
How Low Can You Go?
A Limbo Dance for Low-Latency Network

Functions

Sebastian Gallenmüller1[0000−0002−7173−3573],
Florian Wiedner1[0000−0003−2471−9864], Johannes Naab1[0000−0002−8808−7643],

and Georg Carle1[0000−0002−2347−1839]

Technical University of Munich,
TUM School of Computation, Information and Technology,
Boltzmannstr. 3, 85748 Garching near Munich, Germany

{ gallenmu | wiedner | naab | carle }@net.in.tum.de

Abstract. Throughput is a commonly used performance indicator for
networks. However, throughput may be considered insignificant if data
is outdated or networks become unpredictable or unreliable. Critical ser-
vices may even prioritize latency, predictability, and reliability at the
expense of throughput to avoid detrimental effects on service operation.
Latency, predictability, and reliability are distinct qualities realized in
real-time systems. Real-time systems often require additional effort us-
ing non-standard interfaces, requiring customized software, or providing
low throughput figures.
This work picks up the challenge and investigates a single-server network
function—a building block for end-to-end low-latency network applica-
tions. Assessing reliability and quantifying low latency is equally chal-
lenging, as sub-microsecond latency and 1/105 loss probability leave little
room for error. Both, our measurement and the investigated platforms,
rely on Linux running on off-the-shelf components. Our paper provides a
comprehensive study on the impact of various components on latency and
reliability, such as the central processing unit (CPU), the Linux Kernel,
the network card, virtualization features, and the networking application
itself. We chose Suricata, an intrusion prevention system (IPS), repre-
senting a widely deployed, typical network application as our primary
subject of investigation.

Keywords: Ultra reliable · Low latency · DPDK · Network experiment
· Intrusion Prevention.

This work is based on our paper presented at HiPNet 2021 [1] and previous
low-latency studies [2], [3].

1 Introduction

5G networks provide a dedicated service for ultra-reliable and low-latency com-
munication (URLLC) that requires end-to-end reliability up to 6-nines and la-

2 S. Gallenmüller et al.

tency as low as 1ms [4]. Investigating URLLC-compliance involves two chal-
lenges. First, we need measurement facilities and tools. Our experimental plat-
form must be capable of accurately and precisely determining sub-ms latency.
The reliability of the measurement system is key to observing rare events. Sec-
ond, we want to investigate the design of a software stack capable of hosting
URLLC applications. Thus, we need to understand the performance of multiple
interacting system components impacting network input / output (IO), such as
the network interface card (NIC), the central processing unit (CPU), the oper-
ating system (OS), and the application itself.

URLLC requirements are especially challenging for systems that involve soft-
ware packet processing systems. Packet processing tasks, hosted on off-the-shelf
hardware, are subject to slow memory accesses, operating system interrupts, or
system resources shared across different processes. Such adversities may intro-
duce undesirably high latency, preventing the successful operation of URLLC.
This work describes, applies, and measures various hardware acceleration tech-
niques and an optimized software stack to provide URLLC-compliant service
levels. In this work, we target a security-related network function common to
many deployments, not only 5G. Here, we investigate Suricata [5], a widely
deployed intrusion prevention system (IPS). This investigation considers both
quality and throughput in the investigation of an IPS.

We aim to achieve the following goals in our paper:

– establishing a measurement methodology and platform that allows accurate
and precise latency measurements with a particular focus on tail-latency
behavior;

– creating a highly optimized software stack for predictable low-latency net-
work functions on off-the-shelf hardware;

– demonstrating the performance of our software stack depending on various
system components such as the Linux kernel, different NICs, and virtualiza-
tion; and

– deriving guidelines to design and operate applications with a predictably low
latency.

The remainder of the paper is structured as follows: We present a motivating
example demonstrating the impact of latency and the importance of optimiz-
ing systems towards ultra-low latency in Section 2. Section 3 introduces related
work and the underlying techniques. Based on these techniques, we create a low-
latency software stack in Section 4. In Section 5, we present our measurement
methodology and toolchain. Section 6 determines the impact of the previously
described technologies and derives guidelines for creating low-latency systems.
The limitations of the described solutions are discussed in Section 7. All experi-
ment artifacts used in this paper are publicly available; a short introduction how
to reproduce our research is given in Section 8. Finally, Section 9 concludes the
paper.

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 3

2 Motivating Example

To demonstrate the impact of a typical packet processing task on latency, we
measured an application running on a server based on off-the-shelf hardware. The
investigated application is Suricata, an IPS. We measured the latency between
the ingress and egress port of our IPS for each packet. To avoid packet losses
due to overload, our measurement uses a constant packet rate of 10 kpkts/s,
well below the maximum capacity that the IPS can handle. To determine the
latency, we used hardware timestamps taken on a separate device to ensure that
the observed latencies were caused by Suricata, not the measurement device.

A starting application may be subject to higher latencies caused by mem-
ory allocation or empty caches. We are only interested in steady-state behavior;
therefore, we cut the first second of measurement data. Figure 1 shows a scatter
plot of the measured forwarding latency. We filtered for the 5000 worst-case la-
tencies, taken over a 60-second measurement run. We observed a median latency
of 47 µs and sudden latency spikes up to 1.8ms. Repeated measurements led to
similar latency spikes. However, we could not determine a regular pattern for
these spikes; thus, the latency may suddenly increase, randomly impacting the
IPS latency.

20 30 40 50 60 70 80
0

1

2

J2�bm`2K2Mi iBK2 (s)

G
�i

2M
+v

(m
s)

Fig. 1. Worst-case forwarding latencies of Suricata

This example measurement demonstrates that despite favorable conditions—
moderate traffic and pre-loaded application—the investigated system neither
provides low nor predictable latency. The height and the randomness of the spikes
disqualify such a system to be used for reliable communication, such as URLLC.
At the same time, the example highlights the potential for improvement. We
measured a 38-fold difference between median and worst-case values. Therefore,
we investigate various techniques that promise the realization of services with
predictably low latency on off-the-shelf systems. If we improve worst-case laten-
cies significantly, URLLC-compliant packet processing in software running on
off-the-shelf hardware becomes feasible.

https://gallenmu.github.io/latency-limbo/web/suricata-afpacket.html

4 S. Gallenmüller et al.

3 Background and Related Work

This section introduces the background and related work investigating various
studies and system components that may introduce latency for packet process-
ing systems. We focus our investigation on software packet processing systems
based on Linux and off-the-shelf hardware components. In addition, we examine
intrusion prevention systems.

Low-latency measurements. Several guides exist for tuning Linux [6]–[9] to re-
duce the latency for packet processing applications through measures such as
core isolation, disabling virtual cores or energy-saving mechanisms, and reduc-
ing the number of interrupts. Li et al. [10] investigate the latency of Nginx
and Memcached, focusing on rare latency events. Their investigations stress the
importance of tail-latency analysis, especially considering network applications
that perform the same tasks with high repetition rates. Higher repetition rates
increase the probability of observing seemingly rare events and their impact
on the overall application performance. Popescu et al. [11] demonstrate that la-
tency increases as low as 10 µs can have a noticeable impact on applications, e.g.,
Memcached. A study by Barroso et al. [12] demonstrates the need for µs-scale la-
tency IO in data center applications. They propose a synchronized programming
model to simplify application development for low-latency applications. In pre-
vious work [2], [3], we demonstrated that high reliability and low latency could
be achieved on off-the-shelf hardware and virtualized systems, using a DPDK-
accelerated Snort. However, the latency was still subject to interrupts causing
latency spikes in the µs-range.

Hardware properties. HyperThreading (HT), also called simultaneous multi-
threading (SMT), is a feature of modern CPUs that allows addressing physi-
cal cores (p-cores) as multiple virtual cores (v-cores). Each p-core has its own
physically separate functional units (FU) to execute processes independently. If
multiple v-cores are hosted on a common p-core, FUs are shared between them.
Zhang et al. [13] demonstrate that sharing FUs between v-cores can impact ap-
plication performance when executing processes on v-cores instead of physically
separate p-cores.

Another feature of modern CPUs is the support of sleep states, which lower
CPU clock frequency and power consumption. Switching the CPU from an
energy-saving state to an operational state leads to wake-up latencies. Schöne
et al. [14] measured wake-up latencies between 1µs and 40 µs for Intel CPUs
depending on the state transition and the processor architecture.

Despite having physically separate FUs, p-cores share a common last-level
cache (LLC). Therefore, processes running on separate p-cores can still impact
each other competing on the LLC. Herdrich et al. [15] observed a performance
penalty of 64% for a virtualized, DPDK-accelerated application when running in
parallel with an application utilizing LLC heavily. The uncontended application
performance can be restored for the DPDK application by dividing the LLC stat-

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 5

ically between CPU cores utilizing the cache allocation technology (CAT) [15],
[16] of modern Intel CPUs.

Low-latency VM IO. Transferring packets into/out of a virtual machine (VM)
leads to significant performance penalties compared to bare-metal systems. Em-
merich et al. [17] compared packet forwarding in bare-metal and VM scenarios,
demonstrating that VMs can introduce high tail latencies of 350 µs and above.
They also demonstrated that DPDK could help improve forwarding latencies
but must be used on the host system and the VM.

Furthermore, modern NICs, supporting single-root IO virtualization (SR-
IOV), can be split into several independent virtual functions, which can be used
as independent NICs and bound to VMs exclusively. In this case, virtual switch-
ing is done on the NIC itself, minimizing the software stack involved in packet
processing. In an investigation by Lettieri et al. [18], SR-IOV, among other tech-
niques for high-speed VM-based network functions, is one of the fastest tech-
niques with the lowest CPU utilization. Therefore, the latency performance of
SR-IOV is superior to software switches; e.g., Xu and Davda [19] measured an
almost 10-fold increase in worst-case latencies for a software switch. Xiang et
al. [20] create and evaluate an architecture for low-latency network functions.
Their architecture provides sub-millisecond latencies, but they do not inves-
tigate the worst-case behavior. Zilberman et al. [21] give an in-depth latency
analysis of various applications and switching devices. They stress the need for
tail-latency analysis to analyze application performance comprehensively.

The topic of VM-based network functions has been extensively researched in
literature [18]–[20]. However, given our motivating example in Section 2 and the
importance of the URLLC service, we argue, similar to Zilberman et al. [21],
that the crucial worst-case behavior needs close attention. Hence, we aim to
create the lowest latency system achievable by utilizing available applications on
off-the-shelf hardware.

There are also embedded systems such as jailhouse [22] or PikeOS [23] that
can partition the available hardware providing real-time guarantees for user pro-
cesses or VMs. However, they are either incompatible with standard Linux inter-
faces such as libvirt or replace the host OS entirely. Therefore, the tool support
for these specialized hypervisors is worse compared to more widespread solutions
such as Xen or the kernel-based virtual machine (KVM) utilizing the libvirt soft-
ware stack. Thus, we do not consider these specialized solutions for this work
but rely on well-established software tools and hardware.

Kernel. Reghenzani et al. [24] present an extensive survey on the evolution and
features of real-time Linux. Real-time capabilities are added to the regular or
vanilla Linux kernel through a set of patches. Over time, these rt patches were
incrementally added to the mainline kernel code. A significant feature of these
patches is the predictability they introduce to the Linux kernel. They achieve
this by increasing the preemptability of kernel code. By allowing preemptabil-
ity to formerly non-interruptable parts of the kernel code, applications can be
scheduled more regularly, avoiding long phases of non-activity.

6 S. Gallenmüller et al.

The Linux kernel uses scheduling-clock interrupts, or short ticks, for schedul-
ing processes [25]. With the introduction of the tickless kernel, these interrupts
can be entirely disabled for specific cores if the no-hz-full mode is enabled. A
no-hz-full core that runs a single process exclusively, disables its ticks and can
execute this process in an almost interrupt-free mode. Hosting more than one
process on such a core re-enables the tick. The no-hz-full mode can be enabled
for all but one core on a system. The remaining core always operates in the
non-tickless mode executing potential scheduling tasks for the other cores.

Because of the high relevance of interrupt handling on latency [1]–[3], [17],
we want to investigate the latency impact of the different Linux kernel variants.
In this work, we create Linux images with the vanilla, rt, and no-hz kernels being
the only difference between them, to ensure comparable results.

Kernel bypass techniques. Another possible cause for OS interrupts is the occur-
rence of IO events, e.g., arriving packets, to be handled by the OS immediately.
Interrupt handling causes short-time disruptions for currently running processes.
The ixgbe network driver [26] and Linux [27] employ moderation techniques to
minimize the number of interrupts and, therefore, their impact on processing
latency. Both techniques were introduced as a compromise between throughput
and latency optimization. For our low-latency design goal, neither technique is
optimal, as the interrupts—although reduced in numbers—cause irregular vari-
ations in the processing delay, which should be avoided.

DPDK [28], a framework optimized for high-performance packet process-
ing, prevents triggering interrupts for network IO entirely. It ships with its own
userspace drivers, which avoid interrupts but poll packets actively instead. This
leads to execution times with only minor variation also due to DPDK’s preallo-
cation of memory and a lack of costly context switches between userspace and
kernelspace. However, polling requires the CPU to wake up regularly, increasing
energy consumption.

The Linux Kernel’s XDP does not bypass the entire kernel but its network
stack, offering throughput and latency improvements [29]. However, in a direct
comparison with DPDK, they measured a higher forwarding latency for XDP
(202 µs vs. 189 µs). XDP uses an adaptive interrupt-based process for packet
reception. Though conserving energy, compared to DPDK’s polling strategy, it
leads to higher latencies for low packet rates.

PF_RING [30] is a packet processing framework that follows a design phi-
losophy similar to DPDK, shifting the packet processing to userspace. The
netmap [31] framework, like XDP, was designed with OS integration in mind. It
uses system calls for packet reception and transfer. Though the number of sys-
tem calls is reduced, netmap still has a higher overhead, increasing the cost and
latency of packet IO. In a direct comparison between DPDK, PF_RING, and
netmap, DPDK offered higher throughput than netmap and PF_RING, and the
latency of DPDK was equal to PF_RING and lower than netmap’s latency [32].

Measurement methodology. MoonGen [33] offers accurate and precise hardware
timestamping on widely available Intel NICs (cf. Section 5). However, due to

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 7

hardware limitations, most 10G NICs cannot timestamp the entire traffic, but
a small fraction of it (approx. 1 kpkt/s). We also demonstrated that creating
reliable timestamp measurements using software packet generators is challeng-
ing [34]. Although the software solution can timestamp high throughput rates,
its expressiveness is limited. The software timestamping process is subject to
effects that impact measurements such as interrupts, causing latency spikes on
the investigated system. This behavior makes it hard to attribute latency spikes
to either the investigated system or the load generator.

Dedicated timestamping hardware [35], [36] offers line-rate high-precision
and high-accuracy timestamping on multiple 10G Ethernet ports but requires
additional hardware, increasing the costs of the measurement setup. A study
by Primorac et al. [37] compared MoonGen’s timestamping to various software
and hardware timestamping solutions. They concluded that MoonGen’s hard-
ware timestamping method offers a similar accuracy and precision compared to
a professional timestamping hardware solution. Further, they recommend hard-
ware timestamping solutions for investigating latencies in the µs-range.

Intrusion prevention. Intrusion prevention systems are a combination of a fire-
wall with an intrusion detection system. IPSes detect and react to intrusions
by identifying and blocking harmful network flows [38]. Security-related net-
work functions like IPS can be subjected to quality of service requirements, for
instance, in 5G URLLC.

Our previous studies have demonstrated a maximum latency of approx. 120 µs
at a maximum packet rate of 60 kpkt/s for a DPDK-accelerated Snort IPS [2]. A
reliable, low-latency service is possible using off-the-shelf hardware when certain
operating conditions are met, e.g., exclusive access to system resources or the
availability of sufficient compute resources.

A study by Albin et al. [39] measures the performance of the Suricata IPS [5]
to be equal to or higher than the performance of Snort. Suricata’s architec-
ture allows an approximately linear growth in performance with the number of
cores. Suricata supports various kernel bypass frameworks such as PF_RING,
netmap, or XDP [40]. DPDK support for Suricata was introduced in December
2021 [41]. Its progressive software architecture and the recently added DPDK
support promise equal or better performance than a DPDK-accelerated Snort.
This combination makes Suricata an attractive subject for further investigation
compared to our previous Snort-centered studies.

Evaluation of the state of the art. Increased requirements regarding latency and
reliability demand a reevaluation of measurements and their methodology. Based
on state-of-the-art technologies such as kernel bypass, real-time Linux kernels,
and hardware-accelerated virtualization, we aim to create a software stack ar-
chitecture that removes interrupts entirely, to provide ultra-reliability combined
with low latency. At the same time, we need a powerful measurement infrastruc-
ture and measurement approach to observe these systems with the necessary
accuracy and precision. Therefore, we present a measurement methodology that

8 S. Gallenmüller et al.

can handle the challenging scenario of high packet throughput paired with pre-
cise and accurate latency measurements.

4 Low-Latency System Design

This section describes the critical factors of our low-latency system design. We
continue the work presented in previous studies [1]–[3] and present the derived
low-latency system design based on various tuning guides [6]–[9]. In particu-
lar, we focus our investigation on an updated software stack relying on DPDK
21.11, Debian 11 using Kernel 5.10, and Suricata 7.0. Additionally, we investi-
gate further system components impacting forwarding latency, such as the NIC,
virtualization, or software architectures.

Suricata was chosen as a typical example of a security network function.
To provide a secure network, such functions need to be applied to a signifi-
cant portion of the traffic, thereby potentially increasing the latency of every
investigated packet. In addition, these security functions may introduce high
tail latencies (cf. Section 2), violating quality of service requirements such as
the 1-ms goal of URLLC connections. In the past, we investigated the Snort
3 IPS [1]–[3]. In this work, we focus on the Suricata IPS. The architecture of
Suricata is focused on multi-core architectures in contrast to Snort, impacting
processing performance [42]. Because of these differences, Suricata was chosen
as the primary target for this paper.

4.1 OS-Specific Techniques

In the following, we discuss various techniques that can be used to optimize
OS settings to create a low-latency environment for hosting packet processing
applications.

>Qbi

S@+Q`2 y

Pa

S@+Q`2 R

am`B+�i�

S@+Q`2 k

.S.E

LA*
N H

Fig. 2. Software stack architecture

Figure 2 visualizes the distribution of CPU cores between host OS and the
different applications used on top. For the given three-core CPU, the host OS
uses P-core 0 exclusively; the intrusion detection software runs on P-cores 1 and
2, with P-core 1 dedicated to a management thread and P-core 2 to a worker
thread performing the packet processing tasks. The isolcpu (a) boot parameter

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 9

enforces this isolation by preventing the Linux scheduler from scheduling other
processes onto the isolated cores. In Figure 2, P-cores 1 and 2 are isolated.
According to this configuration, the OS cannot schedule processes onto P-cores
1 and 2, creating the perfect environment for the uninterrupted execution of our
packet processing application.

Our previous work [2] shows that OS interrupts happen on isolated cores,
causing latency spikes up to approx. 20µs. The boot parameter nohz_full (b)
disables scheduling interrupts on specific cores when they are only executing a
single thread. However, neither the vanilla nor the real-time (rt) kernel of De-
bian were compiled with the necessary options enabled. Therefore, the kernel
must be recompiled with the configuration options CONFIG_NO_HZ_FULL
and CONFIG_RCU_NOCB_FULL activated. The read-copy-update (RCU) is
a synchronization mechanism in the Linux kernel that may cause callbacks han-
dled by interrupts on specific cores. The two boot parameters rcu_nocbs (c)
and rcu_nocb_poll (d) shift in-kernel RCU handling to different cores, avoiding
interrupts on the nohz-enabled cores.

Devices, such as NICs, can trigger interrupts to signal the reception of new
packets. Setting the irqaffinity (e) to P-core 0 forces them to be handled on
the designated OS core, avoiding network-induced interrupts for all other cores.
The packets received via DPDK do not use this mechanism, but the receiving
application polls for new packets.

To keep the CPU always in its most reactive state, we use the options idle (f)
and intel_idle.max_cstate (h). In addition, the intel pstate driver is disabled to
avoid switching the CPU into power-saving states (intel_pstate, i). Switching
off energy-saving mechanisms can improve latency beyond the 99.99th percentile
by approx. 10 µs according to Primorac et al. [37].

Linux assumes the time stamp counter (TSC) clock to be unreliable and
regularly checks whether the TSC frequency is correct. The option tsc=reliable
(k) disables these regular checks avoiding interrupts [9]. These checks can be
disabled safely for modern Intel Core-based microarchitectures, where the TSC
is invariant, i.e., independent of the CPU’s clock frequency [43]. Correcting er-
rors and scanning for errors can cause additional periodic latency spikes in our
measurements, mce=ignore_ce (l) ignores corrected errors. The parameter au-
dit=0 (m) disables the internal audit subsystem, which causes load on each core,
interrupting programs.

In addition, using nmi_watchdog=0 (n) disables another watchdog. This
watchdog uses the infrastructure of the perf profiling utility, causing additional
overhead for our low-latency system. The option skew_tick=1 (o) shifts the pe-
riodic ticks between different CPU cores. This helps to avoid resource contention
initiated by a tick happening on all CPU cores simultaneously. For diagnostic
purposes, the Linux kernel creates logs for long-running processes. The parame-
ter nosoftlockup (r) disables these logs, as we want to avoid the logging overhead
for our investigated application [7].

We compiled a list of used parameters and the respective values in Table 1.
Each parameter is labeled to link the explanation in the previous text with

10 S. Gallenmüller et al.

the table. This list briefly introduces the applied measures to lower unwanted
interruptions for our packet processing application.

Table 1. Latency optimized bootparameters

Parameter Value Description
a isolcpus [cores] Isolate from kernel scheduler
b nohz_full [cores] No timer ticks
c rcu_nocbs [cores] No RCU callbacks
d rcu_nocbs_poll No RCU callback threads wake-up
e irqaffinity 0 Interrupts on specific core
f idle poll Poll mode when core idle
h intel_idle.max_cstate 0 Limit CPU to c-state
i intel_pstate disable Power state driver disabled
k tsc reliable Rely on TSC without check
l mce ignore_ce Ignore corrected errors
m audit 0 Disable audit messages
n nmi_watchdog 0 Disable NMI watchdog
o skew_tick 1 No simultaneous ticks for locks
r nosoftlookup Disables logging of backtraces

Some additional settings need to be set on the corresponding machine during
runtime. We set the virtual memory statistics collector interval to 3600 s for
reducing the time of recalculating those statistics. The Intel CAT tool [16] is
used to statically assign the LLC to cores, reducing delays caused by cache
contention.

4.2 Application-Specific Techniques

In this subsection, we discuss the techniques that should be considered when cre-
ating a low-latency network application. As an application framework, we sug-
gest the usage of DPDK to reduce the impact of the Linux Kernel on networking
applications. DPDK shifts the entire packet processing tasks, including drivers,
to the userspace. DPDK’s drivers poll the NIC for new packets, entirely avoid-
ing interrupts. By preventing these packet reception interrupts, packet process-
ing happens more predictably. Several similar kernel bypass frameworks exist.
However, DPDK’s strictly polling-based reception promises the lowest possible
latency compared to the other frameworks, such as XDP, netmap, or PF_RING
(cf. Section 3). The Linux networking API (NAPI) reduces the number of in-
terrupts generated but still relies on them [27]. Therefore, the NAPI itself will
cause interrupts, impacting network performance and latency. To incorporate
further NICs into our measurement, we use DPDK 21.11, which supports newer
NICs, such as the Intel E810. The architecture of the NIC can have an addi-
tional impact on latency (cf. Section 6.2). For comparison, have we compiled the
measurements using the same hardware setup as in previous works [1]–[3].

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 11

5 Measurement Methodology

This section presents the main challenges of performing sub-microsecond latency
measurements. Afterward, we describe our toolchain and measurement setup for
our subsequent case study.

Reliability. We assess the reliability of a connection by quantifying its packet
loss. In the context of this paper, the highest level of reliability is achieved if no
packets are lost between the ingress and the egress port of an investigated system.
Reliability is equally crucial for the measurement equipment, i.e., no packet loss
should happen for the traffic sent to and received from an investigated system.
A highly reliable, i.e., loss-free, measurement system is essential to measure rare
latency events, as these events may be missed on a lossy measurement system.

G�i2M+v

�++m`�+v

S`2+BbBQM

_2�H /Bbi`B#miBQM J2�bm`2/ /Bbi`B#miBQM

Fig. 3. Accuracy and precision for latency measurements

Accuracy vs. precision. The quality of latency measurements can be evaluated
along two dimensions—accuracy and precision. According to ISO [44], accuracy
describes the “closeness of agreement between a test result and the accepted
reference value” and precision refers to the “closeness of agreement between in-
dependent test results.” Applying these definitions to our measurements, we con-
sider accuracy as a measure to describe how close a measured timestamp is to
the actual event. Precision is defined as the statistical variability between differ-
ent measurements, i.e., how close the individual measurements are to each other.
Low-latency measurements require high accuracy, as the already low measure-
ment values reduce the tolerable error margin. The difference between accuracy
and precision is visualized in Figure 3. A low-precision measurement system
may heavily impact tail-latency measurements through statistical errors intro-
duced by the measurement system itself. Therefore, high precision is essential to
measure rare events reliably.

Software timestamping vs. hardware timestamping. Packet reception on modern
servers happens asynchronously, i.e., received packets are copied from NIC to
RAM and reception is signaled to the CPU eventually. Software timestamping
can only happen after the reception is announced to the CPU, which introduces
additional latency, causing low accuracy. Without the optimizations mentioned
in Section 4, interrupts caused by the OS may eventually delay the timestamping

12 S. Gallenmüller et al.

process of the CPU, causing low precision. The previously mentioned problems
do not impact hardware timestamps: packets are timestamped shortly and accu-
rately after reception on the NIC itself, and they are timestamped precisely, not
impacted by OS interrupts. With hardware timestamping improving both, pre-
cision and latency, hardware timestamping is the superior measurement method
compared to software timestamping.

MoonGen. MoonGen [34] is a packet generator that supports hardware times-
tamping without relying on specialized and expensive hardware. It uses the hard-
ware timestamping features of widely deployed Intel 10G and 40G NICs, such as
the X520, X550, X710, or XL710 [45], [46]. The hardware timestamping feature
was integrated into these NICs to provide precise timestamps for the precision
time protocol (PTP). NICs that implement PTP in hardware do typically not
support timestamping all packets at line rate. Therefore, MoonGen relies on a
sampling process, i.e., only up to 1 kpkt/s are timestamped. This is a severe lim-
itation, as the sampling would require extensive measurement times to observe
rare latency events reliably.

LoadGen DuT◮
◭

◮
◭

Timestamper

◭ ◭

Fig. 4. Setup overview

To capture tail latencies more effectively, we prefer timestamping the entire
packet stream. The Intel X550 NIC [47] offers hardware timestamping of all
packets with a resolution of 12.5 ns. However, the NIC can only timestamp all
the received packets, not the sent packets. To timestamp the outgoing traffic, we
introduce an optical splitter or terminal access point (TAP) into our measure-
ment setup. An example of such a setup is shown in Figure 4. In this setup, a
separate timestamper is introduced that taps into the optical fiber connection.
This setup allows timestamping the entire ingoing and outgoing unidirectional
traffic between the two other network nodes. The optical splitter allows a third
interface to tap into an optical fiber connection and timestamp all packets sent
by another interface. Tapping works passively; therefore, only a static offset
is introduced to our latency measurements due to slightly longer fibers for the
measurement setup. The medium propagation speed in optical fibers is 0.22m/ns
(based on 0.72 c [34]). The passive optical splitters do not introduce jitter, thus,
do not impact the precision of our measurement; the impact on accuracy can be
corrected if the fiber lengths are known. Using the propagation speed and the
length of the fibers in a measurement setup would allow calculating the increased
propagation delay. However, we did not perform this correction as the delay in-
troduced by a few meters of additional fibers is still lower than the resolution

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 13

of our timer. MoonGen supports the timestamping method of X550-based NICs
through a userscript called MoonSniff. We determine the forwarding latency in
three steps:

1. We use MoonSniff to record timestamped pcaps of the ingress and egress
interface of a Device under Test (DuT).

2. We extract packet signatures from the pcaps and import them into a Post-
greSQL database [48].

3. We match the packets from the ingress pcap to their respective counterpart
of the egress pcap.

This kind of matching can be efficiently computed using database joins. The
join operation can be adapted to consider specific parts of the packet, such as an
included packet counter, to identify matching packets. After the matching pack-
ets have been identified, the database can calculate the forwarding latency using
the packets’ timestamps. In this database-driven approach, different analyses are
realized as SQL statements. We use PostgreSQL to calculate packet transfer and
loss rates, maximum and minimum latency values, latency percentiles, latency
and jitter histograms, and worst-case latency time series.

This section has introduced the challenges for sub-microsecond latency mea-
surements and a methodology to ensure the quality of these measurements. Based
on these findings, we deduct the first recommendation, to be used to create a
measurement setup optimized for sub-microsecond measurements:

Recommendation I: Measurement Setup. Software timestamping on the
measurement systems is subject to effects that may impact the quality of mea-
surements. Hardware timestamping can help avoid these effects, ensuring high
accuracy and precision. Both quality measures are essential for observing short
and rare events, as minor deviations in the measurement may heavily impact
the output. We recommend exclusively using hardware timestamping on afford-
able off-the-shelf hardware to minimize the measurement effort and cost while
maximizing measurement quality.

6 Evaluation

This section introduces the measurement setup, our measurement methodology,
and results.

6.1 Setup

The setup, shown in Figure 4, is based on the presented measurement methodol-
ogy. Our setup involves three nodes, the DuT hosting different applications, the
LoadGen connected to the DuT via two 10G links, and the Timestamper that
monitors both links passively via optical splitters. We kept hardware and soft-
ware identical to our previous work [1]–[3], to generate easily comparable results.

14 S. Gallenmüller et al.

All three nodes use the Intel Xeon D-1518 SoC (4× 2.2GHz) and its integrated
Intel 10G dual-port X552 NIC. The DuT was further equipped with three In-
tel NICs, based on the Intel 82599, X710, and E810 controllers, to investigate
the impact of different NICs on latency. The DuT runs Debian bullseye (kernel
v5.10) with the different kernels described in Section 3. We use KVM as hyper-
visor and DPDK version 21.11. We want to measure the packet loss and latency
of applications with different complexity. The first investigated application is a
basic L2 forwarder included in DPDK [28]. This basic packet processing applica-
tion is investigated to provide an artificially simple example demonstrating the
best-case performance. The second application is Suricata v7.0 [5], an example of
a more complex, real-world packet processing application and its performance.

We test using constant bit-rate traffic with 64B-sized packets. All measure-
ments were repeated with packet rates between 10 kpkt/s and 250 kpkt/s. We
select UDP to avoid any impact of TCP congestion control on latency. The
payload of the generated traffic contains an identifier for matching the different
packets for the subsequent latency calculation.

The experiments were conducted in our testbed using the pos framework
utilizing an automated experiment workflow to ensure reproducible results [49].

6.2 Results

We try to determine the effects of specific system changes on latency. Therefore,
we start our measurement with a simple forwarding application and gradually
increase the complexity of our DuT.

Impact of the Linux Kernel. In this section, we want to determine the
effect of the Linux kernel on latency. We investigate three different Debian
Linux kernels: the vanilla kernel without any changes, the rt kernel provided
via the Debian package repository, and a self-compiled kernel with the enabled
CONFIG_NO_HZ_FULL flag. All three images are built using the identical kernel
version 5.10.0-10, to keep the differences between the images minimal.

DPDK-l2fwd: Figure 5 presents the forwarding latency of a DPDK Layer 2
forwarder (DPDK-l2fwd) as a percentile distribution [50] at a packet rate of
10 kpkt/s. The plots for the higher packet rates are omitted due to their highly
similar latency distribution. We did not observe lost packets, i.e., our system and
the DPDK framework are powerful enough to handle the provided rates without
overloading. Up to the 99.9th percentile, all kernels offer a stable latency of
approx. 3.3 µs. For higher percentiles, the latency rises to 5.3µs/5.5 µs for the
vanilla/rt kernel. The latency of the no-hz kernel only rises to a value of 4.1µs
beyond the 99.99th percentile.

Figure 6 shows the 5000 worst-case latency events over the 60-second mea-
surement time. All three measurements show a solid line at 3.3µs, i.e., most
latency events are on or below this line. A regular pattern above this line is
visible for the vanilla and rt kernels. We identified OS interrupts, in this case,

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 15

y 8y Ny NN NNXN NNXNN NNXNNN NNXNNNN
0

2

4

6

8

S2`+2MiBH2b (W)

G
�i

2M
+v

(�
s)

`i

p�MBHH�

MQ@?x

Fig. 5. Percentile distribution of the latency for DPDK-l2fwd using rt, vanilla, and
no-hz Linux kernels at 10 kpkt/s

the local timer interrupt (loc), as the root cause for this behavior in previous
work [2]. In the no-hz kernel, the interrupt can be disabled; therefore, the pattern
disappears.

The pattern is the result of two clocked processes—OS interrupts and packet
generation. We measure an increased delay on the DuT if the packet process-
ing task is delayed due to an interrupt being triggered simultaneously. The ob-
served pattern is an aliasing effect caused by undersampling, i.e., we can see
a low-frequency signal that is not part of the original data. A more extensive
description can be found in previous work [2].

In previous work [2], [3], we measured latencies for version 4.19 of the rt
and vanilla kernels using the same scenario and hardware. There, we observed
latencies of up to 13.6µs. We attribute this reduction of more than 50% to kernel
optimizations of the interrupt handling. When comparing the results of Figure 6
to our previous investigation of the no-hz kernel [1], we noticed a significant
improvement. We successfully determined our interrupt monitoring tool as the
source of a periodic 1-second latency increase. Without monitoring the interrupts
during measurements, we could create a highly stable latency behavior.

Suricata-fwd: Suricata was chosen to measure the behavior of a real-world appli-
cation. For this measurement scenario, we have disabled the ruleset in Suricata,
turning the intrusion prevention system into a packet forwarding application. We
use this measurement to determine the overhead of Suricata without the impact
of rule application. Figure 7 shows the latency distribution of our measurement
for the three investigated kernels.

For the rt kernel, we observe a higher latency than for the DPDK-l2fwd
scenario, with a median latency of 3.8µs. We notice a significant rise in latency
beyond the 99.9th percentile to approx. 6.5 µs across all measured packet rates.
For the highest packet rate of 250 kpkt/s, we measure an additional latency
increase to 12.2µs not present in lower rates.

https://gallenmu.github.io/latency-limbo/web/dpdk-l2fwd.html

16 S. Gallenmüller et al.

0

2

4

6

`i

0

2

4

6

G
�i

2M
+v

(�
s)

p�MBHH�

10 20 30 40 50 60 70 80
0

2

4

6

J2�bm`2K2Mi iBK2 (s)

MQ@?x

Fig. 6. 5000 worst-case latency events for DPDK-l2fwd using rt, vanilla, and no-hz
Linux kernels at 10 kpkt/s

0

5

10
`i @ 10 kpkt/s

`i @ 50 kpkt/s

`i @ 250 kpkt/s

100

101

102

G
�i

2M
+v

(�
s) p�MBHH� @ 10 kpkt/s

p�MBHH� @ 50 kpkt/s

p�MBHH� @ 250 kpkt/s

y 8y Ny NN NNXN NNXNN NNXNNNNNXNNNN
100

101

102

S2`+2MiBH2b (W)

MQ@?x @ 10 kpkt/s

MQ@?x @ 50 kpkt/s

MQ@?x @ 250 kpkt/s

Fig. 7. Percentile distribution of the forwarding latency on Suricata (no ruleset)

https://gallenmu.github.io/latency-limbo/web/dpdk-l2fwd-worst.html
https://gallenmu.github.io/latency-limbo/web/suricata-fwd.html

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 17

For the vanilla and no-hz kernels, we observe an even higher rise in latency.
To visualize the sharp tail-latency increase without concealing lower percentiles,
we switched to a log scale for both kernels in Figure 7. Up to roughly the 99.999th
percentile, latencies are similar to the rt kernel. Beyond this point, the latencies
of the no-hz and vanilla kernels rise up to 635 µs, a significant difference compared
to the rt kernel.

10 20 30 40 50 60 70
100

101

102

J2�bm`2K2Mi iBK2 (s)

G
�i

2M
+v

(�
s)

`i @ 250 kpkt/s

p�MBHH� @ 250 kpkt/s

Fig. 8. 5000 worst-case latency events for Suricata (no ruleset) using different Linux
kernels at 250 kpkt/s

Figure 8 shows two selected examples that visualize the worst-case forwarding
latencies over the experiment. The first example shows the forwarding latency
of the rt kernel at a rate of 250 kpkt/s. There, two latency spikes above 10 µs
are visible. The other plot shows the latency of the vanilla kernel at a rate of
250 kpkt/s. There, a single spike is the reason for the latency increase.

Similar to our previous studies [2], [3], we assumed interrupts to be the
root cause for the observed latency spikes. To verify our assumption, we used
the Linux interrupt counters listed in /proc/interrupts. This list contains a
counter for the different kinds of interrupts triggered since the start of the system.
When running our experiment with different measurement times, we saw the
latency spikes when the TLB shootdown counter was incremented. We further
investigated the differences between the low impact of the TLB shootdowns on
the rt kernel and the more significant impact on the vanilla and no-hz kernels.
We observed that TLB shootdowns happen more rarely on the rt kernel; we
attribute this lower number to the changes introduced by the rt patches.

The TLB shootdowns are mentioned by Rigtorp [8] as a potential source of
latency and jitter. The transition lookaside buffer (TLB) is a cache that acceler-
ates virtual memory address translation by caching previous translation results.
Certain events, such as memory unmapping or changing memory access restric-
tions, require a flush of the TLB for all CPU cores. This flush is realized as an
interrupt and causes the observed latency spikes. Rigtorp [8] mentions several
cases where the usage of RAM is reorganized, causing TLB shootdowns. Releas-

https://gallenmu.github.io/latency-limbo/web/suricata-fwd-worst.html

18 S. Gallenmüller et al.

ing memory from an application back to the kernel can cause TLB shootdowns
and should, therefore, be avoided. He further recommends not using other tech-
niques such as transparent hugepages, memory compaction, kernel samepage
merging, page migration between different NUMA nodes, or file-backed writable
memory mappings.

We attribute the occurrence of latency spikes to the memory management of
Suricata and did not find a configuration to avoid them for the no-hz and vanilla
kernels. We did not observe severe latency spikes for the rt kernel. Figure 7
includes examples of measurements without latency spikes. We attribute this lack
of increased latency to our 1-minute measurement time. In other measurements,
spikes were observed for these rates.

Another finding of our investigation is the similar behavior of vanilla and
no-hz kernels, contradicting our previous measurements with the DPDK-l2fwd.
The difference between both scenarios is the architecture of the investigated
packet processing application. For the DPDK-l2fwd, we could dedicate a for-
warding thread exclusively to one core. Without any other thread running on
the same cores, the no-hz kernel disables almost all interrupts for this core. Suri-
cata follows a more complex multi-threaded architecture involving management
and worker threads. In combination with DPDK, we did not find a configuration
that would allow us to create a dedicated worker core that was not interrupted
by other threads. Without exclusive core usage, the no-hz kernel does not dis-
able any interrupts on the packet processing core, acting the same way a vanilla
kernel would—a behavior confirmed by our measurements. The rt kernel, in con-
trast, seems to handle the interrupt processing differently. For the rt kernel (cf.
Figure 7), we measured a higher jitter and a slightly increased latency. This
behavior suggests that the rt kernel handles processing tasks during interrupts
differently, thereby avoiding large spikes.

Suricata-filter: Figure 9 shows the forwarding latency of Suricata applying its
default ruleset. The increased complexity of the processing task raises latency.
We measured a median latency close to 10 µs for all kernels and packet rates
between 10 kpkt/s and 150 kpkt/s. For the no-hz and vanilla kernels, we noticed
a steep increase in latency to approx. 600 µs starting at the 99.99th percentile.
The cause for this increase are the same interrupts as for the previous scenario.
However, these costly interrupts occur at a higher rate, lowering the percentile
for the latency increase. For the rt kernel, we did not observe this behavior,
leading to a more stable and overall lower worst-case latency.

For all three kernels, we measured an overload scenario, causing packet loss
and an increase in latency up to 2ms. This measurement shows that Suricata
becomes overloaded at the same forwarding rate of approx. 200 kpkt/s regardless
of the used kernel.

Recommendation II: Avoid Overload. Our measurements show that over-
load must be avoided on packet processing nodes to keep latency reasonably
low. Overload leads to packet loss and causes latencies in the ms-range. DPDK
offers a low-overhead framework that can handle significant packet rates without

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 19

100
101
102
103
104 `i @ 10 kpkt/s

`i @ 50 kpkt/s

`i @ 150 kpkt/s

`i @ 200 kpkt/s

100
101
102
103
104

G
�i

2M
+v

(�
s) p�MBHH� @ 10 kpkt/s

p�MBHH� @ 50 kpkt/s

p�MBHH� @ 150 kpkt/s

p�MBHH� @ 200 kpkt/s

y 8y Ny NN NNXN NNXNN NNXNNNNNXNNNN
100
101
102
103
104

S2`+2MiBH2b (W)

MQ@?x @ 10 kpkt/s

MQ@?x @ 50 kpkt/s

MQ@?x @ 150 kpkt/s

MQ@?x @ 200 kpkt/s

Fig. 9. Percentile distribution of the forwarding latency on Suricata (with ruleset)

overloading; complex applications such as the Suricata IPS can lead to overload
scenarios if the processing capacity is exhausted. Therefore, a packet processing
system should be designed with enough spare capacity to handle the expected
packet processing load.

Recommendation III: Choice of Kernel. Our measurements have shown
that the Linux kernel can have a significant impact on the latency of packet
processing applications. However, there is no kernel that offers consistently better
performance across all investigated scenarios. The architecture of the packet
processing application is a decisive factor for kernel selection. The no-hz kernel
can disable almost all interrupts if an application thread or process can be hosted
on a single core without the need to share it with other threads. In such a
scenario, the no-hz kernel offers the best latency. For more complex applications,
sharing cores among threads, no-hz does not allow disabling interrupts offering
no benefit over the vanilla Linux kernel. However, our measurements showed
that an rt kernel could optimize latency in such a scenario. The tail latency was
lower, due to the lower impact of TLB shootdowns, causing high latency spikes
for no-hz and vanilla kernels. Therefore, we recommend the rt kernel for complex
applications like Suricata and the no-hz kernel for simple applications like the
DPDK-l2fwd or Snort 3 [1]. We further noticed that the worst-case latencies
improved when comparing a Linux kernel version 5.10 to version 4.19. Thus, we
recommend checking different kernel versions, when optimizing for latency.

https://gallenmu.github.io/latency-limbo/web/suricata-ruleset.html

20 S. Gallenmüller et al.

Impact of the NIC This section investigates the impact of the NIC on the
forwarding latency. To measure the isolated effects of the NIC, we select the
DPDK-l2fwd on the no-hz kernel to minimize the impact of OS and application.
We compare four different Intel NICs, the SoC-integrated X552 [47], the dual-
port X520-DA2 [45], the quad-port X710-DA4 [46], and the E810-XXVDA4 [51].
The E810-based NIC supports 25Gbit/s Ethernet but was used with a 10Gbit/s
link to ensure comparability with the other NICs. The rest of the measurement
setup remained unchanged.

0

2

4

6

8

10
10�s

s8ky @ 10 kpkt/s

s8ky @ 50 kpkt/s

s8ky @ 250 kpkt/s

0

2

4

6

8

10
10�s

s88k @ 10 kpkt/s

s88k @ 50 kpkt/s

s88k @ 250 kpkt/s

0

10

20

30

40

10�s

G
�i

2M
+v

(�
s)

sdRy @ 10 kpkt/s

sdRy @ 50 kpkt/s

sdRy @ 250 kpkt/s

y 8y Ny NN NNXN NNXNN NNXNNNNNXNNNN
0

2

4

6

8

10
10�s

S2`+2MiBH2b (W)

13Ry @ 10 kpkt/s

13Ry @ 50 kpkt/s

13Ry @ 250 kpkt/s

Fig. 10. Percentile distribution of the latency for different Intel NICs. The 10-µs bar
is highlighted with a dash-dotted line for easier comparison.

https://gallenmu.github.io/latency-limbo/web/dpdk-l2fwd-nic.html

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 21

Figure 10 visualizes the forwarding latency for the different NICs at different
packet rates as a percentile distribution. The oldest NIC in our comparison is
the X520, which offers a stable and highly similar latency across the investigated
rates. A visible increase in latency starts around the 99.999th percentile; the
latency increases from approx. 3.9µs to 4.5µs. The X552 NIC offers the same
stability as the X520, and the latency distribution follows roughly the same
shape. The absolute values are shifted by 0.5µs, i.e., the X552 is faster than the
X520.

For the X710 NIC, we see a stable latency behavior for a packet rate of
10 kpkt/s that stays below 5 µs. However, starting at a rate of 50 kpkt/s, we
can see significant changes in the latency behavior where latency rises from a
median of approx. 14µs to 37 µs for the 99th percentile. A closer investigation
of the egress traffic shows that the NIC begins sending bursts of packets. If
we increase the rate, the latency sinks again to approx. 20 µs for the 99.9999th
percentile; however, the bursty behavior remains. Thus, the latency is not as
stable as it was for a rate of 10 kpkt/s. For the E810 NIC, we see stable latency
behavior for rates of 10 kpkt/s and 50 kpkt/s. Higher rates are again subject to
bursty behavior and latency increase.

We attribute the differences in stability to the increased complexity of the
NICs and their controller architectures over time. An indicator for this increased
feature set is the length of the respective data sheet that grew from approx.
1000 pages for the X520 [45] to over 2700 for the E810 [51]. Also, the size of the
firmware present on the NICs grew over time. The X710 and the E810 possess
firmware of several megabytes; the E810 additionally features a programmable
parser that loads additional software during runtime. Where older NICs, such
as the X520, possess a fixed processing path, newer NICs feature a higher de-
gree of configurability for the packet processing path. This increased flexibility
makes the packet processing path and latency on the NIC less predictable for
newer NIC generations. We attribute the increased latency to the changes in
NIC architecture.

For our tests, we relied on the default configurations provided by DPDK
for PCIe and NIC drivers. Further optimizations were not considered. Please
note that X710 and E810-based network controllers were designed for 40Gbit/s
and 100Gbit/s bandwidths. In our scenario, we only investigated 10Gbit/s to
ensure compatibility across the different NICs and our measurement platform.
The latency behavior may be different when operating at higher link bandwidths.

Recommendation IV: Choice of NIC. We have shown that the choice of
NIC can significantly impact latency and jitter. Older, low-complexity NICs, such
as the Intel X520 or X552, offer less configurability leading to low, stable latency.
Therefore, the impact of the NIC is low compared to other effects described in
this paper. However, the impact changes when considering more complex NICs,
such as the X710 and E810. Newer NIC generations offer a higher degree of
flexibility, which in turn make predicting latency more challenging. Thus, we
recommend carefully investigating the latency in application-specific scenarios,
especially when using more recent NIC architectures.

22 S. Gallenmüller et al.

Impact of Virtualization We want to investigate the impact of virtualization
on packet processing applications. Therefore, we measure the performance of a
virtualized DPDK-l2fwd application. The application is run on a VM pinned to
P-cores 1, 2, and 3 of our DuT. The OSes on the DuT and the DuT VM use
the same, previously described boot parameters and images. For the impact of
virtualization, we only analyze the impact using the DPDK-l2fwd and the Intel
X552 NIC. This simple setup allows measuring the impact of virtualization in
isolation without potential effects caused by a complex software architecture.
Further, the used CPUs could not run Suricata in a meaningful way. Our setup
requires at least two separate p-cores for the operating systems—on the host and
the VM. Suricata requires at least three cores to run with minimal core sharing
among threads. For obvious reasons, this five-core requirement cannot be met
on a quad-core CPU.

y 8y Ny NN NNXN NNXNN NNXNNN NNXNNNN
0

4

8

12

16

S2`+2MiBH2b (W)

G
�i

2M
+v

(�
s)

`i

p�MBHH�

MQ@?x

Fig. 11. Percentile distribution of the latency for a virtualized DPDK-l2fwd at
10 kpkt/s

Figure 11 shows the effects of virtualization on packet processing applications.
The measurement shows a stable latency of approx. 4µs up to the 99th percentile.
Beyond this point, a significant increase begins, and the different Linux kernel
versions begin to differ. As shown in previous measurements (cf. Figure 5), the
rt Linux kernel latencies are higher than the latencies of the no-hz and vanilla
Linux kernel. We measure tail latencies for no-hz and vanilla kernel at approx.
11µs and 10µs.

In previous work [1], we measured the latencies for version 4.19 of the no-hz
Linux kernel using the same scenario and hardware. We observed a latency of up
to 4.1 µs with virtualization on a no-hz Linux kernel. This shows that the impact
of virtualization is significantly higher on newer kernel and software measured
in this experiment with an increase of approx. 6µs.

Figure 12 shows the worst-case latency behavior over the 60-second measure-
ment period for the virtualized DPDK-l2fwd example on each of the measured
Linux kernel versions. Further analysis of the worst-case events shows a familiar

https://gallenmu.github.io/latency-limbo/web/dpdk-l2fwd-vm.html

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 23

0

5

10

15
`i

0

5

10

15

G
�i

2M
+v

(�
s) p�MBHH�

10 20 30 40 50 60 70 80
0

5

10

15

J2�bm`2K2Mi iBK2 (s)

MQ@?x

Fig. 12. 5000 worst-case latency events for virtualized DPDK-l2fwd using rt, vanilla,
and no-hz Linux kernels at 10 kpkt/s

behavior; a solid horizontal line with most latency events either on or below
this line, above this line, a regular pattern of events. In general, we can see that
virtualization leads to an increased number of events in the area above the hor-
izontal line. The number of events is increased because of the higher number
of interrupts, caused by two running operating systems, the VM OS and the
host OS. In addition, the interrupt processing time on the virtualized kernel is
increased compared to non-virtualized setups. This leads to a visible impact of
virtualization on the performance of low-latency packet processing systems.

Figure 12 shows almost identical behavior between the no-hz and the vanilla
Linux Kernels. We assume the interrupts could not be disabled on the no-hz
kernel in this environment. To verify our assumption that interrupts increase
the latency, we performed a second measurement run, where we captured the
interrupt counters in Linux during this specific measurement run. We found a
correlation between the local timer interrupts and the increased latency events.

Recommendation V: Choice of Virtualization. We have shown that choos-
ing between virtualized and non-virtualized systems for packet processing im-
pacts latency and jitter. At the same time, we have shown that its price, i.e.,
the impact of virtualization on latency, is limited to tail latencies. When using
virtualization, the choice of Linux kernel matters. The virtualized no-hz ker-
nel did not offer benefits over a virtualized vanilla kernel; the tail latency on

https://gallenmu.github.io/latency-limbo/web/dpdk-l2fwd-vm-worst.html

24 S. Gallenmüller et al.

the virtualized rt kernel is even higher. All three kernels performed worse from
a tail-latency perspective than their non-virtualized counterparts. Due to the
negligible impact on latency below the 99th percentile, latency considerations
should not prevent the virtualization of applications in general. However, if tail
latencies are the primary optimization goal, a bare-metal system can offer ben-
efits.

7 Limitations

The measurements presented in this paper have shown that software packet
processing systems can be tuned to provide sub-microsecond latency with low
jitter. However, the low latency and jitter come at a price. The presented system
configurations disable the CPU energy-saving mechanisms. In addition, DPDK
actively polls the NIC, fully loading the allocated CPU cores. We measured the
energy consumption in a previous paper [2]; the entire server consumed 31W
in an idle state and 47W when executing a packet processing application. The
majority of this 48-percent increase in energy consumption is caused by the CPU.
While numbers are highly hardware specific, the increase and the CPU being its
main factor can be transferred to other systems.

8 Experiment Data and Reproducibility

A major goal of our research is the creation of reproducible experiments [49].
Therefore, we created a website [52] that explains each measurement presented in
the paper. The experiment artifacts are available in a GitHub repository [53]. The
experiment artifacts include the experiment scripts, measurement data, plotting
scripts, and plots. The investigated applications are open source on GitHub [5],
[28]

9 Conclusion

Our measurements show that the latency limbo has much in common with the
actual dance. A set-up latency bar can be easily touched or exceeded with seem-
ingly minor alterations to the investigated software stack. Nevertheless, we show
that, given the proper techniques, the latency bar remains intact. Therefore,
we established our recommendations acting as guiding rails to create reliable,
low-latency packet processing systems:

– Software-based timestamping methods are subjected to the same effects we
investigated in our studies. A measured latency may be caused by the mea-
suring or the measured system causing ambiguous measurement data. To
avoid this problem entirely, we stress the need for hardware-based times-
tamping, to provide high accuracy and precision for measurements.

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 25

– Overloading a system leads to inevitable packet loss and filled buffers in-
creasing latency; therefore, overload must be avoided. Our measurements
have shown that DPDK and Suricata provide a throughput of several 100 000
packets per second on a single CPU core. However, when inserting a complex
computation like the IPS rule application into the processing path, the lim-
ited CPU resources may cause an overload. Providing enough CPU resources
or limiting the number of packets are possible solutions to this problem.

– Our investigation of the different flavors of the Linux kernel has no clear
winner. If a network application process can be hosted on a CPU core exclu-
sively, the no-hz kernel provides stable and low latencies. The rt kernel offers
superior performance if a core is shared between processes. However, we ob-
served situations where the vanilla kernel performs best, if cores are shared,
and TLB shootdowns did not occur. For the choice of kernel, there is no one-
size-fits-all solution; it requires measurements or an in-depth investigation
of the application architecture to find the best fitting kernel.

– In our comparison, we determined the Intel X552 as the NIC with the lowest
and most stable latency. More modern cards were not only slower but also
introduced jitter. If the described NICs are not an option, we recommend
testing the designated NIC architecture before integration to avoid surprising
effects on latency and jitter.

– For virtualization, we measured a noticeable impact on tail latency. The
median or lower-percentile latencies were only slightly increased, demon-
strating that virtualization is highly efficient and introduces little overhead
to the packet processing path. When optimizing tail latencies, virtualization
should be avoided, as we noticed irregular spikes for all our measurements.

Acknowledgments The European Union’s Horizon 2020 research and innova-
tion programme funded this work under grant agreements No 101008468 and
101079774. Additionally, we received funding by the Bavarian Ministry of Eco-
nomic Affairs, Regional Development and Energy as part of the project 6G
Future Lab Bavaria. This work is partially funded by Germany Federal Ministry
of Education and Research (BMBF) under the projects 6G-life (16KISK001K)
and 6G-ANNA (16KISK107).

References

[1] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “Ducked Tails: Trim-
ming the Tail Latency of(f) Packet Processing Systems,” in 17th Inter-
national Conference on Network and Service Management, CNSM Izmir,
Turkey, October 25-29, IEEE, 2021. doi: 10.23919/CNSM52442.2021.
9615532.

[2] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G QoS: Impact of
Security Functions on Latency,” in NOMS 2020 - IEEE/IFIP Network
Operations and Management Symposium, Budapest, Hungary, April 20-
24, IEEE, 2020, pp. 1–9. doi: 10.1109/NOMS47738.2020.9110422.

https://doi.org/10.23919/CNSM52442.2021.9615532
https://doi.org/10.23919/CNSM52442.2021.9615532
https://doi.org/10.1109/NOMS47738.2020.9110422

26 S. Gallenmüller et al.

[3] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G URLLC: A Case
Study on Low-Latency Intrusion Prevention,” IEEE Commun. Mag., vol. 58,
no. 10, pp. 35–41, 2020. doi: 10.1109/MCOM.001.2000467.

[4] NGMN Alliance, 5G E2E Technology to Support Verticals URLLC Re-
quirements, 2019.

[5] Suricata repository, Last accessed: Nov. 25, 2022. [Online]. Available: https:
//github.com/gallenmu/suricata/tree/dpdk-21.11.

[6] AMD, Performance Tuning Guidelines for Low Latency Response on AMD
EPYC-Based Servers Application Note, Last accessed: Nov. 25, 2022, Jun.
2018. [Online]. Available: http://developer.amd.com/wp- content/
resources/56263-Performance-Tuning-Guidelines-PUB.pdf.

[7] J. Mario and J. Eder, Low Latency Performance Tuning for Red Hat Enter-
prise Linux 7, Last accessed: Nov. 25, 2022, Nov. 2017. [Online]. Available:
https://access.redhat.com/sites/default/files/attachments/
201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf.

[8] E. Rigtorp, Low latency tuning guide, Last accessed: Nov. 25, 2022, Mar.
2020. [Online]. Available: https://rigtorp.se/low-latency-guide/.

[9] M. Beierl, Nfv-kvm-tuning, Last accessed: Nov. 25, 2022. [Online]. Avail-
able: https://wiki.opnfv.org/pages/viewpage.action?pageId=
2926179.

[10] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the Tail:
Hardware, OS, and Application-level Sources of Tail Latency,” in Proceed-
ings of the ACM Symposium on Cloud Computing, Seattle, WA, USA,
November 3-5, 2014, E. Lazowska, D. Terry, R. H. Arpaci-Dusseau, and
J. Gehrke, Eds., ACM, 2014, 9:1–9:14. doi: 10.1145/2670979.2670988.

[11] D. Popescu, N. Zilberman, and A. Moore, “Characterizing the impact of
network latency on cloud-based applications’ performance,” 2017.

[12] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan, “Attack of
the Killer Microseconds,” Commun. ACM, vol. 60, no. 4, pp. 48–54, 2017.
doi: 10.1145/3015146.

[13] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “SMiTe: Precise
QoS Prediction on Real-System SMT Processors to Improve Utilization in
Warehouse Scale Computers,” in 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2014, Cambridge, United King-
dom, December 13-17, 2014, IEEE Computer Society, 2014, pp. 406–418.
doi: 10.1109/MICRO.2014.53.

[14] R. Schöne, D. Molka, and M. Werner, “Wake-up latencies for processor
idle states on current x86 processors,” Computer Science - R&D, vol. 30,
no. 2, pp. 219–227, 2015. doi: 10.1007/s00450-014-0270-z.

[15] A. Herdrich, E. Verplanke, P. Autee, et al., “Cache QoS: From Concept
to Reality in the Intel® Xeon® Processor E5-2600 v3 Product Family,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture, HPCA 2016, Barcelona, Spain, March 12-16, 2016, 2016,
pp. 657–668. doi: 10.1109/HPCA.2016.7446102.

https://doi.org/10.1109/MCOM.001.2000467
https://github.com/gallenmu/suricata/tree/dpdk-21.11
https://github.com/gallenmu/suricata/tree/dpdk-21.11
http://developer.amd.com/wp-content/resources/56263-Performance-Tuning-Guidelines-PUB.pdf
http://developer.amd.com/wp-content/resources/56263-Performance-Tuning-Guidelines-PUB.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://rigtorp.se/low-latency-guide/
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/3015146
https://doi.org/10.1109/MICRO.2014.53
https://doi.org/10.1007/s00450-014-0270-z
https://doi.org/10.1109/HPCA.2016.7446102

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 27

[16] M. Aleksiński et al., intel-cmt-cat, Last accessed: Nov. 25, 2022. [Online].
Available: https://github.com/intel/intel-cmt-cat.

[17] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle,
“Throughput and Latency of Virtual Switching with Open vSwitch: A
Quantitative Analysis,” J. Network Syst. Manage., vol. 26, no. 2, pp. 314–
338, 2018. doi: 10.1007/s10922-017-9417-0.

[18] G. Lettieri, V. Maffione, and L. Rizzo, “A Survey of Fast Packet I/O Tech-
nologies for Network Function Virtualization,” in High Performance Com-
puting - ISC High Performance 2017 International Workshops, Frankfurt,
Germany, June 18-22, 2017, Revised Selected Papers, 2017, pp. 579–590.
doi: 10.1007/978-3-319-67630-2_40.

[19] X. Xu and B. Davda, “SRVM: Hypervisor Support for Live Migration
with Passthrough SR-IOV Network Devices,” in Proceedings of the 12th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, Atlanta, GA, USA, April 2-3, 2016, 2016, pp. 65–77. doi:
10.1145/2892242.2892256.

[20] Z. Xiang, F. Gabriel, E. Urbano, G. T. Nguyen, M. Reisslein, and F. H. P.
Fitzek, “Reducing Latency in Virtual Machines: Enabling Tactile Inter-
net for Human-Machine Co-Working,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 5, pp. 1098–1116, 2019. doi: 10.1109/JSAC.
2019.2906788.

[21] N. Zilberman, M. P. Grosvenor, D. A. Popescu, et al., “Where Has My
Time Gone?” In Passive and Active Measurement - 18th International
Conference, PAM 2017, Sydney, NSW, Australia, March 30-31, 2017, Pro-
ceedings, 2017, pp. 201–214. doi: 10.1007/978-3-319-54328-4_15.

[22] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum,
no VM exits! (almost),” CoRR, vol. abs/1705.06932, 2017. arXiv: 1705.
06932. [Online]. Available: http://arxiv.org/abs/1705.06932.

[23] R. Kaiser and S. Wagner, “Evolution of the PikeOS Microkernel,” in First
International Workshop on Microkernels for Embedded Systems, vol. 50,
Jan. 2007.

[24] F. Reghenzani, G. Massari, and W. Fornaciari, “The Real-Time Linux
Kernel: A Survey on PREEMPT_RT,” ACM Comput. Surv., vol. 52, no. 1,
18:1–18:36, 2019. doi: 10.1145/3297714.

[25] n.a., NO_HZ: Reducing Scheduling-Clock Ticks, Last accessed: Nov. 25,
2022. [Online]. Available: https://www.kernel.org/doc/Documentation/
timers/NO%7B%5C_%7DHZ.txt.

[26] P. Emmerich, D. Raumer, A. Beifuß, et al., “Optimizing Latency and CPU
Load in Packet Processing Systems,” in Proceedings of the International
Symposium on Performance Evaluation of Computer and Telecommunica-
tion Systems, Chicago, IL, USA, July 26-29, 2015, IEEE / ACM, 2015,
6:1–6:8. doi: 10.1109/SPECTS.2015.7285275.

[27] J. H. Salim, “When napi comes to town,” in Linux 2005 Conf, 2005.
[28] DPDK repository, Last accessed: Nov. 25, 2022. [Online]. Available: https:

//github.com/gallenmu/dpdk-1/tree/21.11-low-latency.

https://github.com/intel/intel-cmt-cat
https://doi.org/10.1007/s10922-017-9417-0
https://doi.org/10.1007/978-3-319-67630-2_40
https://doi.org/10.1145/2892242.2892256
https://doi.org/10.1109/JSAC.2019.2906788
https://doi.org/10.1109/JSAC.2019.2906788
https://doi.org/10.1007/978-3-319-54328-4_15
https://arxiv.org/abs/1705.06932
https://arxiv.org/abs/1705.06932
http://arxiv.org/abs/1705.06932
https://doi.org/10.1145/3297714
https://www.kernel.org/doc/Documentation/timers/NO%7B%5C_%7DHZ.txt
https://www.kernel.org/doc/Documentation/timers/NO%7B%5C_%7DHZ.txt
https://doi.org/10.1109/SPECTS.2015.7285275
https://github.com/gallenmu/dpdk-1/tree/21.11-low-latency
https://github.com/gallenmu/dpdk-1/tree/21.11-low-latency

28 S. Gallenmüller et al.

[29] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, et al., “The eXpress
Data Path: Fast Programmable Packet Processing in the Operating Sys-
tem Kernel,” in Proceedings of the 14th International Conference on emerg-
ing Networking EXperiments and Technologies, CoNEXT 2018, Heraklion,
Greece, December 04-07, 2018, 2018, pp. 54–66. doi: 10.1145/3281411.
3281443.

[30] L. Deri, “nCap: Wire-speed Packet Capture and Transmission,” in Third
IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Ser-
vices, E2EMON 2005, 15th May 2005, Nice, France, IEEE Computer So-
ciety, 2005, pp. 47–55. doi: 10.1109/E2EMON.2005.1564468.

[31] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in 2012
USENIX Annual Technical Conference, Boston, MA, USA, June 13-15,
2012, G. Heiser and W. C. Hsieh, Eds., USENIX Association, 2012, pp. 101–
112. [Online]. Available: https://www.usenix.org/conference/usenix-
security12/technical-sessions/presentation/rizzo.

[32] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of Frameworks for High-Performance Packet IO,” in Pro-
ceedings of the Eleventh ACM/IEEE Symposium on Architectures for net-
working and communications systems, ANCS 2015, Oakland, CA, USA,
May 7-8, 2015, IEEE Computer Society, 2015, pp. 29–38. doi: 10.1109/
ANCS.2015.7110118.

[33] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Proceedings
of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015, K. Cho, K. Fukuda, V. S. Pai, and N. Spring,
Eds., ACM, 2015, pp. 275–287. doi: 10.1145/2815675.2815692.

[34] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and G. Carle,
“Mind the Gap - A Comparison of Software Packet Generators,” in ACM
/ IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS, Beijing, China, May 18-19, IEEE Computer Society,
2017, pp. 191–203. doi: 10.1109/ANCS.2017.32.

[35] G. Antichi, M. Shahbaz, Y. Geng, et al., “OSNT: Open Source Network
Tester,” IEEE Netw., vol. 28, no. 5, pp. 6–12, 2014. doi: 10.1109/MNET.
2014.6915433.

[36] Silicom, Datasheet PE310G4TSF4I71, Last accessed: Nov. 25, 2022. [On-
line]. Available: https://www.silicom-usa.com/wp-content/uploads/
2016/08/PE310G4TSF4I71-Programmable-Application-Acceleration-
10G.pdf.

[37] M. Primorac, E. Bugnion, and K. J. Argyraki, “How to Measure the Killer
Microsecond,” Comput. Commun. Rev., vol. 47, no. 5, pp. 61–66, 2017.
doi: 10.1145/3155055.3155065.

[38] X. Zhang, C. Li, and W. Zheng, “Intrusion Prevention System Design,”
in 2004 International Conference on Computer and Information Technol-
ogy (CIT 2004), 14-16 September 2004, Wuhan, China, IEEE Computer
Society, 2004, pp. 386–390. doi: 10.1109/CIT.2004.1357226.

https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1109/E2EMON.2005.1564468
https://www.usenix.org/conference/usenix-security12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/usenix-security12/technical-sessions/presentation/rizzo
https://doi.org/10.1109/ANCS.2015.7110118
https://doi.org/10.1109/ANCS.2015.7110118
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/ANCS.2017.32
https://doi.org/10.1109/MNET.2014.6915433
https://doi.org/10.1109/MNET.2014.6915433
https://www.silicom-usa.com/wp-content/uploads/2016/08/PE310G4TSF4I71-Programmable-Application-Acceleration-10G.pdf
https://www.silicom-usa.com/wp-content/uploads/2016/08/PE310G4TSF4I71-Programmable-Application-Acceleration-10G.pdf
https://www.silicom-usa.com/wp-content/uploads/2016/08/PE310G4TSF4I71-Programmable-Application-Acceleration-10G.pdf
https://doi.org/10.1145/3155055.3155065
https://doi.org/10.1109/CIT.2004.1357226

How Low Can You Go? A Limbo Dance for Low-Latency Network Functions 29

[39] E. Albin and N. C. Rowe, “A Realistic Experimental Comparison of the
Suricata and Snort Intrusion-Detection Systems,” in 26th International
Conference on Advanced Information Networking and Applications Work-
shops, WAINA 2012, Fukuoka, Japan, March 26-29, 2012, L. Barolli, T.
Enokido, F. Xhafa, and M. Takizawa, Eds., IEEE Computer Society, 2012,
pp. 122–127. doi: 10.1109/WAINA.2012.29.

[40] V. Julien et al., Suricata User Guide, Last accessed: Nov. 25, 2022. [On-
line]. Available: https://suricata.readthedocs.io/en/latest/.

[41] V. Julien and L. Simis, dpdk: initial support with workers runmode, Last
accessed: Nov. 25, 2022. [Online]. Available: https://github.com/OISF/
suricata/commit/a7faed12450b85e9108868861723741fc93716fa.

[42] A. Gupta and L. S. Sharma, “Performance Evaluation of Snort and Suri-
cata Intrusion Detection Systems on Ubuntu Server,” in Proceedings of
ICRIC 2019, Springer, 2020, pp. 811–821.

[43] Intel 64 and IA-32 Architectures Software Developer’s Manual, 325462-
075US, Intel, Jun. 2021.

[44] ISO 5725-1: 1994: Accuracy (Trueness and Precision) of Measurement
Methods and Results-Part 1: General Principles and Definitions. Interna-
tional Organization for Standardization, 1994.

[45] Intel 82599 10 GbE Controller - Datasheet, 331520-005, Rev. 3.4, Intel,
Nov. 2019.

[46] Intel Ethernet Controller X710/XXV710/XL710 Datasheet, 332464-020,
Rev. 3.65, Intel, Aug. 2019.

[47] Intel Ethernet Controller X550 - Datasheet, 333369-005, Rev. 2.3, Intel,
Nov. 2018.

[48] PostgreSQL Global Development Group, PostgreSQL, Jul. 2021. [Online].
Available: https://www.postgresql.org/.

[49] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos Framework:
A Methodology and Toolchain for Reproducible Network Experiments,” in
CoNEXT ’21: The 17th International Conference on emerging Networking
EXperiments and Technologies, Virtual Event, Munich, Germany, Decem-
ber 7-10, ACM, 2021, pp. 259–266. doi: 10.1145/3485983.3494841.

[50] G. Tene, HdrHistogram: A High Dynamic Range Histogram, Last accessed:
Nov. 25, 2022. [Online]. Available: http://hdrhistogram.org/.

[51] Intel Ethernet Controller E810 Datasheet, 613875-005, Rev. 2.3, Intel, Sep.
2021.

[52] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, latency-limbo website,
Last accessed: Nov. 25, 2022. [Online]. Available: https://gallenmu.
github.io/latency-limbo.

[53] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, latency-limbo reposi-
tory, Last accessed: Nov. 25, 2022. [Online]. Available: https://github.
com/gallenmu/latency-limbo.

https://doi.org/10.1109/WAINA.2012.29
https://suricata.readthedocs.io/en/latest/
https://github.com/OISF/suricata/commit/a7faed12450b85e9108868861723741fc93716fa
https://github.com/OISF/suricata/commit/a7faed12450b85e9108868861723741fc93716fa
https://www.postgresql.org/
https://doi.org/10.1145/3485983.3494841
http://hdrhistogram.org/
https://gallenmu.github.io/latency-limbo
https://gallenmu.github.io/latency-limbo
https://github.com/gallenmu/latency-limbo
https://github.com/gallenmu/latency-limbo

30 S. Gallenmüller et al.

Sebastian Gallenmüller received his Ph.D. in 2021 from the Technical University
of Munich. He currently works as a PostDoc at the Chair of Network Architectures
and Services led by Prof. Georg Carle at the Technical University of Munich. His
main research interests are programmable packet processing systems and testbeds for
network experiments with a focus on performance analysis and modeling of packet
processing systems.

Florian Wiedner finished his Master of Science in Informatics in 2020 at the Technical
University of Munich where he currently works as a Ph.D. student at the Chair of
Network Architectures and Services. His research focuses on low-latency measurements
and low-latency networking on partly virtualized systems as well as scalability.

Johannes Naab completed his Master of Science in Informatics in 2014 at the Techni-
cal University of Munich. In the same year, he started as a Ph.D. student at the Chair
of Network Architectures and Services. His research focuses primarily on the develop-
ment of large-scale cloud architectures and in his free time he performs Internet-wide
measurements.

Georg Carle is professor at the Technical University of Munich, holding the Chair
of Network Architectures and Services. He studied at University of Stuttgart, Brunel
University, London, and Ecole Nationale Superieure des Telecommunications, Paris.
He did his Ph.D. in Computer Science at University of Karlsruhe, and worked as
postdoctoral scientist at Institut Eurecom, Sophia Antipolis, France, at the Fraunhofer
Institute for Open Communication Systems, Berlin, and as professor at the University
of Tübingen.

	How Low Can You Go?A Limbo Dance for Low-Latency Network Functions

