
Prototyping Prototyping Facilities:
Developing and Bootstrapping Testbeds

Sebastian Gallenmüller, Eric Hauser, Georg Carle
Department of Informatics, Technical University of Munich

Garching near Munich, Germany
{gallenmu, hauser, carle}@net.in.tum.de

Abstract—The creation of prototypes is a convincing approach,
demonstrating the feasibility of scientific ideas. Testbeds act as
enablers for such prototypes, contributing the facilities to their
construction. In this paper, we apply a prototype-driven approach
to the development of the testbeds themselves. Thus, we select
abstractions and APIs to modularize testbeds to allow a selective
adaptation or substitution of specific components. To minimize
costs, our approach aims to consolidate all components into a
single system. Hence, we named it testbed on a single system
(toast).

The single-server approach demands the recreation of entire
components in software such as networks or experiment nodes.
Simultaneously, the softwarization of components enables flex-
ible network topologies and scalability. At the same time, we
try to keep the behavior and the performance as close to a
hardware-based testbed as possible. Therefore, we rely heavily
on hardware acceleration of IO using techniques such as single
root IO virtualization (SR-IOV). A case study compares the
accelerated IO of toast to a hardware-based testbed and a testbed
without IO acceleration. We want to use toast as a training and
teaching environment and a prototype facility for future research
infrastructures.

Index Terms—Testbed, Network Experiments, Virtualization,
SR-IOV

I. INTRODUCTION

Testbeds act as a workbench for scientists where new ideas
can be designed, tested, and refined in a controlled environ-
ment. A testbed’s capabilities set the frame in which scientists
can operate. Thus, the testbed defines the limit of scientific
experiments and experimental outcomes. To enable further
progress, existing testbeds must be continuously upgraded with
new components, or entirely new testbeds must be created to
reflect technological progress.

Because of their central importance to experimental re-
search, we propose a concept to prototype new testbed compo-
nents or entirely new testbeds. Instead of building a prototype
out of real systems or components, many scientists rely
on emulation, simulation, or virtualization of components or
entire distributed systems [1]. An advantage of this approach
is its affordability, as a single server replaces multiple, if
not all components, of the real-world system. An additional
feature is the increased flexibility, network topologies can be
adapted, and virtual components such as participating nodes
can be scaled easily. However, virtualizing multiple nodes on

a single server leads to shared resources between them, thus,
may impact the measured performance on virtualized nodes.

In this work, we create a testbed that combines affordabil-
ity with a limited impact on performance. These two goals
are achieved by utilizing virtualization techniques of modern
central processing units (CPUs) and network interface cards
(NICs) that limit the computational overhead. We aim to create
a testbed on a single system (toast), ensuring affordability by
folding entire virtual network topologies and systems onto a
single physical server. This single-server testbed can be used as
a stand-in replacement for a testbed to be built at a later point
in time. The experiment scripts written for toast can also be
used in the future testbed. Testbed developers can use toast for
prototyping various testbed components; future testbed users
can be trained on the single-server testbed before the actual
setup becomes available. The single-server testbed can also be
used in teaching to attract potential future users.

In the following, we outline our goals aiming to: design a
concept to modularize testbeds to simplify the development
or the replacement of testbed modules; create affordable
testbed prototypes that rely on virtualization to realize flexible
topologies as well as realistic performance; present a case
study to reproduce experiments using the same experiment
scripts of the toast approach to other experimental approaches
and compare the performance; and introduce an online demon-
strator for our platform that can be used by others.

The paper is structured as follows. Section II investigates
related concepts and solutions. In Section III, we identify
requirements for a flexible, virtualized testbed and outline a
matching architecture. Our prototype implementation of the
virtualized testbed is presented in Section IV, and a case study
based on this prototype in Section V. As part of our effort
towards reproducible research, we publish the experimental ar-
tifacts presented in this paper. Their reproduction is explained
in Section VI. Section VII concludes the paper.

II. RELATED WORK

Current testbeds for network experiments use pure software,
hardware-accelerated software, or pure hardware. For the
pure software and hardware-accelerated software approaches,
simulation, emulation, or virtualization techniques are used.

a) Simulation: Creating a computer network model dis-
connected from reality. Mathematical models determine how
packets circulate in the network by abstracting protocols andISBN 978-3-903176-48-5© 2022 IFIP



traffic. Rather than processing packets in real-time, simulations
require more time than the actual measurement. Simulators
such as OMNeT++ [2] and ns-3 [3] are scalable and easy
to deploy. Due to the high level of abstraction, these purely
software-based approaches do not process packets in real-time
or at a significantly lower bandwidth [4]. Therefore, measured
latencies only depend on mathematical models that cannot
regard undiscovered effects.

b) Emulation: An integrated environment that tries to
appear as a real computer network. Devices that connect to
the emulator do not detect a functional difference compared
to a real network. For the emulation of single links, NetEm [5]
has been available in the Linux kernel since version 2.6.
Links emulated by NetEm are configurable in terms of latency,
packet loss, and duplication. Moreover, Mininet [6] is a widely
used network emulator for research and teaching. Thereby,
Mininet allows multiple lightweight virtualized hosts to form
a custom network topology on a single computer. Even though
the emulated network behaves like a real network, Mininet’s
performance is limited.

c) Real Hardware: Physical components are used to
build a testbed, usually consisting of multiple machines. Due
to the use of real hardware, these testbeds provide realistic
measurement setups combined with high-speed performance.
Vahdat et al. [7] present ModelNet, which abstracts a large
network topology on a few computers. The testbed is separated
into edge nodes and router nodes connected over a physical
network. The edge nodes are regular computers that run user-
specific applications. The computers that act as router nodes
form the ModelNet core. Every physical core router forms a
chain of pipes that represent an individual topology. Every
pipe corresponds to a single hop in the emulated network,
allowing multiple hop paths. These pipes have configurable
characteristics like queueing model, buffer size, bandwidth,
latency, and loss rate. White et al. [8] introduce Netbed, a
testbed consisting of 218 experiment hosts distributed over
two geographical locations. While Netbed aims to achieve
highly realistic behavior, the system is complex because it de-
pends on many components, increasing maintenance overhead.
Gallenmüller et al. [9] present the plain orchestrating system
(pos), a testbed framework that follows a specific workflow to
create inherently reproducible network experiments. There are
two instances of pos available, an hardware (HW) testbed and
a virtualized clone. We use these two approaches for a direct
comparison to the toast approach presented in this paper.

d) Virtualization: Abstracting network resources from
hardware into a software network. Therefore, for example, real
network interfaces become available to software consumers.
The hardware support increases the performance significantly.
Virtualization with hardware access to networking devices
offers a tradeoff between realism, testbed complexity, and
performance. Hibler et al. [10] show how multiple virtual
machines on a single host access physical NICs to build
scalable experiment networks.

A study by Emmerich et al. [11] demonstrates the per-
formance of different virtual machine (VM) topologies using

Open vSwitch. They measured a performance decrease of up
to 90% when switching from a setup based on physical NICs
to a virtualized setup.

Single-root IO virtualization (SR-IOV) is a technique that
splits NICs into several virtual NICs called virtual functions
(VFs). These VFs can be passed through to VMs, forming a
hardware-accelerated input/output (IO) path for VMs. Lettieri
et al. [12] compared different techniques for VM IO. They
identified SR-IOV as one of the fastest techniques with the
lowest CPU utilization. Wiedner et al. [4] utilized SR-IOV
to build and measure virtual topologies. They demonstrate
that an SR-IOV-based system offers more realistic latency
measurements than an emulated Mininet environment.

To differentiate our work from the already available tech-
niques, we try to create a system that behaves more similar
to real hardware than the available simulation and emulation-
based solutions [2], [3], [6], or even virtualized solutions
that still involve software packet processing [10]. At the
same time, we want to provide a more convenient testbed
experience that some systems lack [4], [8]. Therefore, we
want to combine testbed controllers and hardware-accelerated
virtualization [11], combining convenience with accuracy.

III. TESTBED REQUIREMENTS, DESIGN AND
ARCHITECTURE

This section introduces the requirements for a testbed, i.e.,
the preconditions necessary to execute effective experiments.
Based on these requirements, we outline the design of the
toast approach, a high-level overview of the different modules
of a testbed and the interaction between them. The high-level
design lays the foundation to deduct the toast reference ar-
chitecture that defines interfaces between modules to simplify
their development and substitution with other modules.

A. Requirements

We choose Mininet [6] as the starting point of our re-
quirement elicitation. Mininet was developed to be flexible,
supporting arbitrary topologies, operating systems (OSes), and
programming languages; deployable, requiring little changes
between prototype and real-world system; interactive, run-
ning in real-time like a real network; scalable, supporting
a multitude of network nodes; realistic, demonstrating real
network behavior; and sharable, creating prototypes that can
be shared with others. These requirements were defined for an
emulation-based solution. However, we consider these goals as
prerequisites to create meaningful, reproducible experimental
results approximating real-world systems. Thus, the require-
ments can be considered universal for non-emulation-based
testbed approaches.

When considering the different approaches, i.e., emulation,
simulation, virtualization, and hardware-based testbeds, these
platforms offer specific advantages and disadvantages. There-
fore, developers must compromise, leading to a platform-
specific relative weight of the previously mentioned require-
ments. Emulators, such as Mininet, offer a high degree of
realism from a functional perspective, but they cannot achieve



TABLE I: Requirements and their relative weight

flexible deployable interactive scalable realistic sharable

Mininet [6] ◦ ◦ ◦ ◦ ◦ ◦
Simulation ◦ ◦ - - ◦ ◦ ◦
HW testbeds - - ◦ ◦ - - + + - -

toast approach ◦ ◦ ◦ - + ◦

the performance of real networks [4]. Simulators, for instance,
sacrifice interactivity as simulation time rarely matches real
time. Hardware testbeds offer the highest degree of realism,
recreating a real system. However, flexibility, scalability, and
sharability may be limited due to finite testbed resources such
as servers or connectivity.

B. Design

The goal of our paper is the design of a stand-in replacement
for an HW testbed. Therefore, we propose a design that
values the different requirements in a similar way to hardware-
based testbeds. To achieve similar behavior, our approach
relies heavily on virtualization. Thus, we can achieve flexible
topologies, running realistic deployments interactively that
can be shared with others. Virtualization hypervisors allow
fine-granular control over resource sharing between VMs.
Hence, we expect a higher degree of realism compared to
an emulation-based approach. However virtualization comes
with limitations; consolidating multiple nodes onto the same
physical machine leads to shared resources between VMs,
impacting performance. To limit the performance impact, we
have to limit the number of VMs on a physical machine.
This restriction keeps performance close to a hardware-based
testbed with separate physical instead of virtual machines.

Table I summarizes Mininet’s original requirements and
how the requirements of different approaches compare against
them. Mininet presents the starting point of our comparison
(represented by ◦), + and - represent beneficial or sacrificial
trade-offs in comparison. Out of the presented solutions in
Table I, the toast approach offers the highest similarity with
the HW testbed. toast offers benefits in terms of flexibility,
scalability, and sharability. The main disadvantage is its degree
of realism. However, this problem is inherent to any system
that models another system. Therefore, only a testbed relying
on real HW will provide the highest degree of realism. Out
of the remaining non-HW solutions, the toast approach offers
the best compromise.

C. Architecture

Figure 1 shows the high-level architecture of our proposed
approach. The entire testbed runs on a single physical machine
or host system. The figure further shows the four modules
that comprise toast: (i) the access module, (ii) the controller
module, (iii) the experiment nodes, and (iv) the experiment
network.

The access module is a dedicated interface providing an
entry point to the testbed for its users. One of its main
tasks is user authentication. We use an authentication web

ac
ce

ss
co

nt
ro

lle
r

ex
p.

no
de

s
ex

p.
ne

tw
or

k

web
server

management
software

VM
management vswitch

node0
VM

node1
VM

node2
VM

node3
VM

NIC 0
PF

physical link
NIC 1

PF VF VF

NIC 2
PF VF VF

Internet VLAN A VLAN B

Fig. 1: toast architecture overview

server that provides access via browser to lower the entry
barriers for new users; an alternative solution would be an
SSH server. The entire authentication process is handled on
the host system, entirely separated from the controller module.
The authentication can be implemented, updated in case of
security issues, or even replaced without touching the fully
independent testbed controller. Another task of the access
module is providing Internet access, enforcing bandwidth
limitations, or port filtering for the controller module and
experiment nodes.

The controller of the testbed is hosted on its own VM
running the testbed management software. Encapsulating the
management software into its own VM, ensures a high degree
of flexibility for the controller. The controller developer can
choose dependencies and OS independently of the host system.
The controller must provide capabilities to create, reboot, and
configure the experiment nodes. In the toast approach, the
experiment nodes are connected to the controller via a virtual
software switch (management vswitch). This virtual manage-
ment network is exclusively used to control the experiment
nodes; the experiment network is separated.

The experiment nodes in our architecture are realized as
VMs. These nodes can be configured to match the target
hardware of a real testbed. VM hypervisors allow setting the
number of CPU cores, the amount of storage or RAM, or the
number of NICs available to an individual experiment node.
It is also possible to create node-specific settings. Sharing
hardware resources such as RAM or CPU cores between the
experiment node VMs is possible. Though these techniques
allow affordable scaling, the shared resources may become
overloaded, causing performance impacts that would not be
present on physically separated experiment nodes. Therefore,
the number of experiment nodes and their assigned resources
must be carefully configured to avoid impacting experiment
results caused by virtualization artifacts.

The experiment network relies on dedicated, physical
NICs exclusively used for experimental traffic. These NICs are
split into several VFs that are attached to the experiment nodes.



The actual NIC itself is represented by a physical function
(PF) that remains attached to the host machine. For security
reasons, certain settings such as the isolation between different
VFs or rate limits can only be set by the owner of the PF. This
way, only the host machine can perform changes. If necessary,
the PFs can be attached to the controller VM to enable a VF
reconfiguration using the testbed controller. Experimental traf-
fic exclusively uses hardware-accelerated networks. Figure 1
shows a possible configuration of NICs and VFs. Each of the
four experiment nodes is attached to a specific VF. The VFs are
distributed to two different single-port NICs; the two NIC ports
are connected to each other via a physical link. In Figure 1,
we use a configuration that isolates the network traffic handled
by VFs on the same NIC from each other. This can be done
by assigning two different virtual local area network (VLAN)
IDs, VLANs A and B, to the two VFs. VLAN tagging and
untagging can be handled transparently in the NIC, i.e., VLAN
tags and handling are entirely hidden from the experiment
nodes. The same VLAN configuration can also be realized
on the second NIC, thereby creating two VLAN-isolated
connections across both NICs and the connected experiment
nodes, respectively. Without VLAN isolation, all experiment
nodes connected to the same NIC would also see each other
using the switch integrated into SR-IOV NICs. Using VLAN
isolation, we force the traffic to use the wired connection,
thereby we ensure the usage of real hardware, thus creating
realistic performance.

A more detailed description of such a VLAN-based net-
work, relying on SR-IOV and VLAN isolation, was presented
by Wiedner et al. [4]. They also provide measurements demon-
strating the performance achievable in such a scenario.

IV. PROTOTYPE IMPLEMENTATION

To demonstrate the feasibility of the proposed architecture,
we created a prototype implementation. Our implementation
uses commercial off-the-shelf server hardware: the Supermicro
X10SDV-7TP4F mainboard, featuring an Intel Xeon D-1537 (8
cores, 1.7GHz), 128GB RAM, and a quad-port Intel X710-
DA4 NIC (10Gbit/s per port). We use Debian bullseye (Linux
kernel v5.10) on the host machine and the controller VM,
utilizing KVM as a hypervisor and libvirt to create and manage
VMs. Our setup relies on the pos testbed controller [9]; this
controller allows fully automated, reproducible experiments
and simplifies the release of experimental scripts and data.

We use a GitLab instance as an authentication provider.
GitLab allows the creation of user accounts and groups, which
we use as an access control mechanism for the testbed.
Authentication relies on the standardized OpenID API [13],
which allows a transition to other authentication providers with
little additional effort. OpenID is an authentication service
offered by numerous providers; the OpenID foundation lists
certified providers [14].

pos was initially designed to manage physical servers. To
reboot physical servers, pos uses the Intelligent Platform
Management Interface (IPMI), a standardized out-of-band
management API for servers. VirtualBMC [15] is a software

implementation of IPMI that allows the remote management of
VMs. We use this implementation to avoid any changes to our
testbed controller. The network boot process and SSH access
to the experiment VMs also remains unchanged compared to
a hardware testbed.

Our prototype currently offers four experiment node VMs
with 8GB vRAM and four CPU cores. The configuration of
the VMs is currently static, i.e., regular testbed users cannot
change the VM resources. We decided to rely on a static
configuration with reasonable resource allocation to ensure
a stable testbed operation. At the same time, we limit the
performance impact of resource sharing when performing
experiments.

Like the static configuration for the experiment node VMs,
our prototype only uses a static configuration for the exper-
iment networks. The current configuration uses two ports of
the Intel X710-DA4. Both ports are configured to provide four
VFs. Each VM is attached to two VFs, one from the first
and one from the second port. Our configuration does not use
VLAN isolation. This means that VMs can either connect via
the same NIC port or via the remote NIC port. We intentionally
disabled VLAN isolation to provide a highly flexible network
config, without providing access to the network configuration
on the host machine. In this case, the VFs act as the ports of
a switch connecting the machines to each other.

A. Limitations of the Prototype

We are aware that the static configuration of the experiment
nodes and the experiment network severely limits the capabil-
ities of our testbed. Freely configurable network topologies
or VLAN isolation are one of the key features of toast. The
same also holds for the configurability of the VM, where
our restrictions may unnecessarily limit the scalability of the
experiment nodes. However, a wrong network configuration
impacting the management vswitch in Figure 1 may discon-
nect experiment nodes. In addition, overloading the hardware
of the physical system may lead to an unstable controller.
Wrong configurations of the network or VM resources may
compromise the entire testbed’s stability.

To allow more flexible experiments for future prototypes,
we plan to extend the configurability of VM resources and
network topologies in future work. Additional work is needed
to identify problematic configurations and provide counter-
measures to ensure the stability and reachability of the one-
server testbed in the presence of a faulty configuration.

B. Availability of the Prototype

Our implementation is currently relying on hardware-
specific settings, e.g., the configuration of SR-IOV on the used
Intel X710 NIC. Though the SR-IOV feature is not limited to
this specific card or its vendor, configuration differs between
Intel NICs and even more compared to NICs of other vendors.
Therefore, we do not provide a solution that supports other
NICs or hardware configurations. However, we provide web-
access to our prototype that we host on our infrastructure.
Section VI explains how the toast testbed can be accessed.



LoadGen DuT
I

J

I

J

Fig. 2: Measurement setup

V. CASE STUDY: PERFORMANCE

In this section, we want to compare the toast approach
to two different testbeds that we operate, a hardware-based
testbed (pos) and a fully virtualized testbed (vpos). The results
for pos and vpos were already part of their original publica-
tion [9]. There, a two-server two-link topology (see Figure 2)
is used. The first node generates packets using MoonGen [16]
(LoadGen). The second node acts as device under test (DuT)
and uses the Linux router to forward packets between its two
network interfaces. We aim to measure the maximum loss-
free throughput that the DuT can handle for packet sizes of
64B and 1500B. The pos and vpos experiments use Debian
buster (Linux kernel v4.19) on a system with two Intel Xeon
Silver 4214 CPUs (12 cores, 2.2GHz) and an Intel 82599 dual-
port NIC (10Gbit/s per port). The toast experiment uses the
software and hardware specified in Section IV. Both setups
use the same version of the testbed controller and the same
version of the experiment script [17].

Experiment results are plotted in Figure 3. For the
three cases (hardware-based pos, fully virtualized vpos, and
hardware-accelerated virtualized toast), the generation and the
forwarding of the DuT increase linearly up to the maximum
threshold the DuT can handle. After that, the forwarding
rate remains at a certain level. This maximum rate differs
significantly between the investigated setups.

Subfigure 3a shows the results of the hardware-based testbed
(pos). For a packet size of 64B, we measure a maximum
throughput of 1.7Mpps. The larger 1500B packets hit the
bandwidth limit of our 10Gbit/s links at a packet rate of
0.82Mpps. At line rate, generation and forwarding rate remain
at a constant level of 0.82Mpps. We observe highly stable
forwarding rates for both investigated packet sizes.

In Subfigure 3b, the results of the vpos measurements are
plotted. This setup relies on fully virtualized software switches
for packet IO. There, the packet rates are significantly lower
compared to any other setup. We already observed a packet
loss starting at 50 kpps, independent of the investigated packet
size. In addition, throughput rates beyond 50 kpps become
unstable.

The toast results are plotted in Figure 3c. In this setup, we
observe the same maximum forwarding throughput of approx.
0.72Mpps for both investigated packet sizes. Using the VFs
of the X710 NIC, we could also surpass the 10Gbit/s limit.
This is possible because the X710 NIC uses a controller that
supports 40Gbit/s Ethernet like the VFs. When comparing
the forwarding results to vpos, we see significantly higher
forwarding rates and more stable rates for toast. Compared
to the pos setup, forwarding rates are lower. Please mind
the different axes scaling between Figures 3a and 3c. The
lower rates can be partially attributed to the hardware used

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Configured Packet Rate [Mpps]

A
vg

.P
kt

.R
at

e
[M

pp
s] LoadGen - 64 B

DuT - 64 B
LoadGen - 1500 B
DuT - 1500 B

(a) Hardware-based testbed (pos)

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Configured Packet Rate [Mpps]

A
vg

.P
kt

.R
at

e
[M

pp
s] LoadGen - 64 B

DuT - 64 B
LoadGen - 1500 B
DuT - 1500 B

(b) Virtual testbed (vpos)

0 0.25 0.5 0.75 1 1.25
0

0.5

1

1.5

Configured Packet Rate [Mpps]

A
vg

.P
kt

.R
at

e
[M

pp
s] LoadGen - 64 B

DuT - 64 B
LoadGen - 1500 B
DuT - 1500 B

(c) Virtual testbed with accelerated IO (toast)

Fig. 3: Measurement results for the generated (MoonGen as
LoadGen) and forwarded rate (Linux router as DuT).

by toast, relying on a less powerful CPU running an older
architecture and a 500MHz lower clock rate. Despite its
difference in throughput, the stability of the toast setup is
a better approximation of the hardware pos testbed than the
vpos testbed before. This means that the hardware-accelerated
virtualization of toast offers a more realistic approximation
of the original pos results than the purely software-based IO
solutions used in vpos.

VI. REPRODUCIBILITY

We created a website [17] that contains the experi-
ment scripts, experimental data, plotting scripts, and plots.
Interested users can use the available web instance at
https://testtestbed.net.in.tum.de to reexecute our experiments
and reproduce our results. There, we offer access to the

https://testtestbed.net.in.tum.de


one-server version of pos through a lightweight registration
process.

VII. CONCLUSION

In this paper, we presented toast, an architecture that
allows the prototyping of entire testbeds. Our architecture
splits the testbed into four modules: the access module, the
controller, the experiment nodes, and the experiment network.
The modules are designed for extensibility and replaceability
using flexible APIs. Though we demonstrate the feasibility
of toast for the testbed controller pos, the concept provides
enough flexibility to be applicable to other testbeds. Using
standardized OpenID, the authentication providers can be
easily exchanged, a testbed developer can host any testbed
controller inside a VM, the number of testbed nodes and
the provided resources can be individually configured, and
the network topology and bandwidth can be configured using
hardware features of NICs.

A comparison between a real hardware-based testbed and
a fully virtualized testbed without hardware IO acceleration
demonstrates the benefits of toast. toast combines the flex-
ible topology configuration similar to purely software-based
solutions with the realistic performance typically reserved for
hardware-based testbeds.

The toast approach was created with simplicity and af-
fordability in mind. Therefore, everything is hosted on a
single physical server. This makes toast a viable solution
for teaching in an academic environment, where students can
perform experiments on actual server hardware achieving real-
world performance. toast can also act as a placeholder for
a future hardware-based testbed. The training of users, e.g.,
the previously mentioned students, and the refinement of the
testbed can take place even before the actual testbed has been
built. This makes the toast approach an ideal learning facility
for testbed developers and potential users alike.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der grant agreement No 101008468. Additionally, we received
funding from the Bavarian Ministry of Economic Affairs,
Regional Development and Energy as part of the project 6G
Future Lab Bavaria. This work is partially funded by the
German Federal Ministry of Education and Research (BMBF)
under the project 6G-life (grant number 16KISK002).

REFERENCES

[1] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown, “Reproducible Network Experiments Using Container-
Based Emulation,” in Conference on emerging Networking Experiments
and Technologies, CoNEXT ’12, Nice, France - December 10 -
13, 2012, C. Barakat, R. Teixeira, K. K. Ramakrishnan, and
P. Thiran, Eds. ACM, 2012, pp. 253–264. [Online]. Available:
https://doi.org/10.1145/2413176.2413206

[2] OMNeT++: Discrete event simulator. Last accessed: 2022-05-05.
[Online]. Available: https://omnetpp.org/

[3] ns-3: Discrete event network simulator for internet systems. Last
accessed: 2022-05-05. [Online]. Available: https://www.nsnam.org/

[4] F. Wiedner, M. Helm, S. Gallenmüller, and G. Carle, “HVNet:
Hardware-Assisted Virtual Networking on a Single Physical Host,” in
IEEE INFOCOM WKSHPS: Computer and Networking Experimental
Research using Testbeds (CNERT 2022) (INFOCOM WKSHPS CNERT
2022), May 2022.

[5] NetEm: Network emulator to modify a link’s performance
properties. Last accessed: 2022-05-05. [Online]. Available:
https://wiki.linuxfoundation.org/networking/netem

[6] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in Proceedings of the 9th
ACM Workshop on Hot Topics in Networks. HotNets 2010, Monterey,
CA, USA - October 20 - 21, 2010, G. G. Xie, R. Beverly, R. T.
Morris, and B. Davie, Eds. ACM, 2010, p. 19. [Online]. Available:
https://doi.org/10.1145/1868447.1868466

[7] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. S.
Chase, and D. Becker, “Scalability and Accuracy in a Large-Scale
Network Emulator,” in 5th Symposium on Operating System Design and
Implementation (OSDI 2002), Boston, Massachusetts, USA, December
9-11, 2002, D. E. Culler and P. Druschel, Eds. USENIX Association,
2002. [Online]. Available: http://www.usenix.org/events/osdi02/tech/
vahdat.html

[8] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in 5th Symposium
on Operating System Design and Implementation (OSDI 2002),
Boston, Massachusetts, USA, December 9-11, 2002, D. E. Culler and
P. Druschel, Eds. USENIX Association, 2002. [Online]. Available:
http://www.usenix.org/events/osdi02/tech/white.html

[9] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
Framework: A Methodology and Toolchain for Reproducible Network
Experiments,” in CoNEXT ’21: The 17th International Conference on
emerging Networking EXperiments and Technologies, Virtual Event,
Munich, Germany, December 7 - 10, 2021. ACM, 2021, pp. 259–266.
[Online]. Available: https://doi.org/10.1145/3485983.3494841

[10] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, “Large-scale Virtualization in the Emulab
Network Testbed,” in 2008 USENIX Annual Technical Conference,
Boston, MA, USA, June 22-27, 2008. Proceedings, R. Isaacs and
Y. Zhou, Eds. USENIX Association, 2008, pp. 113–128. [Online].
Available: http://www.usenix.org/events/usenix08/tech/fullpapers/hibler/
hibler.pdf

[11] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and
G. Carle, “Throughput and Latency of Virtual Switching with
Open vSwitch: A Quantitative Analysis,” J. Netw. Syst. Manag.,
vol. 26, no. 2, pp. 314–338, 2018. [Online]. Available: https:
//doi.org/10.1007/s10922-017-9417-0

[12] G. Lettieri, V. Maffione, and L. Rizzo, “A Survey of Fast Packet
I/O Technologies for Network Function Virtualization,” in High
Performance Computing - ISC High Performance 2017 International
Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG,
Pˆ3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt, Germany,
June 18-22, 2017, Revised Selected Papers, 2017, pp. 579–590.
[Online]. Available: https://doi.org/10.1007/978-3-319-67630-2 40

[13] GitLab as OpenID Connect identity provider. Last accessed: 2022-05-
05. [Online]. Available: https://docs.gitlab.com/ee/integration/openid
connect provider.html

[14] OpenID Certification. Last accessed: 2022-05-05. [Online]. Available:
https://openid.net/certification/

[15] Virtualbmc repository. Last accessed: 2022-05-05. [Online]. Available:
https://github.com/openstack/virtualbmc

[16] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Proceedings
of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015, K. Cho, K. Fukuda, V. S. Pai, and
N. Spring, Eds. ACM, 2015, pp. 275–287. [Online]. Available:
https://doi.org/10.1145/2815675.2815692

[17] S. Gallenmüller, E. Hauser, and G. Carle. Experiment Results
and Replication. Last accessed: 2022-05-05. [Online]. Available:
https://gallenmu.github.io/single-server-experiment

https://doi.org/10.1145/2413176.2413206
https://omnetpp.org/
https://www.nsnam.org/
https://wiki.linuxfoundation.org/networking/netem
https://doi.org/10.1145/1868447.1868466
http://www.usenix.org/events/osdi02/tech/vahdat.html
http://www.usenix.org/events/osdi02/tech/vahdat.html
http://www.usenix.org/events/osdi02/tech/white.html
https://doi.org/10.1145/3485983.3494841
http://www.usenix.org/events/usenix08/tech/fullpapers/hibler/hibler.pdf
http://www.usenix.org/events/usenix08/tech/fullpapers/hibler/hibler.pdf
https://doi.org/10.1007/s10922-017-9417-0
https://doi.org/10.1007/s10922-017-9417-0
https://doi.org/10.1007/978-3-319-67630-2_40
https://docs.gitlab.com/ee/integration/openid_connect_provider.html
https://docs.gitlab.com/ee/integration/openid_connect_provider.html
https://openid.net/certification/
https://github.com/openstack/virtualbmc
https://doi.org/10.1145/2815675.2815692
https://gallenmu.github.io/single-server-experiment

	Introduction
	Related Work
	Testbed Requirements, Design and Architecture
	Requirements
	Design
	Architecture

	Prototype Implementation
	Limitations of the Prototype
	Availability of the Prototype

	Case Study: Performance
	Reproducibility
	Conclusion
	References

