
The pos Framework: A Methodology and Toolchain for
Reproducible Network Experiments

Sebastian Gallenmüller∗, Dominik Scholz∗, Henning Stubbe, Georg Carle
Department of Informatics, Technical University of Munich, Germany

{gallenmu,scholz,stubbe,carle}@net.in.tum.de

ABSTRACT
In scientific research, the independent reproduction of experimental
results is the source of trust. The release of experimental artifacts
enables the reproduction of results; however, additional efforts of
researchers are required to prepare and document their experiments
accordingly. To honor this increased effort, multiple initiatives were
implemented to incentivize the creation and release of experimental
artifacts, e.g., awards for papers that provide experimental artifacts.

In this work, we want to propose a novel approach toward a
reproducible research—a structured experimental workflow that
allows the creation of reproducible experiments without requiring
additional efforts of the researcher. Moreover, we present our own
testbed and toolchain, namely, plain orchestrating service (pos),
which enables the creation of such experimental workflows. The ex-
periment is documented by our proposed, fully scripted experiment
structure. Further, we consider the entire experimental workflow
from experiment orchestration, to data measurement, to result eval-
uation. In addition, pos provides scripts that enable the automation
of the bundling and release of all the created experimental arti-
facts. In this case study, we release one of our own experiments
together with the necessary tools so that others can reproduce our
experiment. Additionally, we provide an interactive environment
where pos experiments can be executed and reproduced, which is
available at https://gallenmu.github.io/pos-artifacts.

CCS CONCEPTS
• Networks→ Network experimentation; • General and ref-
erence→ Experimentation.

KEYWORDS
Repeatability, Reproducibility, Replicability, Experiments
ACM Reference Format:
Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, Georg Carle.
2021. The pos Framework: A Methodology and Toolchain for Reproducible
Network Experiments. In The 17th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’21), December 7–10,
2021, Virtual Event, Germany. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3485983.3494841
∗Joint first authorship

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00
https://doi.org/10.1145/3485983.3494841

1 INTRODUCTION
Research is ultimately referred to as the search for truth. Typically,
the scientific truth cannot be revealed through a single measure-
ment or observation, but through experimental validation of others
who independently recreated their own measurements, verifying
the original results. In computer science, this essential recreation is
often neglected due to various reasons, such as low appreciation
of the replicated results in the scientific community or the require-
ment of an additional effort of researchers to adequately prepare
experimental data. To foster the recreation of experimental results,
the ACM [6] introduced badges—awards for papers that invest the
additional time and effort to make their results reproducible. Based
on the quality of the provided artifacts, the badges come in different
types depending on how and by whom the results can be recreated.
The ACM considers three different stages for reproducibility: re-
peatability, the same people use the same setup to repeat results;
reproducibility, different people use the same setup to reproduce
results; replicability, different people use different setups to repli-
cate results. Please note that we used the revised version of the
ACM’s definition released in August 2020. In the revised version,
the definitions for reproducibility and replicability are swapped to
match the more common definitions of NISO [6].

In the scientific community, many agree with the benefits of re-
producibility and its incentivization owing to the increased effort in
the preparation and release of artifacts for reproduction [13, 31, 37].
Among the proposed solutions, the common theme is the intro-
duction of incentives as a form of compensation for the increased
workload. We aim to approach the problem from a different perspec-
tive: reduce the amount of work that researchers have to put into
making their experiments reproducible. However, our proposed so-
lution is not a replacement but rather a complement to the current
reward-based approaches.

We present a methodology for network experiments that relies
on an automated experimental workflow. To implement such a
methodology, we created our own testbed and software toolchain,
which is called plain orchestrating service (pos). Our testbed de-
pends on fully scripted experiments to document and automate the
experimental workflow to enable the experiments to be repeatable.
Our methodology further introduces an experimental structure
that divides the experiments into setup, experiment, and evaluation
phases, in addition to the division between experiment scripts and
experiment parameters. This structure facilitates in the documenta-
tion of experiments that can be easily shared with others to achieve
reproducibility, which requires little additional effort. Using the
structured experimental approach and our toolchain, the experi-
ment can be prepared for publication to enable others to replicate
the experiments.

https://gallenmu.github.io/pos-artifacts
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3485983.3494841


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, Georg Carle

Our paper aims to (i) introduce a methodology that enables
inherently reproducible experiments by following our proposed
experimental workflow, (ii) establish experimental designs that
support the researcher to create publishable artifacts with only little
additional effort required, and (iii) demonstrate how researchers can
easily understand and recreate the results of our sample network
experiments. In this paper, we present an example experiment
and provide all experimental artifacts, including the experimental
results, the scripts that enable their creation, and the evaluation.
In addition, we provide access to a virtual instance of our testbed
infrastructure, which demonstrates that the provided artifacts can
be easily reused by others and easily created and published by
experiment creators.

The remainder of this paper is structured as follows. Sec. 2 in-
vestigates the state of the art in the area of reproducible network
experiments and testbeds. We define our requirements and present
our design for a purpose-built testbed in Sec. 3 and 4. A case study
demonstrates a network experiment in this testbed (Sec. 5). In Sec. 6,
we compare pos to other testbeds and Sec. 8 concludes the paper.
Finally, Appendix A documents the experimental workflow for the
reproduction of our case study.

2 BACKGROUND AND RELATEDWORK
Formany years, the SIGCOMMcommunity [12] has been discussing
the topic of reproducibility. Here, we discuss recent developments
particularly focusing on tools and testbeds that facilitate in the
creation of reproducible experiments.

Reproducibility. In 2015, Collberg and Proebsting [13] studied
the replicability of computer science publications. They concluded
that the lack of replicability is considered to be sociological, not tech-
nological, as little reward can be gained from replication. This issue
can be solved in the long term only by a cultural change toward
the appreciation of replication. However, as a short-term solution,
they suggested that the funding agencies should provide funds dedi-
cated to making publications repeatable. More recent developments
have suggested that in computer science, reproducibility is gaining
considerable attention. In 2017, a workshop focusing on replicable
network experiments was held at the SIGCOMM conference [11].
In 2019, a Dagstuhl seminar on this topic was held, in which guide-
lines for replicable network experiments have been established [8].
These guidelines consider the entire lifecycle of an experiment:
from the experiment description and execution, to evaluation and
finally the publication of artifacts. The push toward reproducibility
is not limited to SIGCOMM. Other scientific communities are also
currently establishing a culture of experiment replication, as well
as Artifact Evaluation Committees [21]. Recently, Saucez et al. [31]
evaluated the Artifact Evaluation Committees of CoNEXT’18 and
other SIGCOMM-sponsored conferences and journals. A survey
conducted on the authors and reviewers considered the gained
experience to be useful and interesting. However, the evaluation
can be time-consuming for reviewers. Although considerable atten-
tion is paid to reproducibility, achieving it is difficult. Zilberman
recently conducted a case study [36], demonstrating that even pa-
pers awarded with ACM’s reusable badge may not paint a complete
picture of the investigated system behavior. She found that low
robustness, i.e., small variation from the original input, such as

the investigated packet size, could lead to a significantly different
performance.

Testbeds. Currently, there are numerous initiatives for maintain-
ing and providing testbeds for distributed computing and network-
ing research, e.g., Fed4Fire (EU) [1], OneLab (EU) [4], Grid’5000
(France) [3], Planetlab (global) [5], or GENI (USA) [2]. The included
testbeds specialize in different areas, such as wired networks, 5G,
Internet of Things, or Internet-scale measurements. For this pa-
per, we consider testbeds that target a domain similar to pos, i.e.,
wired networks and nodes that scale across multiple racks and
sites. Nussbaum [24] investigated three testbeds (Chameleon [22],
CloudLab [30], and Grid’5000 [9]) that are similar to pos. He fo-
cused on their ability to execute reproducible network experiments
and concluded that the investigated testbeds are indeed capable
of performing such experiments. However, the testbeds neither
guarantee nor enforce the creation of reproducible experiments.
Zhuang et al. [35] evaluated the testbeds Emulab, PlanetLab, Seattle,
and GENICloud for teaching. They found several problems, such as
involuntary configuration changes during the running experiments
and fluctuating bandwidths that may impact the repeatability of
the experiments running on these testbeds.

Methodologies. In contrast to testbeds, methodologies intro-
duce concepts to structure and execute experiments. OMF [28] is
a testbed controller, which has its own domain-specific language
(DSL) to program network experiments. Similar to pos, OMF enables
the creation of reproducible experiments relying on automation.
The DSL of OMF allows the specification of complex experimental
workflows as Petri nets. The pos methodology assumes a simpler
experimental workflow, indicating that its API is easier to learn
and use. Peuster et al. [26] propose SNDZoo, a repository for repro-
ducible network experiments and a toolchain to reproduce them.
Their tools and experiments are focused on containers and VMs.
Thanks to the tight integration of methodology and testbed, pos
additionally supports low-level hardware experiments. In 2011,
Quereilhac et al. [27] presented NEPI, a network experimentation
framework that supports various backends such as PlanetLab, netns,
or ns-3. pos’ methodology goes a step further in experiment design
than NEPI, considering subsequent experiment steps such as the
evaluation and later publication of data.

pos consists of two entities—its methodology and a testbed im-
plementing this methodology. Both cojointly designed with repro-
ducibility in mind. While other testbeds only offer the possibility
of creating repeatable experiments, the pos methodology enforces
repeatability. Given the access to a pos-capable testbed and experi-
ment files, others can reproduce the experiments, a property that
we call reproducibility by design. By following the experimental
workflow of pos, reproducible experiments can be created with the
requirement of little additional effort (cf. Sec. A). pos cannot ensure
replicability; however, the created experimental artifacts document
the experiments to enable other researchers to easily replicate such
experiments. The full automation of the experimental workflow
further attempts to address the issue of low robustness.

3 REQUIREMENT ANALYSIS
The following analysis introduces the requirements for reproducible
network experiments.



The pos Framework: A Methodology and Toolchain for Reproducible Network Experiments CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Heterogeneity (R1). Networks involve a wide variety of par-
ticipants, such as embedded, resource-constrained devices, packet
processing software on off-the-shelf hardware, smartNICs built
to accelerate specific network tasks, and switches with dedicated
ASICs. To achieve effective experiments, a testbed must be able to
adapt to different devices.

Isolation (R2). Network experiments are inherently distributed
across devices, with each device potentially impacting the behavior
of other devices and, therefore, the experimental outcome. We aim
to observe device behavior only influenced by devices that are part
of the experimental network. Therefore, our testbed must provide
means to isolate the experimental network from non-investigated
devices that may introduce unwanted effects into the experiment.

Recoverability (R3). Experiment-driven science often involves
an investigation of objects using the trial-and-error approach. For
network experiments, such an approach requires constant alteration
and modification of the experimental network and its devices. Such
an approach may ultimately cause network malfunction or failure.
The testbed must be able to recover from a fully configured, a
misconfigured, or even an error state, so that experiments can be
restarted or restored from the same, well-defined, initial state.

Automation (R4). Accurately setting up network devices may
involve several steps or complex configuration files. A correct setup
is crucial to the performance of network devices and subsequently
to the recreation of experiments. Full automation makes the setup
phase less error-prone and time-consuming than a manual setup.

Publishability (R5). The availability of scripts, results, and eval-
uation tools is essential to achieve replicability. Well-documented
experimental artifacts provide others with the necessary informa-
tion to replicate experimental results. A testbed should lower the
barrier for researchers to publish the experimental artifacts.

4 EXPERIMENT DESIGN
We are not aware of a testbed that adheres to a methodology meet-
ing all identified requirements, inherent to pos’ design.

4.1 Experiment Methodology
We define the network experiment as the entire process that config-
ures, performs, evaluates, and optionally publishes measurements.
Our network experiments are parameterized with variables or vars.
We investigate different instances for the variables during an exper-
iment. We call the execution of one concrete instance measurement
run or short run and the outcome of each measurement run a result.

Fig. 1 presents typical entities in a network experiment. The
testbed controller manages the entire experimental workflow. The
two other roles in this experiment are experiment hosts. One device
is the device under test (DuT), which is the object of the investiga-
tion for an experiment and the other device is the load generator
(LoadGen), which generates the traffic sent to the DuT and receives
processed traffic from the DuT. The number of experiment devices
can be scaled. Here, we focus on a minimal topology.

4.2 Testbed Implementation
To support the different experiment devices (R1), pos implements
two APIs: an initialization and a configuration interface. An ex-
ample of the former used by pos to reset and boot servers is IPMI.

LoadGen DuT

Controller

1Figure 1: Typical testbed topology

Our testbed controller does not depend on the availability of IPMI:
alternatives are other management APIs, such as Intel’s vPro or
AMD’s Pro features, or a remotely switchable power plug that trig-
gers a device reboot. The mentioned APIs allow the initialization
of a device to be triggered out of band (R3), i.e., the devices can be
reinitialized in the case of configuration errors.

After initialization of an experimental device, the configuration
interface is used to configure the device and execute the experiment.
For a typical Linux server, we use SSH as the configuration interface.
IPMI and SSH are given only as examples; thus, they can be replaced
with different protocols, depending on the APIs provided by the
experiment hosts. pos supports configuration and initialization
APIs for devices via SNMP or HTTP. To support devices requiring
other protocols, an implementation for the respective API can be
added to pos. The entire initialization process and configuration
of a network device is automated via user-defined scripts (R4). To
avoid any shared state between the different executions of the
experiment, pos relies on live-boot images. Such images enforce
repeatability, as the OS repeatedly starts from a well-defined state,
and the researcher must automate and thereby document the device
configuration (R3 and R4). To prevent any influence of switches
or hubs on the observed results (R2), our testbed employs direct
wiring between experiment hosts.

Load Generators. One of the essential elements of a network
experiment is the used traffic source. Typical experiments in our
testbed use synthetic traffic created at runtime by a packet genera-
tor [17, 18, 32]. However, other experiments use pcaps of recorded
traffic. Most of our experiments use MoonGen [16] owing to its
ability to support user-defined scripts to generate packets during
runtime or to replay pcaps. Its precision and accuracy for packet
generation and latency measurements is superior to other software
packet generators [15]. However, pos does not solely depend on
MoonGen. Other software packet generators, such as iPerf, can be
run on off-the-shelf or even virtualized experiment hosts.

Our flexible testbed architecture also enables the integration of
hardware packet generators, such as OSNT. OSNT is based on the
NetFPGA platform [7], which can be integrated into experiment
hosts as PCIe cards. Packet creation or pcap replay can be managed
by experiments through their respective host servers. Hardware
packet generators may also come in the form of tightly integrated
systems, e.g., Intel’s Tofino ASIC built into switches. In that case,
the entire device can be added to the testbed as a new experiment
host and managed through the provided configuration APIs.

4.3 pos Experimental Structure
To achieve replicability, other researchers must understand the
experimental artifacts. Therefore, we enforce a specific structure to
program pos experiments.

The user-programmable experiment scripts distinguish two dif-
ferent file types: script and parameter files. This idea is inspired



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, Georg Carle

Run N
Loop
Vars N measurement

Results N

Run II
Loop
Vars II measurement

Results II

Run I

DuT Controller LoadGen
Experiment

Global
Vars

Setup Setup
Local
Vars

Local
Vars

Loop
Vars IMeasurement Measurement

Results I

Evaluation

Publication

Se
tu
p
Ph

as
e

M
ea
su
re
m
en
tP

ha
se

Ev
al
ua
tio

n
Ph

as
e Script

Parameters
Result Data

1Figure 2: Experimental workflow

by HTML and CSS; HTML defines the structure of a text, CSS its
design. In the pos experiment structure, the scripts define the indi-
vidual steps of the experiment, and the variables define the concrete
instance of a measurement run. For instance, a script file defines
the initialization of a network port with the name $PORT, the vari-
able file assigns $PORT the value eno1. This separation allows the
experiments to be executed in a different setup by merely adapting
the variables without the need to change the script files.

To further elucidate the experimental structure, we used different
scripts for the different participating experiment hosts and for the
different phases of an experiment. Each experiment host requires
two exclusive script files: setup, which defines the experiment host
configuration, and measurement, which defines the active phase of
a measurement run that generates results. Thereby, a script can be
any executable, e.g., python or bash, that can be executed on the
target device. The script contains the sequence of commands to
execute, e.g., starting or stopping iPerf.

To parameterize the experiment scripts, pos provides three dif-
ferent kinds of variables, depending on which experiment host has
access and where the variables are utilized in the experimental
workflow: global vars, accessible from all experiment hosts; local
vars, defined for each experiment host; and loop vars, shared across
all experiment hosts, but continuously changed between different
measurement runs.

4.4 pos Experimental Workflow
In Fig. 2, the script, variable, and result files that describe the high-
level workflow of an experiment are presented, code examples for
each file are available [20]. From top to bottom, the workflow is
separated into the three subsequent phases: setup, measurement,
and evaluation.

Setup Phase. The testbed controller host executes the main
experiment script defining the experiment workflow. This script
interacts with the pos API to execute multiple actions. First, it

allocates the desired devices—the workflow presented in Fig. 2 allo-
cates two devices: the DuT and LoadGen. As we operate a multiuser
testbed, we use an integrated calendar to temporally separate the
experimental devices between users. Only if the calendar indicates
that the devices are free for the planned duration of the experiment,
the allocation can be created. This allows sharing testbed nodes
between all users and running multiple independent experiments
in parallel. Further, using a node in more than one experiment at
the same time is prohibited.

Afterwards, the devices are configured by loading the global and
loop variables. The local variables are loaded for each experiment
host. Moreover, a live image is selected for every device, and boot
parameters can be set. For reproducible boots, we use live images
and start every experiment using the same clean slate (R3). Utilizing
the Debian snapshot project [25], we can create live images with
specific version numbers for the kernel and the installed packages.
Finally, the experiment script instructs pos to start the devices,
whereby the boot is internally executed using the respective ini-
tialization interface. This abstraction improves the usability for
users, as they do not need to take care of boot specifics (R1) but
can still define experiment-specific boot parameters, e.g., for the
Linux kernel. Once the experiment hosts have finished booting, pos
deploys a set of utility tools before the setup scripts can be loaded
and executed to complete the setup phase.

These tools can be used in the setup or measurement scripts;
read or communicate variables and synchronize hosts using barriers.
Further, any command can be executed via pos’ tools. The output
of these commands is automatically captured and uploaded to the
testbed controller as a result.

Measurement Phase. During the measurement runs, pos exe-
cutes the measurement script for every node. The number of exe-
cutions depends on the number of individual parameters contained
in the loop variables file. Each of these parameters can represent
either a single value or a list of values. pos experiments perform
measurements for each possible combination of loop parameters. If
lists are used as parameters, pos automatically generates the cross
product over all parameter values to ensure full coverage. For every
set of values contained in the calculated cross product, it executes
the measurement script once. Parameters must be carefully chosen,
as the exponential growth in the measurement runs may cause
infeasibly long experiment completion times.

pos automatically queues one run after another, starting the
next only after the current run has been completed. The complete
output of the experiment script is captured and stored in the re-
sult folder of the experiment. This enforced central collection of
artifacts, including the output of the utility tools, executed scripts,
variables, device hardware and topology information, guarantees
publishability (R5).

Evaluation Phase. The evaluation script processes the result
files either after all runs have been completed or asynchronously
during their runtime. Due to the enforced structure of experiments,
pos creates separate result files for each measurement run. Addi-
tionally, pos creates metadata for each run, i.e., the loop parameters
of a specific run. Based on this metadata, the evaluation script can
filter or aggregate specific parameters and values. We integrated a
parser for MoonGen’s output into our plotting scripts. The Moon-
Gen output, in conjunction with the available metadata, allows



The pos Framework: A Methodology and Toolchain for Reproducible Network Experiments CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

the automated evaluation of experiments. Our plotting scripts can
create throughput figures and latency distributions out-of-the-box
using a set of different representations (line plot, histogram, CDF,
HDR, and violin plot). The generated plots are exported to multi-
ple formats, e.g., tex, svg, and pdf. Researchers can add their own
parsers to support other packet generators or output formats. In
addition, they can adapt or extend the evaluation script to reflect
the concrete experiment setting and to create custom graphs.

Our structured experimental workflow allows all artifacts linked
to an experiment to be connected, i.e., executed scripts, generated
results, and created plots. The publication script bundles these ar-
tifacts into a release format, e.g., an archive or a repository. In
addition, it generates a website and inserts all the collected artifacts
documenting the experimental structure in a format that can be
easily read by researchers.

5 CASE STUDY
We demonstrate the capabilities of pos using one of our own ex-
periments. In Appendix A of this paper, we included a detailed de-
scription on how to replicate this experiment, including the access
to a virtual instance of the testbed and the repository containing
the experimental artifacts.

Setup. We use MoonGen as the load generator to measure the
forwarding performance of our DuT, the Linux router, for packets
with different sizes (64 and 1500 B). We chose the Linux router
to demonstrate our experiment workflow, as software routers are
typical targets for network experiments [10, 14, 29]. We perform a
throughput measurement on two different platforms: pos, which
uses real hardware in our testbed and vpos, which is a virtual clone
of the testbed.

The DuT in the hardware testbed runs Debian Buster (kernel
v4.19) on a system with two Intel Xeon Silver 4214 CPUs (12 cores,
2.2 GHz) and an Intel 82599 NIC (dual port, 10 Gbit/s) that is directly
connected to the load generator. The Linux router forwards the
traffic between its two network ports to the hardware NIC.

The virtual testbed runs on the hardware and OS of the previ-
ously described DuT, using KVM as a hypervisor. The VMs running
the experiment are pinned to fixed CPU cores to avoid unwanted
resource sharing. We use Linux bridges for the connection between
the experiment VMs.

Evaluation. The performance results of the experiments nat-
urally differ between pos and vpos. In Fig. 3a, a maximum for-
warding performance of 1.75Mpps (for 64 B packets) and 0.8Mpps
(for 1500 B packets) for the bare-metal Linux router (DuT) is pre-
sented. The lower throughput for the larger packet size is caused
by the 10Gbit/s limit of the used NIC. The virtualized Linux router
(cf. Fig. 3b) forwards packets without drops at a maximum rate of
0.04Mpps, regardless of the packet size. Beyond 0.04Mpps, the for-
warding performance becomes unstable if the system is overloaded,
which is evident in the throughput differences between the packet
sizes. The generation performance is stable between the two setups
for the investigated packet rates.

With a decrease in the maximum forwarding throughput by a
factor of up to 44 and an increase in variance in the virtualized
environment, how can both setups be compared? While the raw

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Config. Pkt. Rate [Mpps]

Av
g.
Pk

t.
Ra

te
[M

pp
s]

LoadGen - 64 B DuT - 64 B
LoadGen - 1500 B DuT - 1500 B

(a) Hardware testbed (pos)

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Config. Pkt. Rate [Mpps]

(b) Virtual testbed (vpos)
Figure 3: Generated (LoadGen) vs. forwarded rate (DuT)

performance figures cannot be compared, the underlying tenden-
cies stay the same. We can still see that the number of processed
packets affects the drop-free forwarding performance, but not the
packet size. For both platforms, bare-metal and VM, the measured
maximum throughput is forwarded regardless of the packet size, as
long as no bandwidth limits are hit, e.g., Ethernet bandwidth limit.

Another essential feature of our experimental workflow is that
the underlying experiment scripts, result file format, and subse-
quent processing scripts are the same for both setups. The experi-
ment scripts can be developed in the virtual environment. Subse-
quently, the experiment can be executed on real hardware with
no or minimal changes to the experiment script. In addition, the
behavior of the virtual testbed is close to the real system; thus, the
fundamental tendencies may already be visible in the virtualized
setup. We do not assert that this highly similar behavior works for
all kinds of network experiments. However, even in this case, the
virtual testbed may come in handy as a debugging facility, without
the need to occupy experiment nodes in the real testbed.

6 TESTBED VS. METHODOLOGY
For the following comparison we have to consider the two main
aspects, our proposed methodology and the testbed that realizes
our methodology, separately.

Our testbed offers researchers a high degree of freedom to
design and execute experiments, with user-controlled scripts and
root access on the experiment nodes. We used pos in the past for
entirely different experiments: distributed network experiments
involving 15 nodes [34], low-latency analysis of single network
nodes [18], and as a mere development environment for packet
processing software [16]. As a testbed, the capabilities of pos neither
stand out nor back compared with its main competitors [9, 22, 30].
Through pos’ well defined interfaces, support for new devices can
easily be added. While we prefer directly wired nodes, pos also
allows adding remote nodes to the testbed, e.g., via VLANs or VPNs.

Ourmethodology describes awell-structured experimentwork-
flow that provides attractive features for network experiments: First,
following the pos methodology, experiments can be reproduced
on different platforms with minor additional effort. Second, the
pos experiment result files can be prepared for publication [19]
with minimal overhead for the researcher. Though researchersmay

https://gallenmu.github.io/pos-artifacts/web/2020-10-07_23-22-39_868017.html
https://gallenmu.github.io/pos-artifacts/web/2020-10-12_11-20-32_230471.html


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, Georg Carle

Testbed Methodology

Heterog. Isolat. Recover. Autom. Publish.
(R1) (R2) (R3) (R4) (R5)

Chameleon [22] ✓ ◦ ✓ n.a. n.a.
CloudLab [30] ✓ ◦ ✓ n.a. n.a.
Grid’5000 [9] ✓ ◦ ✓ n.a. n.a.
OMF [28] n.a. n.a. n.a. ✓ ×
NEPI [27] n.a. n.a. n.a. ✓ ×
SNDZoo [26] n.a. n.a. n.a. ✓ ◦
pos ✓ ✓ ✓ ✓ ✓
✓ fully supported ◦ partially supported × not supported

Table 1: Comparison between testbeds

create reproducible experiments on other testbeds [24], pos’ mea-
surement methodology, by design, creates reproducible experiments
with publishable results. The preparation of easily publishable re-
sults minimizes the effort for the researcher and the release of
experimental artifacts enables others to replicate the experiment.
The clear structure of our experiments can also serve as documen-
tation so that experiments can be easily understood by people who
are familiar with the high-level concept of our workflow. The in-
tentionally simple two-node setup of our case study, illustrates the
unique strengths of pos as a methodology.

Our comparison between pos and other testbeds and method-
ologies in Table 1 is based on the established requirements (cf.
Sec. 3). We split our comparison into testbed-related (R1–R3) and
methodology-related requirements (R4–R5). Compared to other
testbeds, pos offers similar features regarding support for heteroge-
neous hard- and software (R1) and recoverability from failures (R3).
There is a difference in the experiment isolation (R2), where pos
provides a stronger isolation due to directly wired, non-switched
connections between experiment nodes. However, large-scale ex-
periments may prefer the other testbeds that offer more flexible
topologies on switched networks. All methodologies, including pos,
support experiment automation (R4). However, we noticed differ-
ences concerning publishability (R5). In OMF or NEPI, the evalua-
tion of experiments is not part of the experiment workflow. SNDZoo
also considers the evaluation part of its workflow, however, pos
provides basic, auto-generated throughput and latency plots. In
addition pos creates a website listing all experiment artifacts.

Due to pos’ methodology the experiments follow a clearly struc-
tured workflow resulting in highly structured output files garnished
with metadata. The structured workflow documents the experiment,
supports evaluation, and simplifies the publication, finally fostering
third-party replication. We created the pos testbed as a specialized
tool to perform experiments requiring low-level, directly wired
access to our DuTs. However, its methodology is not limited to this
specific testbed or our preferred two-node setup. Though created
in unity, the pos testbed and its methodology are not inseparable.
Given a suitable environment (cf. Sec. 3), the methodology may be
implemented on other testbeds.

7 LIMITATIONS
The following limitations only apply to the testbed not to its method-
ology. Network experiments depend on the topology of the inves-
tigated network. Typically, we are interested in measuring the

behavior of our DuT without any impact on other interconnecting
devices, such as switches or routers. Therefore, we use networks
with direct non-switched connections. Direct connections have the
disadvantage that topologies cannot be automatically created or
recreated. Moreover, it requires the researcher to physically wire
the network topology. There exist optical L1 switches that allow
the fibers to be optically linked, which add a constant delay off-
set due to the internal wiring of the switch. The impact of such
a switch on forwarding delay is lower than 15 ns [23], which is
significantly lower than that of an L2 cut-through switch, which
is approximately 300 ns [33]. Such a setup allows the automation
of the topology with a predictable, low impact on delay. However,
our testbed is not equipped with such an optical switch due to its
high cost.

The recreation of results is currently limited to configurations
accessible from the OS. However, there may be configurations that
influence the packet processing performance, such as BIOS settings
or NIC firmware. Setting these configurations via pos would be
possible. However, BIOS configurations or flashing firmware differs
across different manufacturers. Currently, due to the lack of stan-
dardized interfaces, pos does not support automated configurations.

8 CONCLUSION
Numerous researchers have proposed ways to embed and foster
the spirit of reproducibility in our scientific community through
different measures, such as badging, awarding of replicability prizes,
or merely allowing appendices that explain experiment replication.
We propose a fundamentally different approach: rather than in-
creasing the incentives for researchers to make their experiments
reproducible, we reduce the amount of effort that they have to
invest in making their experiments reproducible.

Despite the different approach, ourmethodology does not replace
the incentives for replicable research but complements them. We
perceive our methodology as an additional cobblestone besides the
incentives in the street toward a community where experiment
replication is the rule rather than the exception.

We operate a virtual testbed as a service to enable other re-
searchers to try out pos in their browsers. We do not require re-
searchers to set up their own instance of pos. Instead, we provide
them browser access to a virtual instance, which we call vpos. A sig-
nificant advantage of our experimental workflow is that the virtual-
ized experiments can be executed on any pos-driven testbed. Scien-
tists can register experiments at https://virtualtestbed.net.in.tum.de,
so their experiments can be executed on pos based on real hardware.
Recreating the vpos experiment on pos, further demonstrates that
this experiment can be reproduced successfully.

ACKNOWLEDGMENTS
The German Research Foundation (CA595/11-1), and the German-
French Academy for the Industry of the Future, supported this
work. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 101008468 (SLICES SC). We thank our colleagues
Florian Wohlfart and Daniel Raumer, their work was fundamental
to the creation of pos.

https://virtualtestbed.net.in.tum.de


The pos Framework: A Methodology and Toolchain for Reproducible Network Experiments CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

REFERENCES
[1] [n.d.]. Fed4Fire. https://www.fed4fire.eu Last accessed: 2021-10-24.
[2] [n.d.]. Geni. https://www.geni.net/ Last accessed: 2021-10-24.
[3] [n.d.]. Grid’5000. https://www.grid5000.fr Last accessed: 2021-10-24.
[4] [n.d.]. OneLab. https://onelab.eu/ Last accessed: 2021-10-24.
[5] [n.d.]. Planetlab. https://www.planet-lab.org/ Last accessed: 2021-10-24.
[6] ACM. 2020. Artifact Review and Badging Version 1.1. https://www.acm.org/

publications/policies/artifact-review-and-badging-current Last accessed: 2021-
10-24.

[7] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, G. A. Covington, M. Bruyere, N.
McKeown, N. Feamster, B. Felderman, M. Blott, A. W. Moore, and P. Owezarski.
2014. OSNT: open source network tester. IEEE Netw. 28, 5 (2014), 6–12.

[8] V. Bajpai, A. Brunström, A. Feldmann, W. Kellerer, A. Pras, H. Schulzrinne, G.
Smaragdakis, M. Wählisch, and K. Wehrle. 2019. The Dagstuhl beginners guide to
reproducibility for experimental networking research. CCR 49, 1 (2019), 24–30.

[9] D. Balouek, A. Carpen-Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine, A.
Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez, F. Quesnel, C.
Rohr, and L. Sarzyniec. 2012. Adding Virtualization Capabilities to the Grid’5000
Testbed. InCloud Computing and Services Science - Second International Conference,
CLOSER 2012, Porto, Portugal, Apr. 18-21, 2012 (Communications in Computer and
Information Science, Vol. 367). Springer, 3–20.

[10] R. Bolla and R. Bruschi. 2007. Linux Software Router: Data Plane Optimization
and Performance Evaluation. J. Networks 2, 3 (2007), 6–17.

[11] O. Bonaventure, L. Iannone, and D. Saucezi (Eds.). 2017. Reproducibility ’17:
Reproducibility Workshop. (2017).

[12] G. Carle, H. Ritter, and K. Wehrle (Eds.). 2003. ACM SIGCOMMWorkshop on
Models, Methods and Tools for Reproducible Network Research. (2003).

[13] C. S. Collberg and T. A. Proebsting. 2016. Repeatability in Computer Systems
Research. Commun. ACM 59, 3 (2016), 62–69.

[14] M. Dobrescu, N. Egi, K. J. Argyraki, B.-G. Chun, K. R. Fall, G. Iannaccone, A.
Knies, M. Manesh, and S. Ratnasamy. 2009. RouteBricks: exploiting parallelism to
scale software routers. In 22nd ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA, Oct. 11-14, 2009. ACM, 15–28.

[15] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and G. Carle. 2017. Mind
the Gap - A Comparison of Software Packet Generators. In ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ANCS 2017, Beijing,
China, May 18-19, 2017. IEEE Computer Society, 191–203.

[16] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle. 2015. Moon-
Gen: A Scriptable High-Speed Packet Generator. In 2015 ACM Internet Measure-
ment Conference, IMC 2015, Tokyo, Japan, Oct. 28-30, 2015. ACM, 275–287.

[17] P. Emmerich, D. Raumer, S. Gallenmüller, F.Wohlfart, and G. Carle. 2018. Through-
put and Latency of Virtual Switchingwith Open vSwitch: AQuantitative Analysis.
J. Netw. Syst. Manag. 26, 2 (2018), 314–338.

[18] S. Gallenmüller, J. Naab, I. Adam, and G. Carle. 2020. 5G QoS: Impact of Secu-
rity Functions on Latency. In NOMS 2020 - IEEE/IFIP Network Operations and
Management Symposium, Budapest, Hungary, Apr. 20-24, 2020. IEEE, 1–9.

[19] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle. 2021. pos Experiment Results
and Reproduction (Repository). https://github.com/gallenmu/pos-artifacts Last
accessed: 2021-10-24.

[20] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle. 2021. pos Experiment Results
and Reproduction (Website). https://gallenmu.github.io/pos-artifacts/ Last
accessed: 2021-10-24.

[21] M. Hauswirth. 2020. Evaluate Collaboratory - Artifact Evaluation. http://
evaluate.inf.usi.ch/artifacts Last accessed: 2021-10-24.

[22] J. Mambretti, J. H. Chen, and F. Yeh. 2015. Next Generation Clouds, the Chameleon
Cloud Testbed, and Software Defined Networking (SDN). In 2015 International
Conference on Cloud Computing Research and Innovation, ICCCRI 2015, Singapore,
Singapore, Oct. 26-27, 2015. IEEE Computer Society, 73–79.

[23] Molex. [n.d.]. PXC systems. http://www.oplink.com/uploads/files/
520cea9a8ecbcceb5d156a1be86b02a1.pdf Last accessed: 2021-10-24.

[24] L. Nussbaum. 2017. Testbeds Support for Reproducible Research. In Reproducibil-
ity Workshop, Reproducibility@SIGCOMM 2017, Los Angeles, CA, USA, Aug. 25,
2017. ACM, 24–26.

[25] P. Palfrader. 2021. snapshot.debian.org. https://snapshot.debian.org/ Last
accessed: 2021-10-24.

[26] M. Peuster, S. Schneider, and H. Karl. 2019. The Softwarised Network Data Zoo.
In 15th International Conference on Network and Service Management, CNSM 2019,
Halifax, NS, Canada, Oct. 21-25, 2019. IEEE, 1–5.

[27] A. Quereilhac, M. Lacage, C. D. Freire, T. Turletti, and W. Dabbous. 2011. NEPI:
An integration framework for Network Experimentation. In 19th International
Conference on Software, Telecommunications and Computer Networks, SoftCOM
2011, Split, Croatia, Sept. 15-17, 2011. IEEE, 1–5.

[28] T. Rakotoarivelo, G. Jourjon, and M. Ott. 2014. Designing and orchestrating
reproducible experiments on federated networking testbeds. Comput. Networks
63 (2014), 173–187.

[29] D. Raumer, F. Wohlfart, D. Scholz, and G. Carle. 2015. Performance Exploration
of Software-based Packet Processing Systems. In Leistungs-, Zuverlässigkeits- und

Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten Systemen, 6.
GI/ITG-Workshop MMBnet 2015. Hamburg, Germany.

[30] R. Ricci, E. Eide, and CloudLab Team. 2014. Introducing CloudLab: Scientific
Infrastructure for Advancing Cloud Architectures and Applications. login Usenix
Mag. 39, 6 (2014).

[31] D. Saucez, L. Iannone, and O. Bonaventure. 2019. Evaluating the artifacts of
SIGCOMM papers. CCR 49, 2 (2019), 44–47.

[32] D. Scholz, S. Gallenmüller, H. Stubbe, and G. Carle. 2020. SYN Flood Defense in
Programmable Data Planes. In EuroP4@CoNEXT 2020: 3rd P4 Workshop in Europe,
Barcelona, Spain, Dec. 1. ACM, 13–20.

[33] O. S. Sella, A. W. Moore, and N. Zilberman. 2018. FEC Killed The Cut-Through
Switch. In 2018 Workshop on Networking for Emerging Applications and Technolo-
gies, NEAT@SIGCOMM 2018, Budapest, Hungary, Aug. 20, 2018. 15–20.

[34] M. v. Maltitz and G. Carle. 2018. A Performance and Resource Consumption
Assessment of Secret Sharing Based Secure Multiparty Computation. In Data
Privacy Management, Cryptocurrencies and Blockchain Technology - ESORICS
2018 International Workshops, Barcelona, Spain, Sept. 6-7, 2018 (Lecture Notes in
Computer Science, Vol. 11025). Springer, 357–372.

[35] Y. Zhuang, C. Matthews, S. Tredger, S. Ness, J. Short-Gershman, L. Ji, N. Rebenich,
A. French, J. Erickson, K. Clarkson, Y. Coady, and R. McGeer. 2014. Taking a walk
on the wild side: teaching cloud computing on distributed research testbeds. In
The 45th ACM Technical Symposium on Computer Science Education, SIGCSE ’14,
Atlanta, GA, USA - Mar. 05 - 08, 2014. ACM.

[36] N. Zilberman. 2020. An Artifact Evaluation of NDP. Comput. Commun. Rev. 50, 2
(2020), 32–36.

[37] N. Zilberman and A. W. Moore. 2020. Thoughts about Artifact Badging. Comput.
Commun. Rev. 50, 2 (2020), 60–63.

https://www.fed4fire.eu
https://www.geni.net/
https://www.grid5000.fr
https://onelab.eu/
https://www.planet-lab.org/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/gallenmu/pos-artifacts
https://gallenmu.github.io/pos-artifacts/
http://evaluate.inf.usi.ch/artifacts
http://evaluate.inf.usi.ch/artifacts
http://www.oplink.com/uploads/files/520cea9a8ecbcceb5d156a1be86b02a1.pdf
http://www.oplink.com/uploads/files/520cea9a8ecbcceb5d156a1be86b02a1.pdf
https://snapshot.debian.org/


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, Georg Carle

A APPENDIX
This is the description of the presented sample experiment (cf.
Sec. 5), which provides the means to retrace the experimental work-
flow in a step-by-step manner, thus reproducing the experimental
results available [19]. In addition, we use GitHub’s website creator
to document the contents of this repository [20], where we list and
explain these artifacts.

A.1 Virtual Testbed
To reproduce the results of the case study, we provide access to
our virtual testbed via the web browser. vpos can be accessed at
https://virtualtestbed.net.in.tum.de. This web service allows the cre-
ation of separate vpos instances with a single click. After booting
one of these instances, a connection to this instance can be estab-
lished with a second click that starts the web shell of our virtual
testbed controller host called vkaunas.

A.2 Experiment Reproduction
This section explains the experiment according to the three phases
of the pos workflow.

Setup phase All the commands to start the experiment are
provided in Listing 1. To reproduce the experimental results, the first
step is to clone our repository on vkaunas. The experiment scripts
can be found in the experiment subfolder of the cloned repository.
The experiment.sh file initiates the experiment, requiring two
arguments that determine which hosts to use as LoadGen and DuT.
All machines in vpos have the same number of CPU cores and RAM;
therefore, any two of the available nodes can be selected. For our
experiments, we selected vriga as the load generator and vtartu as
the DuT. The experiment script uses the testbed controller pos to
allocate both experiment hosts, load all the necessary parameters
(namely local, global, and loop), set the image to Debian Buster, and
trigger a reboot. After booting, the setup scripts are executed on the
DuT and the LoadGen. pos synchronizes the end of the setup phase
between the two hosts, i.e., the experiment continues only after
all the experiment hosts have completed their setup. The entire
experiment runs for approximately 3 h.

Listing 1: Commands to start the experiment
cd /home/user
git clone https://github.com/gallenmu/pos-artifacts

cd /home/user/pos-artifacts/experiment
./experiment.sh vriga vtartu

Measurement phase At the end of the setup phase, pos sched-
ules multiple runs of the measurement.sh files on DuT and Load-
Gen depending on the loop-variables.yml file. For this experi-
ment, we defined two parameters in the loop variables file: packet
size (pkt_sz) and rate (pkt_rate). Both parameters contain lists
with two entries for the packet size (64 and 1500 B) and 30 entries for
the packet rate (10 000 to 300 000 packets/s). To investigate each pos-
sible combination of the packet size and rate, pos calculates the cross
product, which results in a total of 60 individual measurements. In
addition, pos schedules a separate measurement run for each of the
possible combinations. During the execution of the measurement,
pos displays a bar visualizing the progress of the experiment. The
results of the measurement runs are uploaded to vkaunas into the

folder /srv/testbed/results/user/default/[timestamp]/*.
The pos-artifacts repository contains a copy of our own results in
the folder results/2020-10-12_11-20-32_230471.

Evaluation phase After the end of the measurement phase, the
results can be evaluated. The plotting scripts are contained in the
plot_scripts folder of our repository. We created our own plotter
that can directly parse the output of the MoonGen packet genera-
tor and pos result files to generate plots that are iterated over the
defined loop parameters. The plotting scripts can use throughput
and latency data created by MoonGen. However, in our VM, we
cannot generate latency measurements, due to the limited hardware
support. Therefore, we only create the throughput plots. The plot
scripts put the generated files into the figures folder. For this ex-
periment, we do not call the plotting script directly but rather create
the publish.py script to do the job. In addition to creating plots,
this script also prepares the experiment for publishing. Listing 2
contains the command to execute the publication script.

Listing 2: Experiment evaluation/publication
cd /home/user/pos-artifacts

pip3 install -r plot_scripts/requirements.txt

python3 publish.py \
-x /home/user/pos-artifacts/experiment \
-r /srv/testbed/results/user/default/[timestamp] \
-g https://github.com/[username]/[reponame]

cp -r /srv/testbed/results/user/default/[timestamp] \
/home/user/pos-artifacts/results

Publication To enable data exchange between the user’s com-
puter and vpos, we recommend the use of a GitHub repository.
The link to this GitHub repository is used as a parameter for the
publish.py script where users select their own [username] and
[reponame]. After running the publication script, the figures folder
contains the generated plots. To take a look at the generated plots,
the created svg files can be uploaded. To preserve all the experimen-
tal artifacts, the entire content of the pos-artifacts folder can
be uploaded to the created repository. If these contents are pushed
to the gh-pages branch, a website [20] will be created and hosted
by GitHub. The website contains a README.md file that lists the
contents of the repository. Authors may choose to either add all the
created artifacts to the released repository or to specifically select
the artifacts they want to publish.

https://virtualtestbed.net.in.tum.de
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/experiment/experiment.sh
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/experiment/dut/setup.sh
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/experiment/loadgen/setup.sh
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/experiment/dut/measurement.sh
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/experiment/loadgen/measurement.sh
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/experiment/loadgen/measurement.sh
https://github.com/gallenmu/pos-artifacts/blob/master/experiment/loop-variables.yml
https://github.com/gallenmu/pos-artifacts/tree/master/results/2020-10-12_11-20-32_230471
https://github.com/gallenmu/pos-artifacts/tree/master/plot_scripts
https://github.com/gallenmu/pos-artifacts/tree/master/figures
https://github.com/gallenmu/pos-artifacts/tree/master/publish.py
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/publish.py
https://gallenmu.github.io/pos-artifacts/
https://github.com/gallenmu/pos-artifacts/blob/gh-pages/README.md

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Requirement Analysis
	4 Experiment Design
	4.1 Experiment Methodology
	4.2 Testbed Implementation
	4.3 pos Experimental Structure
	4.4 pos Experimental Workflow

	5 Case Study
	6 Testbed vs. Methodology
	7 Limitations
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Virtual Testbed
	A.2 Experiment Reproduction


