
5G URLLC: A Case Study on Low-Latency
Intrusion Prevention

Sebastian Gallenmüller∗ , Johannes Naab∗ , Iris Adam† , Georg Carle∗
∗Technical University of Munich, †Nokia Bell Labs

∗{gallenmu, naab, carle}@net.in.tum.de, †iris.adam@nokia-bell-labs.com

Abstract—5G introduces different communication types to
support novel applications, e.g., industrial control, depending
on ultra-reliable, low-latency communication (URLLC) to
provide their service. To realize this type of communication,
network operators offer virtual end-to-end networks, called
network slices, to their customers and Service Level Agree-
ments (SLA) of the operators promise a certain quality of
service for the provided network slices. The main challenge
is the creation of network slices that adhere to these strict
requirements despite virtualized resources shared across dif-
ferent network slices.

In this article, we analyze the latency performance of
typical virtualized network functions. Based on these results,
we derive guidelines to lower latency and propose a system
architecture for hosting low-latency network functions. We
measure the latency performance of a security network
function, an intrusion prevention system based on Snort 3,
and demonstrate that URLLC-compliant latency performance
is achievable. Our entire architecture relies on off-the-shelf
hardware and widely adopted software components making
our findings highly applicable to situations where low latency
is crucial.

All artifacts used in this article, the investigated software,
the pcap traces, and the experiments scripts, are publicly
available at https://gallenmu.github.io/low-latency/.

Index Terms—5G, network slicing, URLLC, NFV, IPS, QoS,
latency, DPDK

This article is the extension of a paper originally pre-
sented at NOMS 2020 [1]. The original paper includes
an analysis of batched packet processing and a model to
calculate the throughput of a system to avoid overload.

I. INTRODUCTION

One of the main features of 5G is the definition of
different communication types tailored to the specific re-
quirements of applications such as IoT, self-driving cars,
or industrial control systems. Three types are available:
the enhanced mobile broadband (eMMB) service, which is
comparable to current LTE networks but offers higher band-
width, the massive machine type communication (eMTC),
that supports cells with a large number of clients required
for IoT deployments, and the ultra-reliable low-latency
communication (URLLC), which is optimized for critical
processes that cannot tolerate packet loss or high latency.
Network operators may provide URLLC services via a
virtual network to their customers, so-called network slices.
The network slices can rely on virtualized resources shared
across different slices and customers for cost efficiency. Re-

source sharing presents a challenge, especially to URLLC,
regarding the requirements for its quality of service (QoS).

The name URLLC already reflects its two defining
features of service quality: ultra reliability and low latency.
Fixed values for both requirements do not exist but depend
on specific use cases. A current draft [2] for the upcoming
5G release 17 stage 1 (scheduled for end of 2020) lists
the requirements for various use cases as follows. In the
most demanding scenarios, URLLC requests a reliability
of 99.99999%, i.e., the percentage of packets successfully
transmitted for a given system entity. For latency, the most
challenging use cases require a maximum delay below
0.5ms. This delay is measured one-way, end-to-end in the
radio access network, e.g., between the user equipment
(UE) and a network function (NF) hosted on the edge of a
mobile network.

This article focuses on a system architecture to host NFs
for URLLC, specifically on the following three goals: (i)
we demonstrate the issues that prevent a URLLC-compliant
communication on current architectures and the challenges
that arise from measuring and communicating the latency
performance accurately; (ii) we analyze the root causes for
poor latency performance and provide guidelines to avoid
them; (iii) we perform a series of measurements on an NF,
based on Snort 3, an intrusion prevention system (IPS),
that demonstrates the latency performance of a latency-
optimized architecture for NFs.

This article is organized as follows: Section II presents
the issues of typical NFs concerning their latency behavior
before introducing the underlying system architecture in
Section III. We present our architecture for low-latency NFs
in Section IV and examine its behavior in Section V through
a series of measurements. Sections VI and VII discuss the
limitations and potential disadvantages of our approach and
whether containers or VMs are the better choice to deploy
our system architecture. Section VIII contains a description
on how to reproduce the experiments presented in this
article. The article concludes in Section IX.

II. MOTIVATION

As an initial measurement, we investigate the service
quality of a typical security NF hosted in such an envi-
ronment. We use a Linux server running Debian buster that
uses KVM to virtualize NFs of different network slices. The
NF runs Snort as an in-line IPS. We test with a moderate

https://orcid.org/0000-0002-7173-3573
https://orcid.org/0000-0002-8808-7643
https://orcid.org/0000-0002-8150-1119
https://orcid.org/0000-0002-2347-1839
https://gallenmu.github.io/low-latency/


0 5 10 15 20 25 30
0

1

2

Measurement time [s]

L
at

en
cy

[m
s]

Fig. 1: Snort 3 forwarder worst-case latencies

packet rate of 10 kpackets/s to avoid any packet drops of
the NF due to overload.

Figure 1 displays the worst-case latencies that occurred
during our 30-second measurement period. This plot leads
to two important conclusions. First, with the majority of
latency measurements below 0.5ms, we need to direct our
attention to the latency peaks. Second, though happening
rarely, the peaks in latency are highly critical as they exceed
the latency budget significantly, in our case, by more than
200%. The result of our measurement indicates that the
99.99th percentile of this measurement already violates the
delay requirement.

Even this simplified example demonstrates that this NF,
based on a typical system configuration, fails to provide
URLLC-compliant QoS. In the following, we analyze the
reasons for this system behavior and present guidelines for
a system design that provides the necessary reliability and
latency.

III. BACKGROUND AND RELATED WORK

This section investigates how the latency performance of
a typical off-the-shelf system can be improved. Extensive
guidelines exist to tune systems for low latency [3]. We
investigate the main system components, the network in-
terface card (NIC), the processor (CPU), and the operating
system (OS):

a) NIC: One possible cause for OS interrupts is
the occurrence of IO events, e.g., arriving packets, to be
handled by the OS immediately. Interrupt handling causes
short-time disruptions for currently running processes. The
ixgbe network driver and Linux employ moderation tech-
niques to minimize the number of interrupts and, therefore,
the influence on processing latency [4]. Both techniques
were introduced as a compromise between throughput
and latency optimization. For our low-latency design goal,
neither technique is optimal, as the interrupts—although
reduced in numbers—cause irregular variations in the pro-
cessing delay, which should be avoided. DPDK, a frame-
work optimized for high-performance packet processing,
prevents triggering interrupts for network IO entirely. It
ships with its own userspace driver, which avoids interrupts
but polls packets actively instead. This leads to execution
times with only little variation due to DPDK’s preallocation
of memory and a lack of costly context switches between
userspace and kernelspace. However, polling requires the
CPU to wake up regularly, increasing energy consumption.

For our investigation, we use a DPDK-enabled version of
Snort that is already available (cf. Section VIII).

Virtualization can cause latencies of 350 µs and more for
packet IO [5]. A study investigates several approaches for
VM IO, where a hardware acceleration technique called
single-root IO virtualization (SR-IOV) proved to be a low-
latency approach causing the lowest CPU overhead [6]. SR-
IOV splits the hardware into several virtual NICs, which
can be attached to VMs exclusively to create a direct path
between NIC and VM. This direct pass-through minimizes
the software-layers between hardware and VM, providing
a stable, low-latency IO. SR-IOV NICs, like the one used
in Section V, integrate switches that can be used to form
NF chains across VMs.

b) CPU: Hyperthreading (HT) is a technique that
allows addressing physical CPU cores as several inde-
pendent virtual processing cores. If two virtual cores are
hosted on the same physical core, resource contention
between processes of the seemingly independent virtual
cores becomes possible. This resource contention can lead
to delays in the processes running on virtual cores.

On current Intel CPUs, the first two cache levels are
used exclusively by a single physical CPU core. However,
the last level cache (LLC) is shared across all cores of a
CPU, leading to resource contention on the LLC between
processes running on different cores. The cache allocation
technology (CAT) of modern Intel processors allows to
partition the LLC across the available CPU cores. CAT can
enforce exclusive LLC access for CPU cores and processes
to restore the uncontended cache access latency [7].

To save energy, CPUs can lower their clock frequency
and switch into sleep states. The lower the frequency and
the deeper the sleep state, the longer it takes to switch the
CPU back to the operational mode again. This can introduce
additional delay for processes between 1 µs and 40 µs [8].

Multi-CPU systems present specific challenges when
optimizing for latency. Resources, i.e., NICs or RAM, are
always directly connected to one of the available CPUs.
Such systems are often associated with the term non-
uniform memory access (NUMA), because of the differ-
ences in resource access costs. Processes can access these
directly attached resources faster than resources connected
to a remote CPU. An NF should be pinned to the correct
CPU core to use CPU-local NICs and RAM exclusively to
minimize latency.

c) OS: DPDK prevents IO-related interrupts; how-
ever, the OS triggers interrupts for other housekeeping
tasks, e.g., timers or scheduling. To trigger interrupts more
predictably, Linux kernel patches exist, creating the so-
called PREEMPT RT kernel [9]. These patches lower the
number of interrupts triggered by the OS or decrease the
execution times of interrupts.

The Linux scheduler can cause delays for processes, for
instance, if a process is migrated to another core. These
effects can be prevented by isolating a CPU core from the
Linux scheduler. After that, the OS user can dedicate a CPU

https://gallenmu.github.io/low-latency/web/motivation.html


Host

P-core 0

VM

P-core 1 P-core 2 P-core 3

unused

NIC

VF

N H

N H

Fig. 2: Low-latency system architecture

core to a specific process exclusively, an approach known
as CPU pinning.

Specialized embedded OSes exist, e.g., jailhouse [10],
that offer real-time guarantees for user processes or VMs.
We do not consider these specialized solutions despite their
attractive features. These specialized OSes typically come
with their own APIs and tools. We aim to use off-the-
shelf toolchains and libraries, e.g., KVM and libvirt, to
simplify migration from traditional to low-latency system
architectures. Even the PREEMPT RT kernel is available
in the package repository of Debian.

IV. LOW-LATENCY SYSTEM ARCHITECTURE

From Section III we can distill the following guidelines
to create and configure systems for hosting low-latency
NFs: (i) use specialized packet processing frameworks like
DPDK, (ii) attach VMs using SR-IOV, (iii) disable HT and
energy-saving mechanisms, (iv) apply Intel CAT to partition
the LLC, (v) switch to an RT kernel, (vi) isolate cores
hosting the low-latency application.

Applying the guidelines leads to a system architecture
shown in Figure 2. Our example system uses a CPU with
four physical cores, where all virtual cores and the energy-
saving mechanisms are disabled in the BIOS. The test
system has only a single CPU; therefore, we do not need
to consider NUMA-related optimizations. We use a Debian
with PREEMPT RT kernel, on both the host and the VM,
to minimize interrupt latencies for the virtualized packet
processing application. Core isolation is used to restrict
the OS processes and the application processes to specific
cores minimizing the QoS impact on OS and application
processes. The OS of the host runs on physical core (p-core)
0 exclusively. P-cores 1 and 2 are isolated for exclusive
VM utilization. In the VM, the OS is restricted to p-core
1, isolating p-core 2 from host and VM OS alike. Our NF,
i.e., DPDK and Snort, run on p-core 2. The core isolation
feature complements DPDK’s design philosophy of stati-
cally pinning packet processing tasks to cores. Utilizing SR-
IOV, the NIC is split into virtual functions (VF). One VF is
passed through to the VM attached to p-core 2. The critical
network path and its associated CPU resources are isolated
from OS tasks providing a stable service for latency-critical
processes. We use Intel CAT to statically assign a large
portion of the LLC to p-core 2.

V. EVALUATION OF OUR LOW-LATENCY
ARCHITECTURE

We use a setup consisting of three nodes equipped with
Intel Xeon D-1518 SoCs (quad-core 2.2GHz) and X552
NICs (2 × 10Gbit/s). One node acts as a load generator
(LG) directly connected to the device under test (DuT). The
third node, the timestamper (TS), uses passive optical taps
to timestamp the traffic between LG and DuT to determine
the end-to-end delay caused by the DuT. Timestamps
are collected passively, i.e., without introducing additional
delay or variation in hardware with a resolution of 12.5 ns.
The DuT forwards the traffic between its two interfaces and
sends it back to the load generator.

The DuT runs Debian buster (kernel 4.19), KVM as
hypervisor, and a beta version of Snort 3 with a DPDK-
enabled backend. LG and TS run MoonGen to generate
and record the traffic. To measure the latency without the
influence of protocol mechanisms, we use UDP for our
measurements. As we want to investigate a realistic use
case for intrusion prevention, we set the UDP destination
port to 53 to trigger the DNS rules contained in our filtering
ruleset. Bursty input traffic may cause short-time system
overloads. Therefore, we rely on constant bitrate traffic for
our experiments. We measured at different packet rates,
10 kpackets/s to 120 kpackets/s, a typical range for a
single-core Snort IPS. Section VIII lists the used software
tools and versions.

A. Latency Measurements

The measurements investigate the DuT’s forwarding la-
tency in three different scenarios. In the basic scenario,
DPDK-l2fwd, traffic is forwarded between the DuT’s two
interfaces using only DPDK. This measurement determines
the latency caused by the packet processing framework.
For the second scenario, Snort-fwd, we run the Snort
application on top of the DPDK framework and realize a
forwarder based on Snort. The results of this measurement
allow quantifying the overhead caused by the intrusion
prevention framework. The most complex scenario is Snort-
filter, where we activate a set of filtering rules. The outcome
of this experiment is the impact of the rule application
on the forwarding latency. We use the community ruleset
provided by Snort for our investigation.

We tested each of the three different scenarios in two
different system configurations. The first configuration,
HW, deploys the application without any virtualization.
The second one, VM, uses the configuration displayed in
Figure 2. Both configurations were analyzed to determine
the impact of virtualization on latency.

Figure 3 shows the forwarding latency of the three dif-
ferent scenarios, each for both configurations. The latency
is plotted as an HDR-histogram, which displays the latency
percentiles on a logarithmic x-axis.

Figure 3a visualizes the latency performance of the
DPDK forwarder. In this scenario, the different packet rates
do not have a visible impact on latency. Latency stays



0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

Percentiles [%]

L
at

en
cy

[µ
s]

HW @ 10 kpkt/s VM @ 10 kpkt/s

HW @ 60 kpkt/s VM @ 60 kpkt/s

HW @ 120 kpkt/s VM @ 120 kpkt/s

(a) DPDK-l2fwd

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

105

0.5ms

Percentiles [%]

L
at

en
cy

[µ
s]

HW @ 10 kpkt/s VM @ 10 kpkt/s

HW @ 80 kpkt/s VM @ 80 kpkt/s

HW @ 90 kpkt/s VM @ 90 kpkt/s

(b) DPDK + Snort-fwd

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

105

0.5ms

Percentiles [%]

L
at

en
cy

[µ
s]

HW @ 10 kpkt/s VM @ 10 kpkt/s

HW @ 60 kpkt/s VM @ 60 kpkt/s

HW @ 70 kpkt/s VM @ 70 kpkt/s

(c) DPDK + Snort + Snort-filter

Fig. 3: HDR-histogram showing forwarding latency of
different forwarders

approximately constant up to the 99th percentile, for higher
percentiles latency rises to approx. 15 µs (HW) and 20 µs
(VM). The latency performance for the VM configuration
is worse compared to the HW configuration, begins to
rise at a lower percentile and has a higher maximum
value. However, both values are well below the latency
requirements of URLLC. This measurement demonstrates
that the DPDK framework is an adequate foundation for
low-latency packet processing. The negligible impact of
the packet rates of DPDK is in line with our previous
results [11], that demonstrate DPDK throughput at several
million packets per second.

0 5 10 15 20 25 30
0

5

10

15

20

Measurement time [s]

L
at

en
cy

[µ
s]

Simulation Measurement

Fig. 4: 5000 worst-case latency events measured for DPDK-
l2fwd (HW) at 10 kpackets/s

Building on the DPDK results, we use a DPDK-enabled
version of Snort 3 for the measurement in Figure 3b.
The most significant difference to the previous scenario
is the impact of the packet rate on latency. For both
configurations, latency exceeds the 0.5ms goal if the packet
rate is increased to 90 kpackets/s. The latency increases
to approx. 3ms for the VM configuration and to approx.
30ms for the HW configuration. That difference is the
result of the reduced NIC buffer for the VM configuration
due to the activation of SR-IOV. The root cause of the high
latencies is the overload situation caused by the increased
throughput. Overloading the system causes packet losses,
which violates the reliability criteria of URLLC. If the
system is not overloaded, latency stays below 125 µs, i.e.,
fully compliant to URLLC requirements.

As the Snort framework can provide the required service
levels, we investigate Snort 3 with an active community
ruleset in Figure 3c. This system behaves similarly to the
previous measurement. Latency increases to approx. 200 µs
still meeting the expected service levels. If overloaded, the
latency rises above 0.5ms. However, the more complex
processing rises packet processing costs, so this application
is already overloaded at a packet rate of 70 kpackets/s.

Our measurements demonstrate that an overload situation
has to be avoided to prevent packet loss and high latency.

B. A Closer Look on Latency

Figure 3 demonstrates that latency begins to increase
even though it does not exceed our latency goal. To
determine the root cause for this increase, we investigated
the latency more closely. The latency increase is visible
even for the most basic scenario, DPDK-l2fwd. Therefore,
we use this scenario for our time-series analysis visualized
in Figure 4.

There, we see a horizontal line containing the majority
of latency measurements, and a regular pattern on top
reaching latencies of approx. 14 µs. We found out that
interrupts of the OS cause these high latencies. If triggered,
OS interrupts pause currently running processes, in our
case, the packet processing application. Packet processing
resumes after the interrupt has been processed, leading to
increased latency. Profiling the OS shows two different
kinds of interrupts being processed on the CPU core of

https://gallenmu.github.io/low-latency/web/hdr.html
https://gallenmu.github.io/low-latency/web/hdr.html
https://gallenmu.github.io/low-latency/web/hdr.html
https://gallenmu.github.io/low-latency/web/worstcase.html


our forwarding application—local timer interrupts (loc)
and IRQ work interrupts (iwi). Iwi and loc have different
execution times, causing the two different maximum levels
in Figure 4.

The regular pattern is a result of an interplay between
two clocked processes, the generation of interrupts on the
DuT at 250Hz and the generation of the traffic on the LG
at 10 kHz. The frequency of the generated traffic with its
100 µs inter-packet gaps is too low to sample the interrupts
with an execution time below 15 µs. This process is widely
known as undersampling, which leads to the creation of
the observed pattern. We created a script, which simulates
the two clocked processes. The resulting pattern, shown in
Figure 4, is similar to the original pattern, which verifies
our previous assumptions.

The latency for the virtualized forwarders starts to rise
earlier and has a higher maximum value (cf. Figure 3).
Performing the same analysis as for the HW case, we
found out that the number of interrupts doubles and the
execution time of interrupts increases by roughly 5 µs. The
higher number of interrupts is a consequence of two OSes
triggering interrupts—the OS of host and the OS of the
VM. We attribute the higher execution times to the higher
complexity for the interrupt processing in a virtualized
environment.

VI. LIMITATIONS

Despite its benefits in terms of latency and jitter, the
proposed architecture has disadvantages.

Disabling energy-saving mechanisms increases energy
costs for the server. We measure a power consumption
of 31W/45W (idle/processing) for our DuT with energy-
saving mechanisms enabled. Disabling these mechanisms
raises power consumption to 46W/47W (idle/processing).
The consumption of the idling system increases by 48% and
by 4% for a processing system. The latter, rather low figure,
means that additional costs for a highly utilized system
are comparatively low. The former, substantial difference
for the idling system entails significant cost increases for
under-utilized hardware.

One possible remedy against hardware under-utilization
is the consolidation of several VMs onto a shared server.
Overbooking the available hardware resources with virtual
resources for the VMs works well if NFs can tolerate short
delays caused by resource contention between VMs. How-
ever, our proposed architecture prevents resource sharing
by statically assigning VMs to cores, especially for the
isolated cores dedicated to URLLC NFs. This increases
hosting costs for such a VM. Another solution to increase
hardware utilization is VM migration. Migration allows ef-
ficient hardware utilization by migrating VMs onto systems
with under-utilized hardware. VM migration with SR-IOV
requires additional application support due to the non-trivial
replication of the NIC’s hardware state [6].

At first glance, our proposed solution has serious issues:
disabling energy-saving mechanisms increases costs for

under-utilized hardware, and at the same time, two possible
solutions to that problem, VM overbooking and migration,
potentially introduce short-time service interruptions violat-
ing URLLC requirements. However, we need to consider
that URLLC is a solution for use cases with a specific set
of requirements. Typical use cases that require URLLC are
continually running, managing critical infrastructures such
as industrial plants or power grids [2]. These critical use
cases have a network demand that requires a continuously
running, periodic exchange of messages. There are use
cases that require URLLC service on demand, such as re-
mote, robotic aided surgery [2]. These on-demand use cases
only require URLLC communication during operation for
a limited amount of time. However, during operation, these
use cases have the same requirements as the other use cases,
i.e., a highly deterministic, continuous flow of packets. The
specific set of requirements makes the network demand
of URLLC use cases less volatile and more predictable.
This predictability enables network operators to assign
hardware resources efficiently, ensuring high utilization.
As we have shown, high utilization limits the additional
energy costs for our proposed URLLC NF design. Thus,
our design allows an ultra-reliable, low-latency, but cost-
efficient and sustainable operation despite its previously
mentioned limitations.

If use cases demand even lower latency than our system
architecture can achieve, SmartNICs can be applied. These
NICs offer tightly integrated processing capabilities, e.g.,
FPGAs or dedicated ASICs, that can provide continuously
low latency for highly specialized tasks.

VII. CONTAINERS VS. VMS

Containers are an alternative approach towards virtu-
alization that gained attraction in recent years. Network
operators recognize the benefits of the more lightweight vir-
tualization of containers. Containers start faster than VMs,
which allows a faster initialization of NFs. Additionally,
containers require less memory during operation, as they do
not come with their own copy of the OS. Both properties
make containers a perfect fit for hybrid cloud environments.
In such an environment, containerized NFs can be moved
and scaled efficiently between private and public clouds.

Despite the mentioned and other benefits like increased
performance [12], why does our solution use VMs instead
of containers? We argue that the benefit of containers for
URLLC-compliant NFs is limited.

First, containers use the same hardware and underlying
software as we use for our measurements. Therefore, con-
tainers face the same fundamental problems presented in
this paper; they are subjected to OS interrupts, face the
same CPU-related issues, and use the same IO interfaces.
Our proposed system architecture provides solutions to
all the mentioned problems that are also applicable to
containers. The measurements show minor differences for
throughput and latency between the bare-metal and the VM
setup. These differences set the bounds for the latency



and throughput achievable on a container-based NF. The
containerized NF has a higher overhead than a bare-metal
and a lower overhead than a VM-based deployment.

Second, a significant difference between containers and
VMs is the way of resource isolation between different
VMs and containers. Whereas VMs use hypervisor-based
virtualization, containers use Linux cgroups for virtualiza-
tion. A VM-based system architecture allows creating a
strict no-resource-sharing policy between VMs and host
OS. This policy avoids any harmful effects on latency
(cf. Section V). All containers running on the same host,
share the same instance of the kernel. Sharing may lead to
unwanted resource sharing that we can exclude from the
beginning by choosing VMs instead.

Third, one aspect mentioned in comparisons between
VMs and containers is security [12]. VMs provide a
higher grade of isolation between the hosting OS and the
VM. Especially for security-related NFs, like the ones
investigated previously, VMs are still an attractive way
of deployment. However, the security flaws Spectre and
Meltdown, published in early 2018, have shown that even
the promise of strong VM-based isolation can be broken.

The choice between VMs and containers depends on the
usage scenario. For URLLC-compliant NFs, we do not see
a significant benefit switching to containers as performance
gains are limited and resource sharing is harmful to our
low-latency goal. For us, the previously mentioned aspects
outweigh the potential benefits in cloud environments.
Therefore, we chose VMs as a platform for our case study.
However, containers may be the preferred solution if the
benefits are prioritized differently or if URLLC-related
restrictions do not apply.

VIII. REPRODUCIBILITY

We see the reproducibility as a critical aspect of scientific
experiments. Therefore, we provide all artifacts that were
essential to the creation of this article. All investigated
software components, i.e., DPDK, Snort, or filter rules, are
publicly available. We further provide a repository for the
experiment scripts, the evaluation scripts, and the used data
on our GitHub page for interested readers [13].

IX. CONCLUSION

We demonstrated that adhering to URLLC-compliant
QoS is a challenging endeavor. System interrupts can cause
high tail latencies up to 2ms that ruin the latency behavior
of any NF. The maximum allowed latency for the most
challenging URLLC applications is 500 µs. As NFs only
make up a part of the entire network path, related work
suggests a stricter latency goal of 350 µs [14]. Nevertheless,
we demonstrated that even complex NFs, such as the
demonstrated Snort IPS, can achieve the required service
levels. We achieved a maximum latency of only 121 µs
through an optimized system configuration and software
architecture. Our system architecture can fulfill this even
stricter requirement while relying on widely adopted tools

and frameworks running on off-the-shelf hardware compo-
nents.

The measurements were performed on a specific kind of
NF, the Snort IPS. However, the fundamental challenges are
rooted in the standard system components, such as Linux.
Therefore, almost any NF based on the same standard
components will suffer from the same problem. Fortunately,
our proposed solution can solve all issues using only widely
deployed components such as KVM or libvirt. This makes
our results highly relevant to large scale cloud deployments
for NFs that rely on the same components, such as Open-
Stack.

Our system configuration is applicable to container-based
deployments, making our setup results relevant to that area.
When comparing container-based and VM-based NFs for
URLLC use cases, we argue that VM-based deployments
are still superior, due to features such as their stronger
resource isolation. However, container-based NFs may be
advantageous for use cases where looser latency and relia-
bility criteria apply.

Our proposed system architecture for low latency NFs
relies on the most fundamental system configurations, such
as CPU, NIC, or OS. Therefore, any form of deployment—
container or VM—will profit from the proposed low-
latency setup. For future work, we want to quantify the
impact of containers and their isolation mechanisms on
latency. A highly promising target for our investigation
is called kata containers [15]. In kata, each container is
executed by a hypervisor, thereby combining the benefits of
both approaches, efficient portability and strong isolation.

REFERENCES

[1] Sebastian Gallenmüller, Johannes Naab, Iris Adam, and Georg
Carle. 5G QoS: Impact of Security Functions on Latency. In
2020 IEEE/IFIP Network Operations and Management Symposium
(NOMS 2020), Budapest, Hungary, April 2020.

[2] 3GPP. 22.104 Service requirements for cyber-physical control
applications in vertical domains V17.3.0. http://www.3gpp.org/ftp/
/Specs/archive/22 series/22.104/22104-h30.zip. Accessed: 2020-08-
24.

[3] Mark Beierl. Nfv-kvm-tuning. https://wiki.opnfv.org/pages/
viewpage.action?pageId=2926179. Accessed: 2020-08-24.

[4] Paul Emmerich, Daniel Raumer, Alexander Beifuß, Lukas Erlacher,
Florian Wohlfart, Torsten M. Runge, Sebastian Gallenmüller, and
Georg Carle. Optimizing Latency and CPU Load in Packet Pro-
cessing Systems. In Proceedings of the International Symposium
on Performance Evaluation of Computer and Telecommunication
Systems, Chicago, IL, USA, July 26-29, 2015, pages 6:1–6:8, 2015.

[5] Paul Emmerich, Daniel Raumer, Sebastian Gallenmüller, Florian
Wohlfart, and Georg Carle. Throughput and Latency of Virtual
Switching with Open vSwitch: A Quantitative Analysis. J. Network
Syst. Manage., 26(2):314–338, 2018.

[6] Giuseppe Lettieri, Vincenzo Maffione, and Luigi Rizzo. A Survey of
Fast Packet I/O Technologies for Network Function Virtualization.
In High Performance Computing - ISC High Performance 2017
International Workshops, DRBSD, ExaComm, HCPM, HPC-IODC,
IWOPH, IXPUG, Pˆ3MA, VHPC, Visualization at Scale, WOPSSS,
Frankfurt, Germany, June 18-22, 2017, Revised Selected Papers,
pages 579–590, 2017.

[7] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal,
Chris Gianos, Ronak Singhal, and Ravi Iyer. Cache QoS: From
Concept to Reality in the Intel® Xeon® Processor E5-2600 v3
Product Family. In 2016 IEEE International Symposium on High

http://www.3gpp.org/ftp//Specs/archive/22_series/22.104/22104-h30.zip
http://www.3gpp.org/ftp//Specs/archive/22_series/22.104/22104-h30.zip
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179


Performance Computer Architecture, HPCA 2016, Barcelona, Spain,
March 12-16, 2016, pages 657–668, 2016.

[8] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up laten-
cies for processor idle states on current x86 processors. Computer
Science - R&D, 30(2):219–227, 2015.

[9] Paul McKenney. A realtime preemption overview. https://lwn.net/
Articles/146861/. Accessed: 2020-08-24.

[10] Ralf Ramsauer, Jan Kiszka, Daniel Lohmann, and Wolfgang
Mauerer. Look mum, no VM exits! (almost). CoRR, abs/1705.06932,
2017.

[11] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel
Raumer, and Georg Carle. Comparison of Frameworks for High-
Performance Packet IO. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for networking and communications
systems, ANCS 2015, Oakland, CA, USA, May 7-8, 2015, pages
29–38, 2015.

[12] David Beserra, Edward David Moreno, Patricia Takako Endo,
Jymmy Barreto, Djamel Sadok, and Stenio Fernandes. Performance
analysis of LXC for HPC environments. In Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems,
CISIS 2015, Santa Catarina, Brazil, July 8-10, 2015, pages 358–363.
IEEE Computer Society, 2015.

[13] Sebastian Gallenmüller, Johannes Naab, Iris Adam, and Georg
Carle. Reproducing Experimental Results. https://gallenmu.github.
io/low-latency/. Accessed: 2020-08-24.

[14] Zuo Xiang, Frank Gabriel, Elena Urbano, Giang T. Nguyen, Martin
Reisslein, and Frank H. P. Fitzek. Reducing Latency in Vir-
tual Machines: Enabling Tactile Internet for Human-Machine Co-
Working. IEEE Journal on Selected Areas in Communications,
37(5):1098–1116, 2019.

[15] A. Randazzo and I. Tinnirello. Kata Containers: An Emerging
Architecture for Enabling MEC Services in Fast and Secure Way. In
2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), pages 209–214, 2019.

Sebastian Gallenmüller received his Master of Science in Informatics
from the Technical University of Munich in 2014. There, he started as
a Ph.D. student at the Chair of Network Architectures and Services.
His main interests are the experimental evaluation of high-performance
software packet processing systems and other programmable data planes
with a focus on latency measurements.

Johannes Naab completed his Master of Science in Informatics in
2014 at the Technical University of Munich. In the same year, he started
as a Ph.D. student at the Chair of Network Architectures and Services.
His research focuses primarily on the development of large-scale cloud
architectures and in his free time he performs Internet-wide measurements.

Iris Adam is a senior researcher at Nokia Bell Labs in Munich. She
is mainly concerned with the investigation of security management and
orchestration tasks. Her current research focus is the automated security
management in 5th generation mobile networks.

Georg Carle is a professor at the Department of Informatics at Techni-
cal University of Munich, holding the Chair of Network Architectures and
Services. He studied at University of Stuttgart, Brunel University, London,
and Ecole Nationale Superieure des Telecommunications, Paris. He did his
Ph.D. in Computer Science at University of Karlsruhe, and worked as a
postdoctoral scientist at Institut Eurecom, Sophia Antipolis, France, at the
Fraunhofer Institute for Open Communication Systems, Berlin, and as a
professor at the University of Tübingen.

https://lwn.net/Articles/146861/
https://lwn.net/Articles/146861/
https://gallenmu.github.io/low-latency/
https://gallenmu.github.io/low-latency/

	Introduction
	Motivation
	Background and Related Work
	Low-Latency System Architecture
	Evaluation of our Low-Latency Architecture
	Latency Measurements
	A Closer Look on Latency

	Limitations
	Containers vs. VMs
	Reproducibility
	Conclusion
	References

