
Experimental Research Reproducibility and
Experiment Workflow Management

Yuri Demchenko
University of Amsterdam,

The Netherlands
y.demchenko@uva.nl

Sebstian Gallenmüller
Technical University of Munich,

Germany
gallenmu@net.in.tum.de

Serge Fdida
Sorbonne University,

France
serge.fdida@sorbonne-universite.fr

Mathias Kirkeng
University of Amsterdam,

The Netherlands
m.kirkeng@gmail.com

Panayiotis Andreou
University of Central Lancashire,

Cyprus
PGAndreou@uclan.ac.uk

Cédric Crettaz
Mandat International

Switzerland
ccrettaz@mandint.org

Abstract—Research reproducibility is an essential factor to
increase the efficiency of modern research; this is especially
important for experimental research, where it is required to
reproduce the whole experiment environment and equipment
setup. This paper presents the results of developing the SLICES
Research Infrastructure to enable research reproducibility in
modern digital technologies for complex and large-scale exper-
imentation. The paper provides a short overview of existing
research and approaches for experimental research reproducibil-
ity, generally including git-based experiments deployment and
operation, Jupyter Notebook, and the Common Workflow Lan-
guage (CWL) for workflow management. The paper describes
approaches and solutions taken in the SLICES-RI that also
address research environment provisioning on demand with the
Platform Research Infrastructure as a Service (PRIaaS) and data
management infrastructure to ensure data quality and support
effective data sharing.

Index Terms—Reproducibility, Experimental Research, Exper-
iment Lifecycle, Experiment Automation, FAIR data principles,
Data Management Infrastructure, SLICES Research Infrastruc-
ture

I. INTRODUCTION

Modern research is increasingly multidisciplinary and data-
driven, emphasizing the need for effective communication
between researchers and data sharing. The Open Science initia-
tive and movement among research communities can address
these needs and increase the overall efficiency of scientific
and technology research [1]. Open Science is strongly sup-
ported by policy development and funding bodies in Europe
and a mandatory requirement in the current Horizon Europe
program. In recent years, major initiatives and projects to
create the foundation and e-Infrastructure for Open Science
have been funded in Europe (under the past Horizon 2020 and
current Horizon Europe programs). This includes the currently
operational OpenAIRE [2] and Zenodo [3] services, the de-
velopment of the European Open Science Cloud (EOSC) [4],
all support the FAIR (Findable, Accessible, Interoperable,
Reusable) data principles [5]. The FAIR data principles were
initially proposed for research data management primarily

targeted at consistent metadata management. However, recent
initiatives by the Research Data Alliance (RDA) [6] extend
the FAIR principles to scientific software as a digital or data
object.

Research reproducibility is one of the core principles of
Open Science [7]. However, developments in this area are
fragmented and lack commonly or widely used approaches.
One of the difficulties is that reproducible research requires
the recreation or provisioning of on-demand research envi-
ronments, even for general Data Science and Analytics tasks.
Reproducibility of experimental research imposes additional
requirements on the reproducible experiment setup, including
resources provisioning, experiment environment setup, and ex-
periment lifecycle management, which in its own turn include
experimental data lifecycle management.

According to the ACM [8], reproducibility is defined as a
three-stage process. The first stage, repeatability, is achieved
if the same research group can recreate experiments using the
same equipment. The second stage, reproducibility, is reached
if a different team can recreate experiments on the same
equipment. If an independent team recreates experiments on
their own equipment, the final stage is reached: replicability.
To incentivize reproducible research, the ACM launched a
multi-stage reproducibility award system for scientific papers
based on their definition. A study among authors and reviewers
considered the results of such a system helpful but time-
consuming to implement [9].

The focus of our paper is the investigation of a central
component for the reproducible experimental research method-
ology—a reproducible workflow to execute experiments. It
should also be supported by a consistent data management
infrastructure. This research is a part of the SLICES Research
Infrastructure to support research on digital technologies [10].
We aim to achieve the following goals:

• Analyze different existing approaches for experimental
workflows

• Identify the benefits and disadvantages of these existing
approaches

• Create guidelines for an ideal experimental workflow to
validate hypotheses in computer science

The paper is structured as follows. Section II provides infor-
mation about European Open Science projects and introduces
the SLICES Research Infrastructure for digital technologies
experimentation. Section III gives a short overview of exist-
ing approaches and practices on research reproducibility and
solutions for experiment facilities provisioning and workflow
description. Section IV discusses the experiment reproducibil-
ity in SLICES-RI. Section V discusses the Data Manage-
ment Infrastructure requirements, an important component of
consistent experimental research reproducibility. The paper
concludes with a summary and suggestions for future research
in Section VI.

II. OPEN SCIENCE AND FAIR DATA PRINCIPLES IN EOSC

A. European Open Science Cloud (EOSC)

EOSC is an initiative and program by the European Union
to provide European researchers, innovators, companies, and
citizens with a federated and open multi-disciplinary environ-
ment where they can publish, find and re-use data, tools, and
services for research, innovation, and educational purposes [4].
So far, the EOSC projects have created the foundation for
research data interoperability and integration for European
RIs. The EOSC Strategic Research and Innovation Agenda
(SRIA) provides a roadmap to achieve the EOSC vision and
objectives, namely to deliver an operational ”Web of FAIR data
and services” for science [11]. The Minimum Viable EOSC
(MVE) achieved by the end of 2021 [11], created a starting
point for future EOSC development generally coordinated by
the EOSCFuture project [12]. MVE defines EOSC Core that
is designed to provide a federated data exchange environment
for research projects and communities where data comply
with FAIR principles. Ongoing developments aim at provid-
ing a customizable research environment for researchers and
research projects using services provided by the EOSC Por-
tal Catalog and Marketplace [13]. The ongoing RELIANCE
project intends to extend the EOSC with a set of services
for Research Lifecycle Management in accordance with FAIR
principles based on Research Objects (RO), Data Cubes, and
Text Mining [14]. ROHub is a service by RELIANCE for the
storage, lifecycle management, and preservation of scientific
research, campaigns, and operational processes via research
objects [15].

B. SLICES-RI to support Digital Technologies Research and
Experimentation

The Scientific Large-scale Infrastructure for Comput-
ing / Communication Experimental Studies (SLICES) [10] is
a distributed Digital Infrastructure designed to support large-
scale experimental research focused on networking proto-
cols, radio technologies, services, data collection, parallel and
distributed computing, and, in particular, cloud and edge-
based computing architectures and services. This encompasses

the full range of network, computing, and storage functions
required for on-demand services across many verticals and
addresses new complex research challenges, supporting dis-
ruptive science in IoT, networks, and distributed systems.
SLICES will integrate multiple experimental facilities and
testbeds operated by partners providing a common services
access and integration platform. SLICES will allow academics
and industry to experiment and test the whole spectrum of
digital technologies whereby the computing, network, storage,
and IoT resources can be combined to design, experiment,
operate, and automate the full research lifecycle management.

III. RELATED WORK

This section analyzes existing approaches related to the
creation of reproducible experiment workflows.

A. General Tools

Experiment results are highly dependent on a system state
during the experiment. To allow for experiment repetition and
replication, the documentation and recreation of this system
state are essential. Bajpai et al. [16] provide several recom-
mendations to simplify and ensure this process. Based on their
recommendations and our own experience, we recommend the
following tools: Configuration management and deployment
frameworks, such as Ansible [17], to help automate this
task. At the same time, automation avoids any impact of the
experimenter on the results. Version control systems such as
git [18] help track the version of investigated source code.

A widely used tool to perform experimental evaluations is
Jupyter [19]. Jupyter provides notebooks, a convenient way
to combine documentation, code, and visual representations
within a single file that can be accessed via a web browser
and easily shared with other researchers.

B. Experiment Control

Multiple initiatives maintain and provide testbeds for re-
search, e.g., Fed4Fire (EU) [20], OneLab (EU) [21], Grid’5000
(France) [22], PlanetLab (global) [23], or GENI (USA) [24].
Though not explicitly designed for reproducibility, Nuss-
baum [25] demonstrates that reproducible experiments are pos-
sible. He argues that testbeds, such as Grid’5000 or CloudLab,
allow reproducible experiments if used correctly.

Whereas the previously mentioned approaches mainly focus
on resource allocation, there are also more high-level ap-
proaches. These approaches define the experimental workflow.
Examples of such solutions are OMF [26] or NEPI [27], which
allow the definition and automated execution of experiment
workflows. These controllers may use one of the previously
mentioned testbeds as a backend to execute their experiments.
Besides the previously mentioned solutions, new approaches
emerged that combine resource allocation and experiment
control. This integration allows full control over the entire
experiment workflow laying the foundation to perform repro-
ducible experiments:

Run N
Loop
Vars N measurement

Results N

Run II
Loop
Vars II measurement

Results II

Run I

DuT Controller LoadGen
Experiment

Global
Vars

Setup Setup
Local
Vars

Local
Vars

Loop
Vars IMeasurement Measurement

Results I

Evaluation

Publication

Se
tu
p
Ph

as
e

M
ea
su
re
m
en
tP

ha
se

Ev
al
ua
tio

n
Ph

as
e Script

Parameters
Result Data

1

Fig. 1. pos experimental workflow (cf. Gallenmüller et al. [32])

1) Chameleon platform for Computer Science Research:
The Chameleon cloud platform [28] is a large-scale, deeply
reconfigurable experimental platform built to support an ex-
perimental workflow for Computer Sciences systems research.
The Chameleon Infrastructure (CHI - Cloud++) is a cloud plat-
form powered by OpenStack with bare metal (re-)configuration
(Ironic), using the OpenStack Blazar reservation service for
experimental resource reservation.

Chameleon uses Jupyter notebooks as an experiment def-
inition, execution, and sharing format. The testbed can be
controlled through libraries accessible from the Jupyter note-
book. A collection of various experiments is provided via the
Chameleon website [29], [30].

The Chameleon/CHI experimental workflow includes stages
related to resource discovery, allocation, dynamic configura-
tion, orchestration, and monitoring. The workflow manage-
ment service is supported by a rich library of orchestration
templates and images created by the research community.
Chameleon provides Jupyter integration for orchestration via
the JupyterLab service/portal [31], which allows creating
and managing reproducible experiment workflows via Jupyter
Notebooks that can be created and shared by researchers (or
research teams).

2) Plain orchestrating service (pos): The plain orches-
trating service (pos) [32], [33] provides two components, a
testbed controller and a well-defined experiment workflow.
The testbed controller takes care of the allocation and manage-
ment of experimental resources. It provides bare-metal access
to the experiment nodes. Images for the experiment nodes are
provided as Linux live images. Using live images for exper-
iments has two benefits: First, rebooting an experiment node
helps reset the system to a well-defined state. Second, testbed
users are aware of the non-permanence of their configuration,
gently pushing users towards documenting and automating
experiment configuration.

Figure 1 demonstrates the pos experiment workflow, di-

vided into the setup, measurement, and evaluation phases.
Three nodes are participating in the displayed experiment,
a device under test (DuT), a load generator (LoadGen), and
the controller. An experiment can be started by executing the
experiment script on the controller. The controller reboots
DuT and LoadGen. After the reboot, the two nodes can be
configured using a setup script. The pos controller further
provides variables (vars) to parameterize the setup. The mea-
surement phase starts after the setup phase. There, different
measurement scripts are executed on the experiment hosts.
Measurements are typically parameterized using so-called loop
variables. The number of loop variables determines how often
the measurement script is run. For each run, a separate set of
result files is generated and associated with a specific instance
of loop variables acting as metadata to describe the result files.
Result files are uploaded to the controller for further process-
ing. After all result files are collected, the evaluation phase
begins using an evaluation script to perform the evaluation. A
publication script finally collects and prepares all experiment
artifacts for release. The well-defined file structure of the
experiment allows for an automated collection and processing
of files. A possibility to present the results is a website. This
website can be generated automatically and hosted on GitHub
in conjunction with the other experiment artifacts.

Users can write the different script files in any language of
their choice. However, the hosts must be able to execute it.
The setup script, for instance, can be a simple shell script or
a more complex Ansible configuration.

C. Experiment lifecycle and experiment workflow description

1) GitHub: GitHub is widely used for managing scientific
code and data and, in particular, code for running experiments
and processing experimental data. In this case, GitHub is
used by scientific programmers in the same way as software
developers, also benefiting from powerful functionality for
code sharing, integration, and deployment (also referred to
CI/CD process of Continuous Integration and Continuous
Deployment).

However, using GitHub for experiment automation is lim-
ited by code portability, which depends on the individual
scientific programmer style and may provide insufficient code
structure and formalized interfaces to infrastructure computa-
tional and storage services.

2) Jupyter Notebook: Jupyter Notebooks are widely used
in the scientific community for scientific data analysis and
reporting; however, recent developments and uses target the
full scientific research cycle, including the full experiment
development and exploration cycle.

The CHI uses Jupyter Notebooks for defining and running
experimental workflows. However, in Chameleon, Jupyter
Notebooks are used primarily for running experiments on
already provisioned experimental infrastructure, which is pro-
visioned in the infrastructure provisioning workflow. A Paper
by Beg et al. [34] describes other cases using Jupyter Note-
books to support reproducible experimental research. SLICES-
RI will leverage the Grid’5000 [35] experience to support

using Jupyter Notebooks for different aspects/activities in
the experiment automation and experimental research data
management [36]:

• Notebooks as experiment drivers. These notebooks run
the experiments from beginning to end, starting with
resource reservations and going at least to data collection;

• Notebooks as experimental payload. The code contained
within these notebooks is the core of experiments. These
notebooks run on the reserved resources, and either
contain or control the computation that is the subject
matter of the experiment;

• Notebooks for post-processing. These notebooks are exe-
cuted after an experiment to process the results. Support-
ing this usage will be dependent on a testbed infrastruc-
ture and the type of post-processing expected;

• Notebooks for exploratory programming. Notebooks for
exploratory programming are used by users as a form of
the enhanced interactive shell to create new code through
trial and error;

• Notebooks as tutorials. Notebooks as tutorials are note-
books provided to the users by teachers that aim to
present and explain to the users some specific concepts.

The usage of Jupyter Notebooks was already put in place
in the context of the Fed4FIRE+ project by several testbeds
offering Jupyter Notebooks to reproduce experiments. These
testbeds will be included in the SLICES-RI via partners.

To achieve experiment reproducibility, the experimental
platform must provide well-defined interfaces to experimental
resources and data services that can be connected to the
Jupyter programming environment. This is available in the
Chameleon scientific cloud and provided by the major public
cloud and Big Data infrastructure providers such as AWS with
their SageMaker Studio Notebook [37] and Microsoft Azure
Data Studio Notebook service [38] that is also supported by
the Azure DevOps for Data Science platform [39].

3) Common Workflow Language (CWL): To achieve exper-
iment workflow portability (in addition to experiment repro-
ducibility), the scientific community uses scientific workflow
languages. Succeeding a multitude of workflow languages
introduced in the past, the CWL is gaining popularity in recent
times.

The CWL [40] is a specification to describe digital work-
flows. It describes how multiple steps in a computational
workflow and their connections should be defined. CWL
itself is only a specification, so a user needs a program to
execute workflows called runner. A reference implementation
of such a runner is cwltool [41]; however, several workflow
management systems implement CWL support, for example,
Apache Airflow [42], StreamFlow [43], and Toil [44]. Other
workflow management systems offer partial or experimental
support, such as Galaxy [45].

The standard defines CWL tools described in ‘.cwl’ files
using a subset of YAML. These tools can execute command
line tools, evaluate javascript expressions, or define abstract
operations to be implemented by a specific CWL runner. For

each tool, the inputs and outputs need to be defined. Require-
ments can be listed, such as required software, the ability to
process inline Javascript or specific files or directories to be
present during a run time, among other requirements.

These steps can be combined into workflows, also defined in
’.cwl’ files, using a subset of YAML. Each workflow contains a
list of steps, with each step having defined inputs and outputs.
These steps are not necessarily supposed to be executed in
order but rather according to their dependencies on other steps.
Independent steps can thus also be run in parallel. These steps
execute CWL tools, either defined in the workflow itself or
referencing a tool defined in a separate CWL file. The steps
can also execute other CWL workflows, allowing workflows to
be nested. This works because, for each workflow, the inputs
and outputs need to be defined. Finally, arbitrary metadata
and metadata according to certain schemas can be defined in
the workflows as well. The inputs of a workflow or tool are
listed in a separate ’.yml’ file provided to the CWL runner at
runtime. A tool or workflow step can also be set to scatter,
meaning it runs multiple times for each element of an array
of inputs.

4) CWL for a sample experiment: The data processing
step in the sample experiment was implemented using CWL,
specifically using the reference implementation of a CWL run-
ner. The entire workflow requires the AWS access credentials
and the name of the DynamoDB table containing the sensor
data. After execution, the workflow has produced the sensor
data in CSV format sorted by date-time and a description as
well as a line chart of the sensor data. The full details of the
example presented here can be found in the project deliverable
to be published after the project review [46].

The first step of the processing runs a CWL tool which
retrieves the MQTT sensor data from the DynamoDB table
using the boto3 python module. This tool uses AWS creden-
tials to authenticate the client as well as the name of the
table from which to retrieve the sensor data and outputs the
sensor data in JSON format. The next step in the workflow
converts the data from the JSON format to a CSV file using
the JQ [47] command line tool. This CSV file is then sorted
by the date-time of the sensor measurements in the next
workflow step. The sorted CSV is one of the outputs of the
workflow as well as the input to a CWL tool that uses the
python pandas [48] library to create a description of the data,
including information such as the mean and standard deviation.
This description is the second output of the workflow. Finally,
the sorted CSV is also used as input to a CWL tool, using
gnuplot [49] to create a line chart of the sensor data.

Listing 1 shows the contents of the CWL workflow used
for the data processing step of the sample experiment with
comments explaining the code. The tools used in each of the
steps are defined in separate CWL files and referenced in the
code.
#!/usr/bin/env cwl-runner

cwlVers ion : v1 . 0
c l a s s : Workflow

The inputs of the entire workflow are referenced in the 1
st workflow step

i n p u t s :
AWS ACCESS KEY ID: s t r i n g
AWS SECRET ACCESS KEY: s t r i n g
table name : s t r i n g

In the following list the workflow steps are defined
s t e p s :
1st step, called "get_data" gets sensor data from the

DynamoDB table
g e t d a t a :

run: . . / t o o l s / ge t −dynamodb − d a t a . cwl # CWL tool is
defined in this file

the following list defines the inputs to the CWL tool
in :

AWS ACCESS KEY ID: AWS ACCESS KEY ID
AWS SECRET ACCESS KEY: AWS SECRET ACCESS KEY
table name : t a b l e n a m e

the output of this workflow step is defined as "
dynamodb_data"

out : [dynamodb data]

2nd step of the workflow converts the sensor data from
JSON to CSV

c o n v e r t t o c s v :
run: . . / t o o l s / j son − to − csv . cwl
in :
the input is the output of the previous step, "

dynamodb_data"
j s o n f i l e : g e t d a t a / dynamodb data

out : [c s v f i l e]

3rd step sorts the sensor data in CSV format
s o r t c s v :

run: . . / t o o l s / s o r t . cwl
in :

f i l e t o s o r t : c o n v e r t t o c s v / c s v f i l e
s o r t f i e l d :

d e f a u l t : 2 # which column to sort by
out : [s o r t e d f i l e]

4th step creates a description of the data
d e s c r i b e d a t a :

run: . . / t o o l s / d e s c r i b e − csv . cwl
in :
the input is the sorted CSV file from the previous

step
c s v f i l e : s o r t c s v / s o r t e d f i l e

out : [d a t a d e s c r i p t i o n]

5th step generates a line plot
generate graph :

run: . . / t o o l s / graph − csv . cwl
in :
the input is also the sorted CSV file from the 3rd

step
c s v t o p l o t : s o r t c s v / s o r t e d f i l e

out : [p l o t]

outputs of the entire workflow are the sorted CSV file
from the 3rd,

the data description from the 4th and the line chart from
the 5th

outputs :
data csv :

type : F i l e
outputSource : s o r t c s v / s o r t e d f i l e

d e s c r i p t i o n :
type : F i l e
outputSource : d e s c r i b e d a t a / d a t a d e s c r i p t i o n

p l o t :
type : F i l e
outputSource : g e n e r a t e g r a p h / p l o t

Listing 1. CWL example

The deployment and execution of the experiment are done
with Ansible playbooks and CloudFormation infrastructure
component templates. The solution has been deployed and
tested on the AWS cloud and proved that the use of templates

both for cloud resources and infrastructure and for experiment
workflow provides an effective instrument and platform for
the SLICES experiments automation for the whole experiment
lifecycle.

IV. EXPERIMENTAL RESEARCH REPRODUCIBILITY IN
SLICES-RI

A. Adopting pos and Chameleon in SLICES

In the following, we discuss how different approaches
for experimental workflows can be integrated into SLICES.
Therefore, we selected the previously discussed approaches for
reproducible experiment workflows offered by the Chameleon
and pos testbeds. Chameleon achieves that by using Jupyter
notebooks to provide a single file to document and describe
the experiment workflow and evaluation. The collection of all
experimental artifacts within a single file allows for easy shar-
ing of experiments. The pos framework uses Linux live images
and a structured collection of scripts to run and describe
experiments. Both approaches offer enough flexibility to be
combined. The previously separate scripts of the pos approach
can be converted to code cells allowing the pos workflow
structure within Jupyter notebooks. To demonstrate the inte-
gration of pos/chameleon, we created a Jupyter notebook [33]
representing an experiment combining both approaches. We
see the combined workflow as a prototype for future SLICES
experiment workflow, providing reproducibility, easy sharing,
and flexibility for researchers.

B. PRIaaS to support RI service provisioning for Experiment
Reproducibility

The Platform Research Infrastructure as a Service (PRIaaS)
proposed by the authors in the research paper [50] offers an
architectural solution to provide an on-demand, fully func-
tional environment for experimental research on SLICES-
RI to deliver specialised and community-oriented services.
The main component of PRIaaS is the Actualisation platform
that leverages the TeleManagement Forum Digital Platform
Reference Architecture [51] and allows the composition and
instantiation of a fully operational Virtual RI (VRI) configured
for specific customer research purposes.

The VRI provisioning process is based on well-known
and commonly used DevOps tools and is supported by the
management and operation functions. As the PRIaaS platform
progresses, the repository of the design patterns, templates, and
containerized applications and functions will grow. PRIaaS
will allow natural integration with the EOSC Portal and
Catalog services, sharing resources and experiment templates.

V. DATA MANAGEMENT INFRASTRUCTURE AND DATA
LIFECYCLE

A. Experimental Data Management stages

Management of experimental data is an important aspect
of SLICES-RI, and it includes several services that must
support all stages of the experimental data lifecycle. As
illustrated in Figure 2, SLICES-RI operates a Data Storage
and Management Infrastructure to support activities typical

Fig. 2. SLICES Data Management stages and supporting infrastructure
components

for experimental research, such as experiment planning and de-
ployment (as explained in the previous sections), the discovery
of data from internal data archives and external sources that are
needed for correct experiment planning and setup as well as
data publication and sharing. The SLICES Data Management
Infrastructure establishes a policy for data governance and
management, including data security and quality assurance,
that are supported by the corresponding infrastructure tools
for data curation. Figure 2 indicates that the SLICES Data
Management infrastructure should be inter-connected with
the EOSC Scientific Data Infrastructure for data sharing and
access.

Each Data Lifecycle stage, i.e., experiment setup, data
collection, data analysis, and finally, data archiving—typically
works with its own data sets, which are linked and their
transformation must be recorded in the process that is called
lineage (that can also be extended to provenance for complex
linked scientific data). All staged datasets need to be stored
for the purpose and possibly reused in later processes.

Many experiments require already existing datasets that
will be available in the SLICES data repositories or can be
obtained/discovered in EOSC data repositories.

B. Infrastructure components to support the experimental data
management

The following are requirements for the robust data manage-
ment infrastructure (DMI) for experimental data that follows
from best practices and use cases analysis in the SLICES-DS
project [10]:
RDM1. Distributed data storage and experimental data(set)

repositories should support common data and meta-
data interoperability standards, in particular common
data and metadata formats. Outsourcing data storage
to the cloud must be protected with appropriate
access control and compliant with the SLICES Data
Management policies.

RDM2. SLICES DMI should support the whole data lifecycle.
It should provide interfaces to experiment workflow
and staging.

RDM3. SLICES DMI shall provide PID (Persistent IDen-
tifier) and FDO (FAIR Digital Object) registration
and resolution services to support linked data and
data discovery that should be integrated with EOSC
services.

RDM4. SLICES DMI must support (trusted) data exchange
and transfer protocols that allow policy-based access
control to comply with the data protection regulations.

RDM5. SLICES DMI must enforce user and application
access control and identity management policies
adopted by the SLICES community that can be po-
tentially federated with the EOSC Federated AAI.

RDM6. Procedures and policies must be implemented for data
curation and quality assurance.

RDM7. Certification of data and metadata repositories should
be considered at some maturity level following certi-
fication and maturity recommendations by RDA.

The strategy for practical SLICES DMI deployment must
include well-defined procedures for distributed data storage
integration and linking to ensure data is discoverable, findable,
and accessible across all SLICES-RI. This should also relate to
using external community and cloud-based storage, and a clear
procedure should be developed for data migration. SLICES
will consider connecting to and using EOSC community
services to build a hybrid data management infrastructure that
may include both its own data storage, as part of the private
cloud, and external data storage offered by EOSC and EGI
community. The use of public cloud storage and file-sharing
services will be regulated by data management policies.

VI. CONCLUSION AND FURTHER DEVELOPMENTS

Methodologies and tools for experimental research repro-
ducibility still have a long way to go to achieve the maturity
level to be widely adopted by different scientific disciplines.
Following the experience and best practices in recent projects
and ongoing research will facilitate the development of com-
monly accepted standards, specific to their respective field.
They will increase scholarly communication and research
data sharing. Our paper presented ongoing research and de-
velopments in the SLICES-RI-related projects. It proposed
approaches and important building blocks toward experimental
research reproducibility and automation for digital technolo-
gies and computer science. The proposed solution brings
together tools and practices used in DevOps, cloud-native and
platform design as well as research data management and
Open Science.

As future work, focused research and development will be
undertaken in the course of the SLICES-RI to provide valuable
services for the research community.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Horizon 2020 and Horizon Europe projects SLICES-
DS (951850), SLICES-SC (101008468), and SLICES-PP
(951850).

REFERENCES

[1] “Open Science.” https://www.fosteropenscience.eu/content/
what-open-science-introduction, Last accessed: 2022-11-20.

[2] “OpenAIRE.” https://www.openaire.eu/en/home, Last accessed: 2022-
11-20.

[3] “Zenodo.” https://zenodo.org, Last accessed: 2022-11-20.
[4] “EOSC Association.” https://eosc.eu/about-eosc, Last accessed: 2022-

11-20.
[5] “FAIR Data Principles.” https://www.go-fair.org/fair-principles/, Last

accessed: 2022-11-20.

[6] “Research Data Alliance.” https://www.rd-alliance.org/, Last accessed:
2022-11-20.

[7] “What are reproducibility and replicability?.” https://www.surrey.ac.uk/
library/open-research/reproducibility, Last accessed: 2022-11-20.

[8] ACM, “Artifact Review and Badging Version 1.1,” 2020. https://www.
acm.org/publications/policies/artifact-review-and-badging-current, Last
accessed: 2022-11-20.

[9] D. Saucez, L. Iannone, and O. Bonaventure, “Evaluating the artifacts of
SIGCOMM papers,” Comput. Commun. Rev., vol. 49, no. 2, pp. 44–47,
2019.

[10] S. Fdida, N. Makris, T. Korakis, R. Bruno, A. Passarella, P. Andreou,
B. Belter, C. Crettaz, W. Dabbous, Y. Demchenko, and R. Knopp,
“Slices, a scientific instrument for the networking community,” Comput.
Commun., vol. 193, pp. 189–203, 2022.

[11] “Strategic Research and Innovation Agenda (SRIA) of
the European Open Science Cloud (EOSC), Version 1.0,”
2021. https://op.europa.eu/nl/publication-detail/-/publication/
f9b12d1d-74ea-11ec-9136-01aa75ed71a1, Last accessed: 2022-11-
20.

[12] “EOSC Future Project.” https://eoscfuture.eu/, Last accessed: 2022-11-
20.

[13] “EOSC Portal Catalog and Marketplace.” https://marketplace.
eosc-portal.eu/, Last accessed: 2022-11-20.

[14] “RELIANCE Project.” https://www.reliance-project.eu/, Last accessed:
2022-11-20.

[15] “RELIANCE Project.” http://reliance.rohub.org, Last accessed: 2022-
11-20.

[16] V. Bajpai, A. Brunström, A. Feldmann, W. Kellerer, A. Pras,
H. Schulzrinne, G. Smaragdakis, M. Wählisch, and K. Wehrle, “The
dagstuhl beginners guide to reproducibility for experimental networking
research,” Comput. Commun. Rev., vol. 49, no. 1, pp. 24–30, 2019.

[17] “Red Hat Ansible.” https://www.ansible.com/, Last accessed: 2022-11-
20.

[18] “git.” https://git-scm.com/, Last accessed: 2022-11-20.
[19] “Jupyter.” https://jupyter.org, Last accessed: 2022-11-20.
[20] “Fed4Fire.” https://www.fed4fire.eu, Last accessed: 2022-11-20.
[21] “OneLab.” https://onelab.eu, Last accessed: 2022-11-20.
[22] “Grid’5000.” https://www.grid5000.fr, Last accessed: 2022-11-20.
[23] “Planetlab.” https://planet.com, Last accessed: 2022-11-20.
[24] “Geni.” https://portal.geni.net, Last accessed: 2022-11-20.
[25] L. Nussbaum, “Testbeds support for reproducible research,” in Pro-

ceedings of the Reproducibility Workshop, Reproducibility@SIGCOMM
2017, Los Angeles, CA, USA, August 25, 2017, pp. 24–26, ACM, 2017.

[26] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “OMF: a control and
management framework for networking testbeds,” ACM SIGOPS Oper.
Syst. Rev., vol. 43, no. 4, pp. 54–59, 2009.

[27] A. Quereilhac, M. Lacage, C. D. Freire, T. Turletti, and W. Dabbous,
“NEPI: an integration framework for network experimentation,” in
19th International Conference on Software, Telecommunications and
Computer Networks, SoftCOM 2011, Split, Croatia, September 15-17,
2011, pp. 1–5, IEEE, 2011.

[28] “Chameleon Cloud: Experiment in the Edge to Cloud Con-
tinuum.” https://www.chameleoncloud.org/media/filer public/8d/a8/
8da8b517-fd99-46ce-94ea-61d4edd94531/cluster.pdf, Last accessed:
2022-11-20.

[29] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020 (A. Gavrilovska and E. Zadok,
eds.), pp. 219–233, USENIX Association, 2020.

[30] “Chameleon Trovi Sharing Portal.” https://chameleoncloud.readthedocs.
io/en/latest/technical/sharing.html, Last accessed: 2022-11-20.

[31] “JupyterLab documentation.” https://jupyterlab.readthedocs.io/en/stable/
index.html, Last accessed: 2022-11-20.

[32] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: a methodology and toolchain for reproducible network
experiments,” in CoNEXT ’21: The 17th International Conference on
emerging Networking EXperiments and Technologies, Virtual Event,
Munich, Germany, December 7 - 10, 2021 (G. Carle and J. Ott, eds.),
pp. 259–266, ACM, 2021.

[33] S. Gallenmüller, “A pos Experiment in a Jupyter-Notebook .” https://
github.com/gallenmu/pos-jupyter/blob/main/pos-experiment.ipynb, Last
accessed: 2022-11-20.

[34] M. Beg, J. Taka, T. Kluyver, O. Konovalov, M. Ragan-Kelly, N. M.
Thiéry, and H. Fangohr, “Using jupyter for reproducible scientific
workflows,” Comput. Sci. Eng., vol. 23, no. 2, pp. 36–46, 2021.

[35] “Grid’5000 a computer science testbed based in France.” https://www.
grid5000.fr/w/Grid5000:Home, Last accessed: 2022-11-20.

[36] L. Bertot and L. Nussbaum, “Leveraging notebooks on testbeds: the
grid’5000 case,” in 2021 IEEE Conference on Computer Communica-
tions Workshops, INFOCOM Workshops 2021, Vancouver, BC, Canada,
May 10-13, 2021, pp. 1–6, IEEE, 2021.

[37] “AWS SageMaker Studio Notebook.” https://docs.aws.amazon.com/
sagemaker/latest/dg/notebooks.html, Last accessed: 2022-11-20.

[38] “Azure Data Studio.” https://azure.microsoft.com/en-gb/services/
developer-tools/data-studio/, Last accessed: 2022-11-20.

[39] “Team Data Science Process for data scientists.” https:
//learn.microsoft.com/en-us/azure/architecture/data-science-process/
team-data-science-process-for-data-scientists, Last accessed: 2022-11-
20.

[40] “CWL: Common Workflow Language.” https://www.commonwl.org/v1.
2/, Last accessed: 2022-11-20.

[41] “CWL Tools.” https://github.com/common-workflow-language/cwltool,
Last accessed: 2022-11-20.

[42] “CWL-Airflow.” https://github.com/Barski-lab/cwl-airflow, Last ac-
cessed: 2022-11-20.

[43] “StreamFlow.” https://streamflow.di.unito.it/, Last accessed: 2022-11-20.
[44] “Toil.” https://github.com/DataBiosphere/toil, Last accessed: 2022-11-

20.
[45] “Galaxy.” https://galaxyproject.org/, Last accessed: 2022-11-20.
[46] “SLICES-DS Deliverable D4.5: SLICES infrastructure and services

integration with EOSC, Open Science and FAIR: Recommendations and
design patterns (final report),” Aug. 2022. To be published February
2023.

[47] “jq JSON processor.” https://stedolan.github.io/jq/, Last accessed: 2022-
11-20.

[48] “Pandas.” https://pandas.pydata.org, Last accessed: 2022-11-20.
[49] “Gnuplot.” https://www.gnuplot.info, Last accessed: 2022-11-20.
[50] Y. Demchenko, C. de Laat, W. Los, and L. Gommans, “Defining

platform research infrastructure as a service (priaas) for future scientific
data infrastructure,” in Designing Data Spaces: The Ecosystem Approach
to Competitive Advantage (B. Otto, M. ten Hompel, and S. Wrobel, eds.),
pp. 241–260, Springer, 2022.

[51] “IG1157 Digital Platform Reference Architecture Concepts and Princi-
ples v5.0.1,” July 2020.

