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ABSTRACT
Network models for evaluating the behavior of networks are
important tools in traffic engineering for dimensioning net-
works and provisioning bandwidth for different applications.
We present in this paper a flow-level network model for the
performance evaluation of IP networks with support of long-
lived TCP and UDP flows. While flow-level network models
for TCP and UDP flows have already been investigated, a
vast majority of previous studies often do not take into ac-
count the importance of cross-traffic. This paper presents
topologies where cross-traffic has a major impact on the
performance of TCP flows and shows how previous models
are not accurate enough. We consider in our study Eth-
ernet LANs with low latencies and show how to apply our
framework to networks with Ethernet switches using prior-
ity based scheduling, fair-queuing scheduling, or hierarchi-
cal scheduling based on the former algorithms. We assess
the accuracy of our approach by comparing the results of
our model with results of the discrete event simulator OM-
NeT++.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing; C.2 [Computer Systems Organization]: Computer-
Communication Networks

General Terms
Theory, Measurement, Performance

Keywords
Flow-level network modeling, Network traffic modeling, Per-
formance evaluation

1. INTRODUCTION
In the last few decades, analog functions and isolated pro-

cessing devices are increasingly being replaced with numeric
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and interconnected devices with the support of Ethernet and
TCP/IP based networks. In order to function correctly,
those devices and applications are in demand for efficient
and predictable network performance. Traffic engineering
aims at bringing an answer to this need by avoiding conges-
tion and optimizing network layout to support an increasing
number of applications.

Network models are an important part of this process in
order to evaluate how a network will behave. Those models
should be able to analyze different types of network proto-
cols, among which TCP and UDP based applications. Dif-
ferent techniques have been developed for this purpose, each
with their advantages and drawbacks.

Accurate discrete-event simulators and models are often
used for this task, where we can cite OMNeT++[3] or ns-3
[2] as two well-known open-source packet simulation tools
used by the network research community. While simula-
tions produce accurate results as it aims at replicating the
different processes taking place in a network, it often fails
at scalability and efficiency.

Mathematical frameworks have been proposed for the de-
terministic study of networks, such as the ones presented in
[12] and [21], also known as Network Calculus. Compared to
simulations, such models have the major advantage of bring-
ing deterministic behavior in a network and thus enabling
real-time communications in highly critical environments.
But it comes at the cost of using restricted types of flows,
which do not include elastic flows, meaning flows adapting
their behavior to the network conditions, such as protocols
with congestion control like TCP.

In order to evaluate the performance of elastic traffic,
flow-level network models have been proposed as an effi-
cient alternative to discrete-event simulation and are used on
large networks topologies. As illustrated later, such model-
ing achieve an accuracy comparable to simulation, but with
a smaller calculation overhead.

We propose in this paper a framework for evaluating the
steady-state performance of long-lived TCP and UDP flows
in the context of Ethernet LANs. While previous studies
in the domain of flow-level network modeling are often ne-
glecting the impact of cross-traffic, we demonstrate that it
can lead to major errors on the evaluation of performances
of TCP on specific topologies. This phenomenon of cross-
traffic is well known in traffic engineering and was firstly
attributed to ACK compression in [32]. More recently [19]
proposed the principle of data pendulum to explain it.

Our solution takes into account this phenomenon by in-
cluding TCP acknowledgments into our flow-level network



model. With our framework, we aim at evaluating Ethernet
LANs where nodes communicate using TCP or UDP, and
give the following results: average throughput, end-to-end
delay and loss probability. We also extend our approach to
network supporting Strict-Priority Queuing (SPQ), packe-
tized versions of Generalized Processor Sharing (GPS) such
as Weighted Fair Queuing (WFQ) [27], as well as hierarchi-
cal scheduling based on the former algorithms.

This framework was developed for the performance eval-
uation of large network topologies using standard TCP pro-
tocols for doing traffic engineering. But it may also be used
for other purposes such as the investigation of the impact of
mixed congestion control protocols on the same network.

This work is structured as follows. In Section 2, we present
similar research studies. Section 3 highlights the basic prin-
ciples of our framework, while details about flow modeling
are introduced in Section 4, and details about FIFO queues
and schedulers are given in Section 5. We present in Sec-
tion 6 our algorithm for finding a solution to the model.
With Section 7, we evaluate our framework across different
topologies where we highlight the flaws of a model not tak-
ing into account cross-traffic. Finally, Section 8 summarizes
and concludes our work, and gives an overview of future
improvements for our framework.

2. RELATED WORK
Flow-level modeling is based on previous effort on TCP

packet-level models, where the throughput of a TCP connec-
tion is defined as a function of loss probability and round-trip
time (RTT). The two prominent packet-level models are the
so-called square-root formula [23], and the PFTK formula
[26].

Using those packet-level models, flow-level models have
been developed using a fixed point evaluation in order to
evaluate the steady-state throughput of multiple TCP flows
in various topologies. Gibbens et al. proposed one of the
early model on this subject in [16] using the square-root
formula for the evaluation of TCP flows. Separately, Firoiu
et al. as well as Bu et al. proposed a similar model based
on the PFTK formula in [13] and [10] for arbitrary networks
with TCP and non-TCP flows and RED queue management.
Altman et al. proposed various mathematical formalisms
and proofs to flow-level models in [5], by building on the
results of [10]. The models previously cited were extended
by Hassan et al. in [18] to include scheduling algorithms,
namely priority queuing and weighted fair queuing.

Velho et al. noted in [30, 31] that previous work on flow-
level modeling did not include the effect of cross-traffic on
TCP flows. They proposed a solution to overcome this
problem by including TCP acknowledgments flows into a
fixed point formulation using a RTT-aware max-min model.
While the solution proposed in [31] seems appropriate for
the proposed use cases, it is not clear if the evaluation of
the TCP model takes account of other behavior of TCP than
RTT-unfairness, such as TCP timeouts. Indeed, the work
that lead to the PFTK formula showed that TCP timeouts
have a significant impact on TCP sending rate. We present
in this paper a solution to the cross-traffic problem based on
the early work presented in [13].

Separately to the evaluation of the steady-state behavior
of TCP flows, researchers also focused on models for the dy-
namic behavior of TCP traffic. Misra et al. described in [24]
the behavior of TCP flows using a set of coupled ordinary

differential equations. This formulation was then extended
by various researchers such as the work presented in [25]
and [22]. Similarly to the work on flow-level modeling, the
influence of cross-traffic was only taken later into account,
such as the work presented in [8].

3. FRAMEWORK FOR FLOW-LEVEL NET-
WORK MODELING

3.1 Elements of the studied network
We define the following assumptions for the topologies

studied in this paper. We target the performance evalua-
tion of Ethernet Local Area Networks (LANs) where enti-
ties communicate using standard Ethernet. Computers are
interconnected through Ethernet switches and communicate
with each other either by using protocols on top of TCP, or
by using fixed rate flows (streaming) which is considered here
to be UDP based. For the scope of this paper, we consider
that all communications are unicast and that the routing is
static, meaning that we have a single path between a source
and a destination.

The network is composed of Ethernet switches functioning
on the principle of store-and-forward, meaning that switches
need to first receive and store the complete frame before
being able to forward it, as opposed to the principle of cut-
through. Links between nodes of the network are assumed
to be Ethernet cables, and can have different link speed. A
switch can have an internal processing delay for each frame.
As we study Ethernet LANs with low latencies, meaning
networks where queuing delay has a large influence on end-
to-end delays, we do not neglect queuing delay in switches.

When discussing packet size and flow throughput in the
rest of the paper, we consider them from the Ethernet point
of view. In order to also take into account the preamble,
start of frame delimiter and interframe gap of Ethernet, the
packet size shall account for it.

3.2 Flow-level network model
Our flow-level network model consists of servers, which

model the different queues of the network, as well as flows,
which represent the communications between the nodes of
the network.

We define a server as an entity receiving packets and for-
warding them on a link. A server, noted here sk with k ∈ N,
is defined by the following parameters: Ck is the maxi-
mum output bandwidth, Dk is an additional delay (which
can be used to model propagation and processing delay),
Fk = {fn}k is the set of flows going through this server,
Qk the buffer size of the server as the result of the function
HQ

k (F ) depending on a set of flows F , pk the drop probabil-
ity of the server as the result of the function Hp

k (F ) depend-

ing on a set of flows F . Details about the functions HQ
k and

Hp
k depend on which model to use and will be described in

Section 5.
We define a flow as a sequence of packets sent from a par-

ticular source to a particular unicast destination of a spe-
cific transport connection or media stream. A flow, noted
here fi with i ∈ N, is defined by the following parameters:
Si = {sn}i the path of servers traversed by the flow from
source to destination, and ri the bandwidth of a flow at its
source as the result of the function ρi(S) depending on the
path of servers S. We also define the throughput of a flow as



the rate of successful message delivered to the destination.
According to this definition, if a protocol is specified by re-
quests and replies, two flows have to be used. We also define
Si as as the path which will be used for the reply packets
of flow fi. Details about the function ρi depend on which
model to use and will be described in Section 4.

Based on those parameters, we describe the behavior of a
network using the axioms presented hereafter.

Axiom 1. The end-to-end drop rate e2ep of the path of
servers S is defined by:

e2ep(S) = 1−
∏
k∈S

(1− pk) (1)

Axiom 2. The aggregated ingress bandwidth of server sk
is defined by the sum of bandwidth of the set of flows Fk

traversing the server:

Binp
k =

∑
i∈Fk

[ri · (1− e2ep(U(Si, sk)))] (2)

where U(Si, sk) corresponds to the set of servers the flow i
traverses before reaching sk.

We account in Equation (2) for the fact that part of the
bandwidth of the traversing flows is already dropped on
the different paths leading to the studied server (noted here
U(Si, sk))).

Axiom 3. The egress bandwidth of server sk is equal to:

Bout
k = (1− pk) ·Binp

k (3)

and must satisfy the constraint:

Bout
k ≤ Ck (4)

Axiom 4. The end-to-end delay e2eD of a frame of size
M along the set of servers S is defined by:

e2eD(S,M) =
∑
k∈S

((M +Qk) · Ck +Dk) (5)

We account in Equation (5) for the forwarding time of the
frame (M ·Ck), the time needed to process the queue (Qk·Ck)
as well as an additional delay Dk for modeling propagation
and processing delay.

Axiom 5. The round-trip delay time for a flow with a
request frame of size Mreq and a reply size of Mrsp is:

RTT (S,Mreq,Mrsp) = e2eD(S,Mreq)+e2eD(S,Mrsp) (6)

4. FLOW MODELS
The goal of the flow model is to define the function ρi(S)

representing the bandwidth of the flow as a function of the
set of servers S traversed by the flow. We present in this
section the flow modeling for two types of flows: constant
bitrate flows representing multimedia streaming based on
UDP, and long-lived TCP flows.

4.1 Long-lived TCP flow model
The congestion control algorithm of TCP works in two

different phases. The first phase, called slow start as in RFC
5681 [4], occurs at the beginning of the TCP connection and
is used to estimate the link capacity. During this phase, only
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Figure 1: Maximum bandwidth of TCP based on
the approximate PFTK model, with MSS = 1518B,
W = 14, T0 = 1s, b = 2

a small amount of data is transmitted. Once this phase
is finished, a congestion avoidance phase takes place and
transmits the rest of the data. For this study, we consider
that TCP is used to transfer large data, meaning that we
only account for the congestion avoidance phase, and we call
this type of flows long-lived TCP flows.

Although various TCP congestion-avoidance algorithms
have been developed, we limit this study to TCP Reno [20].
Other congestion-avoidance algorithms may be included fol-
lowing the same methodology presented here. We define
W as the maximum window size of a TCP connection, in
number of packets.

Axiom 6. In case of a network without loss (e2ep(S) =
0), the average bandwidth of TCP is limited by:

ρe2ep(S)=0(S) =
MSS ·W

RTT (S,MSS,MACK)
(7)

with MSS the maximum segment size, W the maximum
windows size and MACK size of a TCP ACK packet.

We note that we already use the size of an ACK packet for
the RTT in Equation (7) in order to have a better accuracy
of the model.

In case of packet loss, we use the bandwidth model devel-
oped in [26], also known as the PFTK formula which mod-
els the bandwidth of the TCP Reno protocol. We use here
the approximated version of the PFTK formula, where the
bandwidth of TCP connection is defined as the minimum of
Equations (7) and (8).

MSS

RTT
√

2bp
3

+ T0 min

(
1, 3
√

3bp
8

)
p(1 + 32p2)

(8)

with p the drop probability, T0 the sender timeout delay,
and b the number of packets that are acknowledged by a
received ACK.

We illustrate the bandwidth of TCP as a function of RTT
and drop probability as presented in the Equations (7) and (8)
in Figure 1.

4.2 Improved TCP model with ACKs
As illustrated later with the evaluation of topologies with

cross-traffic in Section 7, the model presented before does
not take into account the impact of cross-traffic on the band-
width of a flow which can lead to significant errors. This



problem comes from the fact that we modeled the TCP data
flow as unidirectional, where a real TCP flow has acknowl-
edgments (ACK) which can be affected by cross-traffic.

In this improved model, we consider that a TCP connec-
tion is made of two flows: the TCP data flow, and the TCP
ACK flow. We consider that the raw bandwidth of the ACK
flow corresponds to a certain fraction ε of the bandwidth of
the Data flow: ε ·ρdata. We derive ε from the ratio of frames
sizes between an ACK packet and a data packet, as well as b
the number of packets that are acknowledged by a received
ACK. For the numerical results presented later in Section 7,

we choose ε =
84B

1538B · b ≈ 5%, with b = 1.

Axiom 7. In order to account for cross-traffic, the band-
width of the ACK flow ρACK and the TCP Data flow ρData

are constrained by the following set of equations:

ρdata(Sdata) ≤MTCP (Sdata) (9)

ρACK(SACK) ≤MTCP (SACK) (10)

ρACK(SACK) = ρdata(Sdata) · ε (11)

with Sdata the path of the data packets, SACK the path of
the ACK packets, andMTCP (S) the value of the basic TCP
model (PFTK formula Equation (8)).

With this set of equations, we specify the dependencies
between the bandwidth of the TCP data flow and the TCP
ACK flow. With Equation (9) we constrain the bandwidth of
the TCP data flow by the TCP bandwidth model on the path
of the data packets MTCP (Sdata). Similarly, with Equa-
tion (10) we constrain the bandwidth of the TCP ACK flow
by the TCP bandwidth model on the path of the ACK pack-
etsMTCP (SACK). We take into account with this equation
the effects of other flows on the path of the ACK pack-
ets (SACK) which corresponds to the cross-traffic, as well
as asymmetric bandwidth. Finally we establish the rela-
tion between the TCP data and TCP ACK bandwidth with
Equation (11).

When the ACK flow is affected by cross-traffic and has a
reduced bandwidth due to Equation (10), it has a direct im-
pact on the bandwidth of the data flow using Equation (11).

4.3 Constant bitrate streaming flow model

Axiom 8. For a flow f with constant bitrate (CBR) b
without feedback or bandwidth adaptation, the bandwidth model
can be expressed as:

ρ(S) = b (12)

This model is used for representing multimedia streaming
flows based on UDP. As we model such flows with no feed-
back loop, the bandwidth of the flow is simply a constant
value independent of the path.

5. SERVER MODEL
Regarding our framework, a server corresponds to a queue

in the network. Queues can be directly connected to an
Ethernet physical interface or be regulated by a scheduler.
Our model is able to support different types of scheduling
algorithms. In this paper, we describe the following elements
constituting a server:

• Drop tail First-In-First-Out (FIFO) queue,

Queue 1

Queue 2

Queue 3

Queue 4

Queue 5

S1

S2

Figure 2: Example of hierarchical scheduling with
two schedulers S1 and S2

• Drop tail FIFO queue with traffic shaping,

• Strict Priority Queuing (SPQ) scheduling,

• Approximations and packetized versions of General-
ized Processor Sharing (GPS) scheduling,

• Hierarchical scheduler based of SPQ and GPS, as il-
lustrated by Figure 2.

Although we restrict this study to the aforementioned ele-
ments, other algorithms may be used, such as for instance
Random Early Detection (RED) [14] which is often used in
previous literature about flow-level network modeling, such
as for instance in [13].

As defined earlier, a server is parameterized by C its max-
imum output bandwidth, D its additional delay, F = {fn}
the set of traversing flows, Q its queue size specified by the
function HQ(F ), and p its drop probability specified by the
function Hp

k (F ) depending on a set of flows F . The purpose

of this section is to define the queue size function HQ and
drop probability function Hp of the queues. We consider
that D the additional delay used for modeling propagation
and processing delay is a constant value. More advanced
models may define D as a function of the packet size or the
usage of the server.

Schedulers regulate the queues by allocating a specific
bandwidth limit to the queues according to their available
bandwidth limit Cscheduler. To increase the accuracy of our
model, the scheduler model should also adjust the additional
delay due to the non preemptive property of Ethernet, but
we ignore it in the context of this paper.

5.1 Drop-tail First-In-First-Out queue
With a drop-tail FIFO queue, packets are served in their

order of arrival. When the queue has no more space available
for storing arriving packets, packets are simply dropped.

Previous research based the modeling of a queue on queu-
ing theory, such as the work presented in [16] or [6] which
used a M/M/1/K queue and the assumption that TCP pack-
ets arrive following a Poisson process. We propose to use
here a simpler model which does not make any assumption
on the input traffic.

The bandwidth available to the queue is noted CQ.

5.1.1 Packet drop function Hp(F )

We consider here that the queue drop packets as soon as
the incoming bandwidth is superior to the allowed output
bandwidth.

Axiom 9. The packet drop function of a drop-tail FIFO
queue is expressed as followed:

Hp(F ) =

[
Binp − CQ

]+
Binp

(13)



with [x]+ = x if x ≥ 0, and 0 otherwise.

Equation (13) guarantees that Bout ≤ CQ as defined in
Equation (4).

5.1.2 Queue size function Hq(F )

We model the queue size as follows:

Axiom 10. The queue size function of a drop-tail FIFO
queue is expressed as followed:

Hq(F ) =

{
MQ if Binp > CQ

max
{
q
∣∣Bout(q) = maxBout} otherwise

(14)

The queue is considered to be full (and equal to the max-
imum buffer size MQ) when the incoming bandwidth is su-
perior to the allowed output bandwidth. This is model by
the first case of Equation (14).

When the queue is not full, the queue size will depend
on how many packets may be transfered by the flows. As
presented in Section 4.1 and Figure 1, TCP is able to fully
utilize a link up to a certain limit of the round-trip time,
or in other words by the buffer size of the different queues
traversed by the flow. This means that the bandwidth of
TCP, and hence Bout, is a function of the queue size. The
queue size corresponds then to the maximum number of bits
that has no impact on the bandwidth of the flows going
through the queue. This is model by the second case of
Equation (14).

5.2 Queue with bandwidth limiter
This model is the same as the FIFO drop tail queue, but

here we modify the parameter CQ of the server to allow a
lower bandwidth than the available link bandwidth.

5.3 Strict Priority Queuing
Strict Priority Queuing (SPQ) is a scheduling algorithm

where each queue is assigned a priority. The algorithm works
as follows: all queues are polled in their priority order, until
a non-empty queue is found and served. This process is
restarted each time a packet needs to be dequeued.

This means that a queue served by SPQ can use the band-
width that was unused by the queues of higher priorities.

Axiom 11. When the SPQ scheduler has an available band-
width of Cscheduler, each server sk served by SPQ (queue or
other scheduler) , with k from 0 (highest priority) to Nq

(lowest priority), has the following available bandwidth:

Ck =


Cscheduler if q = 0[
Cscheduler −

∑
i<k

Bout
i

]+
otherwise

(15)

with [x]+ = x if x ≥ 0, and 0 otherwise.

We describe in Equation (15) that the queue with the highest
priority (q = 0) has access to the all the available bandwidth
(Cscheduler), while the rest of the queues have access to the
bandwidth that is unused by the queues of higher priority.

5.4 Generalized Processor Sharing

With Generalized Processor Sharing (GPS), each queue i
has a weight wi, and is allocated the following bandwidth:

Bi =
wi∑

j∈Q wj
(16)

with Q the set of queues that currently hold packets. When
a queue is using less that its allocated bandwidth, the re-
maining bandwidth is redistributed to the other queues, ac-
cording to their respective weights.

This model corresponds to a simplification of Weighted
Fair Queuing (WFQ) [27], Worst-Case Fair Weighted Fair
Queuing (WF2Q) [9], Deficit Round Robin (DRR) [28] or
similar packet scheduling algorithm with proportional fair-
ness with regards to the bandwidth.

Axiom 12. In order to compute the allocated bandwidth
of each queue, we use the following iterative process. We use
the index n to mark the iteration step. We define Rn as the
remaining unused bandwidth, Cn

q the bandwidth allocated to
queue q, and Qn as the set of queues using more than their
currently allocated bandwidth Cn

q . We defined the following
initial values:

Cn=0
q = 0,∀q ∈ Qn=0 (17)

Qn=0 = {q|0 ≤ q ≤ Nq and Fq 6= ∅} (18)

Rn=0 = Cscheduler (19)

Qn=0 corresponds to all queues with traversing flows as the
initially allocated bandwidth is 0. We run the following iter-
ative process until Qn = ∅ or Rn = 0:

Cn+1
q = Cn

q +
wq∑

i∈Qn wi
· Rn, ∀q ∈ Qn (20)

Qn+1 =

{
q : Bout

q ≥ wq∑
i∈Qn wi

· Rn

}
(21)

Rn+1 =
∑

q∈Qn

[
wq∑

i∈Qn wi
· Rn −Bout

q

]+
(22)

We define in Axiom 12 an iterative process. In the first iter-
ation of the process (n = 1), we allocate the total bandwidth
of the scheduler Cscheduler to the non-empty queues follow-
ing their respective weights. At each step of the iteration,
we then determine how much of the bandwidth is unused
with Rn. We allocate this bandwidth to the set of queues
Qn which are using more than their allocated bandwidth ac-
cording to their respective weights. We iterate the process
until all the bandwidth is used (Rn = 0) or there are no
more queues able to use the unused bandwidth (Qn = ∅).

5.5 Hierarchical scheduling
As noted earlier, our model for a scheduling algorithm re-

distributes its available bandwidth Cscheduler to the queues
according to the output bandwidthBout of the queues. Hence
when using hierarchical scheduling, as illustrated by Fig-
ure 2, a scheduler acts on the bandwidth of a sub-scheduler
in the similar way it acts on a queue.

In the hierarchical scheduler presented in Figure 2, S1
will allocate some bandwidth to S2 in the same way as it
allocates it to Queue 1 to 3. Then S2 will redistribute this
bandwidth to Queue 4 and Queue 5.

6. SOLVING THE MODEL
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Figure 3: Congestion control

As presented in Figure 3 and based on the different models
previously described, we have the following relation: flows
react on network changes by adjusting their packet send-
ing rate, while the network reacts on flows by queuing and
dropping packets.

The performance evaluation of the system is equivalent
to finding the values Qk, pk and ri of the different servers
and flows which lead to an equilibrium or fixed point of the
system described by the different axioms previously enumer-
ated.

Algorithm 1 describes the procedure to find the equilib-
rium of the system. We distinguish two parts in the algo-
rithm. The first part (lines 1 to 5) initializes the variables
Qk, pk and ri to 0. The second part (lines 6 to 13) evaluates
the functions until the fixed point is reached.

While a proof of existence of an equilibrium point was
already given in [5] for TCP flows, we define a safeguard
function in order to avoid an infinite loop (line 12) in case
an equilibrium cannot be reached, as we don’t necessarily
limit our framework to TCP flows using TCP Reno. The
simplest function to achieve this is to limit the number of
iteration of the loop (line 6 to 13). An alternative way is to
look at the evolution of Qk, pk and ri, and determine if an
equilibrium is reachable.

Algorithm 1 Equilibrium algorithm

Require: Set of servers S
Require: Set of flows F
1: for all k = 0 : |S| do
2: Qk ← 0
3: pk ← 0
4: for all i = 0 : |F | do
5: ri ← 0

6: while equilibrium not reached do
7: for all k = 0 : |S| do

8: Qk ← HQ
k (Fk)

9: pk ← Hp
k (Fk)

10: for all i = 0 : |F | do
11: ri ← ρi(Si)
12: safeguard() . Function to avoid infinite loop
13: end while

7. EVALUATION
We evaluate in this section different topologies. When not

otherwise specified, we consider that the links between nodes
are full-duplex, using a 10m Ethernet cable, with a propa-
gation delay of 5 · 10−8s, and a link speed of 100Mbps. All
elements of the network are considered to have no internal
processing delay. Ethernet switches have an internal drop-
tail queue with a default maximum number of 10 packets for
each port. Computers are considered to have no queue and
no scheduling element for the egress part of the Ethernet
interface.

Cli SrvSW
L

TCP F1

Figure 4: First topology with a variable latency L
between SW and Srv
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the OMNeT++ results for the topology presented
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For the configuration of TCP, we define a maximum win-
dow size W of 14 packets, a maximum segment size of 1538
Bytes (Ethernet frame size with preamble and interframe
gap) and a timeout time T0 of 1s. b, the number of packets
acknowledged by an ACK, is set to 1. As noted earlier, we
use here TCP Reno.

We use the results of the discrete event simulator OM-
NeT++ [3] and its framework INET [1] as a comparison
for our model. The standard modules StandardHost and
EtherSwitch from the INET framework were used for mod-
eling computers and switches, and we configure the TCP
stack to use the values noted earlier.

To evaluate the difference between the flow-level network
model and the results of the OMNeT++ simulation, we use
the log-error of the throughput of flow fi, as defined in [30]:

LogErr(fi) = |log(rFlow model
i )− log(rSimulation

i )| (23)

7.1 Validation of the TCP model
In order to validate the behavior observed in Figure 1, we

evaluate a simple topology where two PCs, Cli and Srv, are
connected to the switch SW , as presented in Figure 4. We
define the latency of packets going from SW to Srv as a
parameter for this study.

The bandwidth of the TCP flow between Cli and Srv is
presented in Figure 5. The log-error between the results
of our model and the results of OMNeT++ suggests that
the flow-model is indeed relevant regarding the influence of
round-trip time.

7.2 Dumbbell topology without cross-traffic
We study here the influence of asymmetrical latency on a

dumbbell topology, as illustrated by Figure 6. All links have
the same delay, except for packets going from SW1 to Srv2,
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Figure 7: Comparison between the flow model and
the OMNeT++ results for the dumbbell topology
(see Figure 6), with the bandwidth (above) and the
log-error (below)

experiencing a delay between 1 and 6ms. The maximum
number of packets for the queues inside SW1 and SW2 is
set to 30.

The individual bandwidth of each flow for this topology
are presented in Figure 7. As expected, we do not see a
fair sharing of the bandwidth between Flow F1 and Flow
F2, as it is known that TCP Reno favors flows with a lower
round-trip delay time.

7.3 Dumbbell topology with cross-traffic
We study in this case the effect of cross-traffic on TCP

flows. We use the same dumbbell topology as in Section 7.2,
but we add TCP flow F3 from node Srv2 to node Cli1, as
presented in Figure 8.

We first present the results of this topology using the TCP
model without the ACK flows in Figure 9. Results for flows
F1 and F2 are comparable to the one presented in the previ-
ous topology. But for flow F3, we see that the results of the
flow-level network model do not match the results from OM-
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Figure 8: Dumbbell topology with crosstraffic
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throughput of the TCP flows without taking into
account the TCP ACKs packets
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Figure 10: Comparison between the flow model and
the OMNeT++ results for the dumbbell topology
with crosstraffic (see Figure 8) with the improved
model taking into account TCP ACKs, with the
bandwidth (above) and the log-error (below)

NeT++. Indeed, the effect of cross-traffic is visible here: F3
is not able to fully use the bandwidth available between Srv1
and Cli1 although all links are full-duplex. The throughput
is equal to only about half the available bandwidth, because
the acknowledgments of F3 are competing with the packets
of F1 and F2. This phenomenon is well known in the litera-
ture, first explained by ACK compression in [32], and more
recently by the principle of data pendulum in [19]. Tech-
niques exist to overcome this problem such as in RFC 3449
[7], where a simple solution is to schedule the TCP ACK
packets with a higher priority than the TCP data packets.

As explained earlier, previous work on flow-level network
model often neglect this problem by studying only topologies
where there is no cross-traffic, and the models proposed will
give a similar error as in Figure 9.

By using the improved TCP model presented in Section 4.2,
we obtain the same behavior as in OMNeT++, as shown in
Figure 10.

7.4 Topology with cross-traffic, WFQ schedul-
ing and streaming traffic

We demonstrate here the ability of our framework to sup-
port the scheduling algorithms previously described as well
as streaming traffic. We use the topology presented in Fig-
ure 11. The cross-traffic here is generated by flows F3 and
F7. The egress part of the switches uses Weighted Fair
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Queuing, with 3 priorities, from 0 to 2, with respective
weights of 5, 1 and 2. We define a maximum queue size
of 50 packets.

Results for this topology are presented in Figure 12, where
we compare the results of the simple TCP model with the
results of the improved TCP model. When the TCP ACKs
are not taken into account large errors appear in the results.
Our improved TCP model is indeed relevant compared to
the OMNeT++ results.

7.5 Random tree topology
In order to evaluate our framework on other topologies,

we used randomly generated trees following Algorithm 2.
We used a tree topology as it guarantees a unique path be-
tween two nodes of the topology, meaning that the path
of flow is guaranteed to be the same in the model and in
the simulation. The leaves of the tree correspond to com-
puters, while the internal vertices correspond to switches.
The algorithm generates only TCP flows, via the function
tcp flow(<source>, <destination>). Switches are con-
sidered to have an infinite buffer.

We generated four random tree topologies using Algo-
rithm 2 with parameters maxDepth = 4, minLeaves = 4,
maxLeaves = 8, minF lows = 1, maxFlows = 1 and evalu-
ated the log error for the flow throughputs. The topologies
correspond to the topologies presented in Figure 13.

Algorithm 2 Random tree generation algorithm

Require: maxDepth ≥ 0, minLeaves ≥ 0, maxLeaves ≥
0, minF lows ≥ 0, maxFlows ≥ 0

1: function generateTopology
2: root← createNode
3: leaves← generateLeaves(root, maxDepth)
4: for all leaf in leaves do
5: for randomInt(minF lows, maxFlows) do
6: tcp flow(leaf , random(leaves))
7: end for
8: end for
9: end function

10: function generateLeaves(root, depth)
11: if depth = 0 then
12: return root
13: end if
14: leaves← []
15: for randomInt(minLeaves, maxLeaves) do
16: node← createNode
17: createLink(node, root, 100Mbps)
18: d← randomInt(0, depth− 1)
19: leaves← [leaves, generateLeaves(node, d)]
20: end for
21: return leaves
22: end function

We first study the evaluation of the TCP model without
acknowledgments as presented in Figure 14. We see that
the log-error reaches a maximum value of 1.37, which cor-
responds to an error of exp(1.37) − 1 = 294%. The four
topologies are then evaluated with the improved TCP model
including acknowledgments, and results are presented in Fig-
ure 15. As expected, the accuracy of the model is improved,
with a maximum log error of 0.1 which corresponds to an
error of exp(0.1)− 1 = 10%.

8. CONCLUSION AND FUTURE WORK
We presented in this paper our flow-level network frame-

work for the performance evaluation of Ethernet topologies.
This framework is based on two building blocks: servers
for representing Ethernet interfaces and queues, and flows
for representing Ethernet communications between nodes of
the topology. Our model for servers support FIFO queues as
well as scheduling functions such as priority based schedul-
ing and fair-bandwidth sharing schedulers. Our model for
Ethernet flows supports long-lived TCP connections as well
as UDP multimedia streams.

The results of our framework were compared to the re-
sults of the discrete event simulator OMNeT++. Different
topologies where used in order to evaluate the accuracy of
our model. Our framework delivers results in accordance
to the results of simulations, even on large networks. Com-
pared to previous work on the subject, we showed the impor-
tance of modeling the TCP acknowledgments in topologies
with cross-traffic.

As presented in Section 4.1, we limit TCP flows to long-
lived connections, which is not necessarily a realistic view of
nowadays Internet traffic. We would like to introduce short
lived TCP connections, with the use of the model described
in [11] in our framework. Along with short TCP connections,
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we would like to include realistic traffic patterns, based on
our previous work on realistic traffic simulation [15]. Finally
other TCP congestion avoidance algorithms such as TCP
CUBIC [17] or TCP Compound [29] would be beneficial to
have models in accordance to the TCP stacks used in current
operating systems.
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