t)−A(s) ≤ α(t− s),∀t, s, 0 ≤ s ≤ t

Definition 3 (Service curve): If the service provided by a
server s for a given input A results in an output A′, then s
offers a service curve β iff

A′(t) ≥ inf
0≤s≤t

{A(t− s) + β(s)},∀t

A. (min, +) Algebra

DNC was formalized as a (min,+)-algebraic framework
in [5, 2], enabling an easier description of operations on
flow and server descriptions. The (min,+) convolution and
deconvolution of two functions f, g are defined as:

Convolution: (f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}

Deconvolution: (f � g)(t) = sup
s≥0
{f(t+ s)− g(s)}

Using those (min,+) operations, one can rewrite the pre-
vious definitions as A′ ≥ A ⊗ β and A ⊗ α ≥ A. Moreover,
(min,+) convolution allows DNC to concatenate the service
of consecutive servers 〈1, . . . , n〉 into a single service curve.

B. Network analysis methods

We review here the most common network analysis methods
from DNC. We refer to [6] for a more in-depth review of
the different methods proposed in the literature. We call the
analyzed flow flow of interest, abbreviated here foi. The foi’s
path defines the sequence of servers that defines its end-to-end
delay. Different methods have been proposed in the literature
for bounding this end-to-end delay.

1) Total Flow Analysis (TFA) [2]: The TFA first computes
per-server delay bounds. Each one holds for the sum of all the
traffic arriving to a server. The flow’s end-to-end delay bound
is derived by summing up the individual server delay bounds
on its path.

2) Separated Flow Analysis (SFA) [2]: The SFA is a
direct application of other theorems: first compute the left-
over service of each server on the foi’s path, then concatenate
them and finally derive the end-to-end delay bound. Deriving
the end-to-end delay bound using only one service curve will
consider the burst term of the foi only once, a property called
Pay Burst Only Once (PBOO).

3) Pay Multiplexing Only Once (PMOO) [3]: The PMOO
analysis first convolves the tandem of servers before subtract-
ing the cross-traffic. Using this order, the bursts of the cross-
traffic appear only a single time compared to the SFA analysis
where the bursts are included at each server. Therefore, mul-
tiplexing with cross-traffic is only paid for once.

4) Arrival bounding methods: For more involved feed-
forward networks, a procedure to combine tandem analyses
with a network analysis have been proposed. [7] established
two basic steps of the analysis: 1) cross-traffic arrival bounding
and 2) flow of interest performance bounding. For the cross-
traffic arrival bounding, the flows interfering with the foi

are backtracked to their sources to derives the dependencies
between the foi and its cross-flows in a recursive fashion. The
PBOO and PMOO properties can then also be applied on the
cross-traffic as shown in [8, 7].

C. Numerical comparison between methods
From the description of the different methods previously

presented, the most promising method for producing a tight
bound is PMOO. However, it was demonstrated in [9] that
PMOO does not necessarily outperform SFA. These problems
all aggravate in the analysis of entire networks, where accu-
rately bounding cross-traffic is important.

In order to better understand the differences between the
different network analysis methods previously described, we
propose in this section to numerically investigate the bounds
produced by each method on a dataset of 44 044 topologies1.
Our methodology for evaluating the methods is as follows.
We generated random feed-forward networks as illustrated in
Figure 1, where up to 10 servers are connected in a daisy
chain manner. For each server, a rate-latency curve is used
with the rate and latency sampled from a uniform distribution.
Up to 40 flows are then randomly generated with random
sources and destination servers, with a token bucket arrival
curve with the rate and burst sampled from a uniform distri-
bution. Each topology is then evaluated using DiscoDNC [8]
(version 2.4.0) using TFA, SFA and PMOO, with different
arrival bounding methods. The arrival bounding methods
are labeled as: PMOO-AB for ArrivalBoundMethod.PMOO
in DiscoDNC, PMOO-PF-AB for PER_FLOW_PMOO, PBOO-
PF-AB for PBOO_CONCATENATION, and PBOO-PH-AB for
PBOO_PER_HOP. We refer to [8] for a complete explanations
of those arrival bounding methods. The topologies are built
such that they satisfy the feed-forward property, i.e., there are
no cyclic dependencies between the flows. For our evaluation,
we focus in this paper on end-to-end delay bounds.

s1 s2 s3
f1
f2 f3

Figure 1: Example feed-forward network

The numerical results and comparison between analysis
methods is presented in Figure 2. We first compare in Fig-
ure 2(a) and (b) the flows’ end-to-end delay bounds against the
best and worst delay bounds produced by the other methods.
As expected, PMOO produces the tightest delay bounds for
around 70 % of the analyzed flows, SFA for 54 %, and TFA
for 1 %. Those numerical results are in line with [9, 7].
Surprisingly, we notice that PMOO produces the worst delay
bounds in around 11 % of the studied flows, highlighting
and confirming the existence of corner-cases. We also notice
that the cross-traffic arrival bounding method has a noticeable
influence on tightness.

Based on those results, we investigate in Figure 2(c) how
much tightness is lost in case the network analysis does not

1Available here: https://github.com/fabgeyer/dataset-itc30nc



36%
65.9%

69.7%
37.1%

18.7%
52%
53.6%

19.2%
0.8%
0.8%
0.8%
0.8%

PMOO + PBOO-PF-AB
PMOO + PBOO-PH-AB

PMOO + PMOO-AB
PMOO + PMOO-PF-AB

SFA + PBOO-PF-AB
SFA + PBOO-PH-AB

SFA + PMOO-AB
SFA + PMOO-PF-AB
TFA + PBOO-PF-AB

TFA + PBOO-PH-AB
TFA + PMOO-AB

TFA + PMOO-PF-AB

0% 25% 50% 75%
Percent of flows where

the method is best

A
na

ly
si

s
m

et
ho

d
(a)

16.7%
11.1%
11%

15.8%
0.8%
0.8%
0.8%
0.8%

64.1%
18.3%
18.3%

48.4%

0% 25% 50% 75%
Percent of flows where

the method is worst

(b)

0% 20% 40% 60%
Relative difference

compared to best method

(c)

0% 25% 50% 75% 100%
Method coverage

per topology

(d)

Figure 2: Evaluation and comparison of the different network analysis methods against different metrics. (a) Ratio of flows
where a given method produces the tightest bound compared to the other methods, (b) respectively the worst bound. (c) Relative
difference between delay bound of a given method and the best method when the given method does not provide the best
bound. (d) Ratio of networks where a given method is able to produce the tightest bounds for all the flows of the topology.

produce the tightest bound. For each flow F where a given
method M did not produce the tightest bound, we use the
relative difference to numerically assess this lost tightness:

Relative Difference(F ,M) =
DM
F −minmDm

F
minmDm

F
(1)

with DM
F the end-to-end delay bound of flow F with analysis

method M .
Finally, we evaluate the ability of a network analysis method

to produce the tightest bounds for all flows in a given network
topology. To numerically assess this notion, we define the
coverage per topology for a given method as the ratio of
number of flows where the method produced the tightest
bounds divided by the total number of flows in the topology.
Results are presented in Figure 2(d). Although the results
are in line with the numerical results from Figure 2(a) and
(b), we notice that given a network topology, using a single
network analysis method will not produce the tightest bounds
for all flows in the topology. This finding motivates an adaptive
analysis for a given topology, where different network analysis
methods would be used depending on the flow of interest.

III. DNC HEURISTIC USING NEURAL NETWORKS

We introduce in this section a heuristic based on the concept
of Graph Neural Network introduced in [10, 11]. The main
intuition behind our approach is to map network topologies
and flows to graphs. Those graph representations are then
used as input for a neural network architecture able to process
general graphs.

A. Presentation

Let G = (V, E) be an undirected graph with nodes v ∈ V
and edges e ∈ E . Let iv and ov represent respectively the input
features and target values of node v. The concept behind Graph
Neural Networks is called message passing, where hidden rep-
resentations of nodes are based on the hidden representations

of their neighboring nodes. Those hidden representations are
propagated through the graph using multiple iterations until a
fixed point is found. The final hidden representation is then
used for predicting a property about the node. This concept
can be expressed as:

h(t)
v = f

({
h(t−1)
u

∣∣∣ u ∈ NBR(v)
})

(2)

ov = g
(
h(t→∞)
v

)
(3)

h(t=0)
v = init (iv) (4)

with h
(t)
v representing the hidden representation of node v at

time t, f(·) a function which aggregates the different hidden
representations, NBR(v) the set of neighboring nodes of v, g(·)
a function for transforming the final hidden representation to
the target values, and init(·) a function for initializing the
hidden representations based on the input features.

The concrete implementation of the f(·) and g(·) functions
are feed-forward neural networks with the special case that
f(·) in Equation (2) is the sum of per-edge terms (as recom-
mended by [11]) such that:

h(t)
v = f

({
h
(t−1)
NBR(v)

})
=

∑
u∈NBR(v)

f∗
(
h(t−1)
u

)
(5)

with f∗(·) a feed-forward neural network. For init(·), the
initial features are usually zero-padded to fit the dimensions
of the hidden representations.

B. Extensions

We give in this section a brief overview of the extensions
to GNNs which were used in this paper.

1) Gated Graph Neural Network: In order to improve the
training of Graph Neural Networks, Li et al. [12] proposed
Gated Graph Neural Networks (GG-NNs). This extension
implements the function f(·) using a memory unit called
Gated Recurrent Unit (GRU) [13] and unrolls Equation (2)



for a fixed number of iterations. The propagation of hidden
representations among neighboring nodes for one time-step is
formulated as:

x(t) = H(t−1)A+ ba (6)

z(t) = σ
(
Wzx

(t) +UzH
(t−1) + bz

)
(7)

r(t) = σ
(
Wrx

(t) +UrH
(t−1) + br

)
(8)

H̃(t) = tanh
(
Wx(t) +U

(
r(t) �H(t−1)

)
+ b

)
(9)

H(t) =
(
1− z(t)

)
�H(t−1) + z(t)v � H̃(t) (10)

where σ(x) = 1/(1 + e−x) is the logistic sigmoid
function and � the element-wise matrix multiplication.
{Wz,Wr,W} and {Uz,Ur,U} are trainable weights ma-
trices, and {ba,br,bz,b} are trainable biases vectors. A ∈
R|V|×|V| is the graph adjacency matrix. Equation (6) corre-
sponds to the aggregation of messages from adjacent nodes as
in Equation (5). Equations (7) to (10) correspond respectively
to the reset gate, the update gate, the candidate output, and
the output vector of a standard GRU cell [13].

2) Edge attention: A recent advance in neural networks has
been the concept of attention, which provides the ability to a
neural network to focus on a subset of its inputs. For the scope
of GNNs, we introduce here so-called edge attention, namely
we wish to give the ability to each node to focus only on a
subset of its neighborhood. Formally, let a(t)(v,u) ∈ [0, 1] be the
attention between node v and u. Equation (5) is then extended:

h(t)
v =

∑
u∈NBR(v)

a
(t)
(v,u) · f

∗
(
h(t−1)
u

)
(11)

a
(t)
(v,u) = fA

(
h(t−1)
v ,h(t−1)

u

)
(12)

C. Application to deterministic network calculus

In order to apply the concepts described in Sections III-A
and III-B to network calculus analysis, we model the feed-
forward server graph and the flows crossing it into graphs.
Each servers is represented as a node in the graph, with edges
corresponding to the connections between servers. Each flow
is represented as a node with edges connecting it to the path
of traversed servers. Since the order of the servers which is
traversed by a flow plays a large influence in network calculus,
so-called path ordering nodes are added on the edges between
the flow node and the server nodes. Figure 3 illustrates this
graph encoding with the network from Figure 1.

s1 s2 s3

f1

f2 f3

Path
ordering

Figure 3: Graph encoding of the example topology. Square
nodes represent additional nodes encoding path ordering.

Each node in the graph has the following input features:
• For server S, we use the parameters of its rate-latency

service curve: iS = [rateS , latencyS ];
• For flow F , we use the parameters of its token bucket

arrival curve: iF = [rateF , burstF ];
• For a path ordering node O, a categorical encoding of

the hop index is used as input feature. We use standard
one-hot encoding, namely iO is a vector with a one at the
hop index, and zeros otherwise (e.g.: in Figure 3, we have
if1−s1O = [1, 0, 0], if1−s2O = [0, 1, 0], if1−s3O = [0, 0, 1]).

For the output prediction of each node representing a flow
F , we wish to have a vector of end-to-end latency bound
for the 12 methods evaluated in Section II-C, namely: oF =
[Dm1

F , Dm2

F , . . . , Dm12

F ]. Similar output vectors may be used
for the servers’ backlog bound.

IV. NUMERICAL EVALUATION

We evaluate in this section the accuracy of the proposed
heuristic as introduced in Section III-C.

A. Evaluation as latency bound heuristic

We first assess in this section the precision of the predicted
end-to-end latency bounds. Figure 4 illustrates the absolute
relative difference between the predicted end-to-end delay
bound and the bound given by the analytical method (named
here ground truth). The overall median value is 2.5 %, with
larger errors in case of predicting the output of PMOO.

PMOO + PBOO-PF-AB
PMOO + PBOO-PH-AB

PMOO + PMOO-AB
PMOO + PMOO-PF-AB

SFA + PBOO-PF-AB
SFA + PBOO-PH-AB

SFA + PMOO-AB
SFA + PMOO-PF-AB
TFA + PBOO-PF-AB

TFA + PBOO-PH-AB
TFA + PMOO-AB

TFA + PMOO-PF-AB

0% 5% 10%
Absolute relative difference between
predicted bound and ground truth

A
na

ly
si

s
m

et
ho

d

Figure 4: Precision of the predicted end-to-end latency bound

B. Evaluation as a proxy for analysis method selection

Based on the results from Section II-C, we introduce here
an adaptive network analysis method, where a specific network
analysis method is used given a flow of interest. This adaptive
network analysis is illustrated in Algorithm 1.

Algorithm 1 Adaptive network analysis

for all flow of interest F in network N do
netcalc_method ← select_netcalc_method(N ,F)
boundF ← netcalc_method(N ,F)

For the function select_netcalc_method in Algorithm 1, we
define here the following strategies:



• Global top 1: we always use the network analysis method
which provided the best median bound in Section II-C (ie.
PMOO with SFA per-hop arrival bounding);

• Global top 2: we evaluate the two methods which provided
the best median bounds in Section II-C (ie. PMOO with SFA
per-hop and PMOO global arrival bounding) and select the
method which produced the tightest bound;

• PMOO and SFA: both PMOO and SFA with SFA per-hop
arrival bound are evaluated;

• Per-topo best: we use the method which provided the best
median bound over the flows of the studied topology;

• Fully random: we randomly select among the 12 methods
surveyed here, with the same probability for each method;

• Weighted random: same as in Fully random but with prob-
ability values set according a ranking of the methods;

• ML top 1: the heuristic from Section III-C is used for
selecting the analysis according to the minimum predicted
end-to-end delay bound;

• ML top 2: as in ML top 1, but two analyses are selected
and the one producing the minimal tightest bound is kept.

We first evaluate in Figure 5 the ability of Algorithm 1
to produce the tightest per-flow end-to-end delay bound ac-
cording to the different selection strategies previously listed.
The machine learning based strategies outperform all the other
strategies in Figure 5, with the ability to produce the tightest
result for 88 % of the studied flows for the ML top 2 strategy,
outperforming all the other evaluated strategies.

83.2%
88.1%

76.6%
71.2%

61.6%
52.1%

44.2%
29.4%Fully random

Weighted random
Global top 1
Global top 2

Per-topo best
ML top 1

PMOO and SFA
ML top 2

0% 25% 50% 75%
Coverage ratio compared to

optimal selection method

St
ra

te
gy

Figure 5: Ability of a selection method to produce the tightest
end-to-end delay bound.

As in Figure 2(c), we evaluate in Figure 6 how much
tightness is lost in case the produced end-to-end latency bound
is not the tightest. Using the machine learning heuristic, we
still get tight bounds compared to the other approaches listed
earlier. This means that although the heuristic did not result
in selecting the tightest network calculus analysis to use, the
one which was selected produced a bound close to the tightest
one.

Finally we evaluate in Figure 7 the gain in tightness of using
an adaptive network analysis compared to only using a single
analysis for all the evaluated topologies. In average, we see
that we get a relative gain in tightness of around 12.79 % by
using an adaptive network analysis based on machine learning,
close to the optimal 13.03 %.

Fully random
Weighted random

Global top 1
Global top 2

Per-topo best
ML top 1
ML top 2

PMOO and SFA

0% 25% 50% 75% 100%
Absolute relative difference
compared to best method

St
ra

te
gy

Figure 6: Relative difference between delay bound of a given
method and the best method when the given method does not
provide the best bound

12.98%

12.84%

12.79%

6.47%

13.03%

0.06%

-0.08%

-2.05%

-0.08%

-2.05%Fully random
Weighted random

Global top 2
Per-topo best

ML top 1
ML top 2

PMOO and SFA
Optimized

0% 5% 10%
Average relative gain

St
ra

te
gy

Figure 7: Relative gain in tightness compared to using only
one method for all the evaluated topologies. "Optimized"
corresponds here to the evaluation of the 12 network analyses.

C. Runtime

We evaluate here the runtime of using such heuristic in
order to assess if the heuristic is of practical benefit regarding
computation time. We evaluated the machine learning heuristic
both on GPU (Nvidia GeForce GTX 1080 Ti) and CPU (Intel
Xeon E3-1270). The network calculus analyses were run on
the same CPU. The runtimes discussed here do not include
the computation cost of training the neural network.

We compare in Figure 8 the average runtime per topology
of the machine learning heuristic against the average runtimes
of the different network analyses studied here. Compared to a
single analysis, our heuristic is an order of magnitude faster
on GPU. Compared to the sum of the runtimes of all the
analyses, our heuristic is two orders of magnitude faster on
GPU. This shows that our machine learning heuristic is both
the best performing regarding accuracy as showed in Figures 5
and 7, but can also be used at little computational cost on GPU.

V. RELATED WORK

Identifying corner-cases of network calculus has already
attracted some previous work. Schmitt et al. [9] showed
that PMOO suffers from shortcomings given specific network
configurations, and provided an optimization-based analysis
that implements all three analysis principles at the same time.
However, Kiefer et al. [14] showed that this optimization
method suffers from vast computational effort. Bouillard et al.
proposed in [4] another attempt to solve this challenge is using



NC (all methods)
TFA
SFA

PMOO
ML (all methods - CPU)
ML (all methods - GPU)

1 10 100
Average runtime per topology (ms)

M
et

ho
d

Figure 8: Average runtimes per topology of the different net-
work analysis and arrival bounding methods, and the machine
learning heuristic.

optimization-based analysis, but it was similarly showed by
Bondorf et al. [15] to become computationally infeasible.

Various proposals have been made in order to make network
calculus more computationally efficient. Luangsomboon et al.
[16] proposed to use GPUs for computing fast convolution
and deconvolution. While this approach provided efficient
operations of the (min,+) algebra, the benefit in the case
of network analysis is still to be determined. Bondorf et al.
[15] recently proposed another approach based on exhaustive
decomposition of network. Numerical evaluation showed that
this method could reach bounds comparable to the ones from
optimization-based methods at lower computational cost.

Neural networks for graphs has recently attracted a larger
interest, and are generally based on the concept of message
passing presented in Section III. They have been used in a
variety of domains such as performance evaluation of networks
with TCP flows [17], routing protocols [18], or basic logical
reasoning tasks and program verification [12].

VI. CONCLUSION

Through a numerical evaluation on randomly generated
networks of various network analysis methods from DNC, we
showed and confirmed the existence of corner-cases, highlight-
ing that the choice of which method to use given a network
and a flow of interest is not trivial. This motivated our case for
having a DNC heuristic able to predict which network analysis
method will produce the tightest bound.

We contributed in this paper a novel heuristic for deter-
ministic network calculus using graph-based deep learning.
Our approach is based on the application of Graph Neural
Networks and a mapping from feed-forward server graphs
and the flows crossing them to graphs which can be used
for training a neural network. We showed via a numerical
evaluation that our approach is able to reach good accuracies
and predict which network analysis will produce the tightest
bounds. Finally, we evaluated the runtime of our heuristic
and showed that it can be used at a small computational cost
compared to traditional network analyzes.

ACKNOWLEDGMENTS

The authors would like to thank Steffen Bondorf for his
feedback on an early version of this paper. This work was
supported by the German Federal Ministry of Education and

Research (grant 16KIS0538, project DecADe), by the German-
French Academy for the Industry of the Future, and the High-
Performance Center for Secure Networked Systems.

REFERENCES
[1] F. Geyer and G. Carle, “Network Engineering for Real-Time Networks:

Comparison of Automotive and Aeronautic Industries Approaches,”
IEEE Commun. Mag., vol. 54, no. 2, pp. 106–112, Feb. 2016.

[2] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Berlin, Heidelberg: Springer-
Verlag, 2001.

[3] J. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving Performance
Bounds in Feed-Forward Networks by Paying Multiplexing Only Once,”
in Proceedings of the 14th GI/ITG Conference on Measurement, Mod-
eling, and Evaluation of Computer and Communication Systems (MMB
2008), Mar. 2008, pp. 1–15.

[4] A. Bouillard, L. Jouhet, and E. Thierry, “Tight Performance Bounds
in the Worst-Case Analysis of Feed-Forward Networks,” in INFOCOM
2010. IEEE, Mar. 2010.

[5] C.-S. Chang, Performance Guarantees in Communication Networks.
Springer, 2000.

[6] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Catching Corner Cases
in Network Calculus – Flow Segregation Can Improve Accuracy,” in
Proceedings of 19th International GI/ITG Conference on Measurement,
Modelling and Evaluation of Computing Systems, Feb. 2018.

[7] S. Bondorf and J. B. Schmitt, “Calculating accurate end-to-end delay
bounds – you better know your cross-traffic,” in Proceedings of the 9th
International Conference on Performance Evaluation Methodologies and
Tools (VALUETOOLS 2015), Dec. 2015.

[8] ——, “The DiscoDNC v2 – A Comprehensive Tool for Deterministic
Network Calculus,” in Proceedings of the 8th International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS
2014), Dec. 2014.

[9] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay Bounds under
Arbitrary Multiplexing: When Network Calculus Leaves You in the
Lurch. . . ,” in Proceedings of the 27th Annual Joint Conference of the
IEEE Computer and Communications Societies, ser. INFOCOM 2008,
Apr. 2008, pp. 1669–1677.

[10] M. Gori, G. Monfardini, and F. Scarselli, “A New Model for Learning in
Graph Domains,” in Proceedings of the 2005 IEEE International Joint
Conference on Neural Networks, ser. IJCNN’05, vol. 2. IEEE, Aug.
2005, pp. 729–734.

[11] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The Graph Neural Network Model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[12] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated Graph
Sequence Neural Networks,” in Proceedings of the 4th International
Conference on Learning Representations, ser. ICLR’2016, Apr. 2016.

[13] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation,” Jun. 2014.

[14] A. Kiefer, N. Gollan, and J. Schmitt, “Searching for tight performance
bounds in feed-forward networks,” Measurement, Modelling, and Eval-
uation of Computing Systems and Dependability and Fault Tolerance,
pp. 227–241, 2010.

[15] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of deter-
ministic network calculus – design and evaluation of an accurate and
fast analysis,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems (POMACS), vol. 1, no. 1, p. 34, 2017.

[16] N. Luangsomboon, R. Hesse, and J. Liebeherr, “Fast Min-plus Con-
volution and Deconvolution on GPUs,” in Proceedings of the 11th
International Conference on Performance Evaluation Methodologies and
Tools, ser. VALUETOOLS 2017, Dec. 2017.

[17] F. Geyer, “Performance Evaluation of Network Topologies using Graph-
Based Deep Learning,” in Proceedings of the 11th International Con-
ference on Performance Evaluation Methodologies and Tools, ser. VAL-
UETOOLS 2017, Dec. 2017, pp. 20–27.

[18] F. Geyer and G. Carle, “Learning and Generating Distributed Rout-
ing Protocols Using Graph-Based Deep Learning,” in Proceedings of
the 2018 SIGCOMM Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks, ser. Big-DAMA 2018.
Budapest, Hungary: ACM, Aug. 2018, pp. 40–45.


