
Ducked Tails: Trimming the
Tail Latency of(f) Packet Processing Systems

Sebastian Gallenmüller, Florian Wiedner, Johannes Naab, Georg Carle
Department of Informatics

Technical University of Munich
Garching near Munich, Munich

{gallenmu | wiedner | naab | carle}@net.in.tum.de

Abstract—Latency can be caused by delayed processing of
packets on the nodes of a computer network. Latency figures
tend to fluctuate, eventually creating substantial spikes leading
to a long-tailed latency distribution. The absolute latency value
and its distribution over time impact the service quality of
computer networks—an essential requirement for novel services
such as networked industrial control systems or remote medical
procedures.

In this work, we present our measurement methodology for
packet processing systems to determine the latency reliably, and
more importantly, its distribution, using highly accurate and
precise hardware timestamping on off-the-shelf network interface
cards (NICs). Further, we introduce an optimized software stack
to run low-latency applications on regular Linux servers. Our
investigation focuses on realtime features of the Linux kernel. The
performance of our optimized software stack is demonstrated
using a real-world application, the Snort intrusion prevention
system (IPS). Across various scenarios, we achieve a maximum
worst-case latency as low as 25 µs. This result is an almost 5-fold
reduction of the measured tail latencies compared to a previous
study.

Index Terms—5G, URLLC, IPS, latency measurements,
DPDK, MoonGen

I. INTRODUCTION

Typical examples of critical networked systems are in-
dustrial control systems or remote medical procedures. In
these systems, networks have become an integral part, where
network degradation may cause damage to equipment or even
human life. Facing such consequences, networks for these
applications require special attention to ensure reliable, secure,
and smooth operation.

5G networks provide a dedicated service for ultra-reliable
and low-latency communication (URLLC) that requires end-
to-end reliability up to 6-nines and latency as low as 1 ms [1].
These requirements are especially challenging for systems that
involve software packet processing systems. Packet process-
ing tasks, hosted on off-the-shelf hardware, are subject to
slow memory accesses, operating system interrupts, or system
resources shared across different processes. Such adversities
may introduce undesirably high latency, preventing the suc-
cessful operation of URLLC. This work describes and employs
various hardware acceleration techniques and an optimized
software stack to provide URLLC-compliant service levels.

The design of low-latency software packet processing sys-
tems is only part of our investigation. Equally challenging

is the design of measurement infrastructures to investigate
such systems. Measurement equipment needs to handle the
traffic load of modern systems handling up to 10 Gbit/s or
even more. At the same time, rare latency spikes need to be
measured reliably as URLLC does not tolerate them because
of their potentially destructive effects. This requires the latency
measurement of all observable packets.

In this work, we present:
• a highly optimized software stack for low-latency net-

work functions on off-the-shelf hardware,
• the creation and application of a measurement method-

ology for the investigation of low-latency network func-
tions, and

• a case study of our software stack and measurement
methodology that demonstrates the performance and high
precision.

The remainder of the paper is structured as follows. Sec-
tion II presents related work. In Section III, we introduce our
low-latency software stack architecture. We give an overview
of our measurement methodology in Section IV. Our case
study in Section V investigates the performance of our pro-
posed system. We explain the steps necessary to reproduce
the presented experiments in Section VI. Finally, Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we introduce work investigating the latency
of packet processing applications on off-the-shelf hardware
and measurement methodologies for low-latency systems.

a) Low-latency measurements: Several guides exist for
tuning Linux [2]–[5] to reduce the latency for packet pro-
cessing applications through measures such as core isolation,
disabling of virtual cores or energy-saving mechanisms, and
reducing the number of interrupts. Li et al. [6] investigate the
latency of Nginx and Memcached, focusing on rare latency
events. Their investigations stress the importance of tail latency
analysis, especially considering network applications that per-
form the same tasks with high repetition rates. The repetition
rates increase the probability of observing seemingly rare
events and their impact on the overall application performance.
Popescu et al. [7] demonstrate that latency increases as low
as 10 µs can have a noticeable impact on applications, e.g.,
Memcached. In previous work [8], [9], we demonstrated that

high reliability and low latency could be achieved on off-the-
shelf hardware and virtualized systems, using a Data Plane
Development Kit (DPDK)-accelerated Snort IPS. However, the
latency was still subject to interrupts causing latency spikes in
the µs-range. Hardware and software systems specially built
for the embedded domain can offer low latencies without
tails even for virtualized systems, e.g., jailhouse [10]. We will
not consider those solutions here, as they require adapted or
redesigned software. For our solution, we prefer to use regular
applications on standard Linux systems running on off-the-
shelf hardware.

b) Measurement methodology: MoonGen [11] offers ac-
curate and precise hardware timestamping on widely available
Intel NICs. However, due to hardware limitations, most 10G
NICs cannot timestamp the entire traffic, but a small fraction
of it (approx. 1 kpkt/s). We also demonstrated that creating
reliable timestamp measurements using software packet gen-
erators is challenging [12]. Although the software solution
can timestamp high throughput rates, its expressiveness is
limited. The software timestamping process is subject to
the same effects, such as interrupts, causing latency spikes
on the investigated system. This behavior makes it hard to
attribute latency spikes to either the investigated system or the
load generator. Specialized hardware [13], [14] offers line-
rate high-precision timestamping on multiple 10G Ethernet
ports but requires additional hardware. A study by Primorac
et al. [15] compared MoonGen’s timestamping to various
software and hardware timestamping solutions. They con-
cluded that MoonGen’s hardware timestamping method offers
a similar accuracy and precision compared to a professional
timestamping hardware solution. Further, they recommend
hardware timestamping solutions for investigating latencies in
the µs-range.

Increased requirements regarding latency and reliability de-
mand a reevaluation of measurements and their methodology.
In this work, we aim to create a software stack architecture that
removes interrupts entirely, to provide ultra-reliability com-
bined with low latency. At the same time, we need a powerful
measurement infrastructure and measurement approach to ob-
serve these systems with the necessary accuracy and precision.
Therefore, we present a measurement methodology that can
handle the challenging scenario of high packet throughput
paired with precise and accurate latency measurements.

III. LOW-LATENCY SOFTWARE ARCHITECTURE ON
COMMODITY HARDWARE

This section describes the key factors of our latency-
optimized software architecture. The presented software ar-
chitecture is derived from various tuning guides [2]–[5] and
our own previous work [8]. In this work, we focus our
investigation on reducing the tail latency by decreasing the
number of OS interrupts as much as possible on virtualized
and non-virtualized setups. We have already investigated a
low latency system [8], using all the parameters we present
in the following with the exception of the nohz full option.

Host

P-core 0

Host
OS

VM

P-core 1

VM
OS

P-core 2

Snort

DPDK

NIC

VF

N H

N H

Fig. 1. Software stack architecture

Therefore, we focus our investigation on the nohz full option
and its effect on tail latency.

We only consider real CPU cores or physical cores (p-cores)
for our investigation. Virtual cores (v-cores) are disabled via
the nosmt kernel boot parameter. Disabling is necessary to
avoid the impact of unwanted resource contention between p-
and v-cores.

Figure 1 visualizes the distribution of CPU cores between
VM and host operating system (OS) and between OS and
application. For the given three-core CPU, the host OS uses
P-core 0 exclusively; the VM runs on P-cores 1 and 2, with
P-core 1 executing the VM OS and P-core 2 the investigated
application, e.g., Snort. The isolcpu boot parameter enforces
this isolation by preventing the Linux scheduler from schedul-
ing processes onto specific cores. P-cores 1 and 2 are isolated
from the host OS, P-core 2 is isolated from the VM OS. In
this configuration, neither OS can schedule processes onto P-
core 2, creating the perfect environment for the uninterrupted
execution of our packet processing application.

Our previous work [8] shows that OS interrupts happen
on isolated cores causing latency spikes up to approx. 20 µs.
The boot parameter nohz full disables scheduling interrupts
on the specific cores when they are running only a single
application. Neither the default nor the realtime (RT) kernel
of Debian have the necessary options enabled. Therefore, the
kernel must be recompiled with the configuration options
CONFIG NO HZ FULL and CONFIG RCU NOCB FULL
activated. The read-copy-update (RCU) is a synchronization
mechanism in the Linux kernel, that may cause callbacks han-
dled by interrupts on specific cores. The two boot parameters
rcu nocbs and rcu nocb poll shift in-kernel RCU handling to
different cores, avoiding interrupts.

Devices, such as NICs, can trigger interrupts to signal the
reception of new packets. Setting the irqaffinity to P-core 0
forces them to be handled on the designated OS core. The
packets received via DPDK do not use this mechanism, but
the receiving application polls the NIC directly.

To keep the CPU always in its most reactive state, we
use the options idle and intel idle.max cstate. In addition,
the intel pstate driver is disabled to avoid switching the CPU
into power-saving states (intel pstate). Switching off energy-
saving mechanisms can improve latency beyond the 99.99th
percentile by approx. 10 µs according to Primorac et al. [15].

Linux assumes the time stamp counter (TSC) clock to be
unreliable and regularly checks whether the TSC frequency is

TABLE I
LATENCY OPTIMIZED BOOTPARAMETERS

Parameter Value Description

nosmt1 Disable virtual CPU cores
isolcpus [cores] Isolate from kernel scheduler
nohz full [cores] No timer ticks
rcu nocbs [cores] No RCU callbacks
rcu nocbs poll No RCU callback threads wackup
irqaffinity 0 Interrupts on specific core
idle poll Poll mode when core idle
intel idle.max cstate 0 Limit CPU to c-state
intel pstate disable Power state driver disabled
tsc reliable Rely on TSC without check
mce ignore ce Ignore corrected errors
audit 0 Disable audit messages
nmi watchdog 0 Disable NMI watchdog
skew tick 1 No simultaneous ticks for locks
nosoftlookup Disables logging of backtraces
1Only used on VM host

correct. The option tsc=reliable disables these regular checks
avoiding interrupts [5]. These checks can be disabled safely for
modern Intel core-based microarchitectures, where the TSC is
invariant, i.e., independent of the CPU’s clock frequency [16].
Correcting errors and scanning for errors can cause additional
periodic latency spikes in our measurements, mce=ignore ce
ignores corrected errors. The parameter audit=0 disables the
internal audit subsystem, which causes load on each core,
interrupting programs.

In addition, using nmi watchdog=0 disables another watch-
dog. This watchdog uses the intrastructure of the perf profiling
utility, causing additional overhead for our low-latency system.
The option skew tick=1 shifts the periodic ticks between
different CPU cores. This helps to avoid resource contention
initiated by a tick happening on all CPU cores simultaneously.
For diagnostic purposes, the Linux kernel creates logs for
long-running processes. The parameter nosoftlockup disables
these logs, as we want to avoid the logging overhead for our
investigated application [3].

We compiled a list of our used parameters and the respec-
tive values in Table I. This list briefly introduces additional
measures to lower unwanted interruptions for our packet
processing application. All parameters, except nosmt, are used
for both, the VM and the VM host.

Some settings need to be set on the corresponding machine
during run-time. We set the virtual memory statistics collec-
tor interval to 3600 s for reducing the time of recalculating
those statistics. Intel CAT is used to statically assign the last
level cache (LLC) to cores, reducing delays caused by cache
contention.

We use DPDK to reduce the impact of the Linux Kernel
on networking applications. DPDK shifts the entire packet
processing tasks, including drivers, to the userspace. DPDK’s
drivers poll the NIC for new packets, entirely avoiding inter-
rupts. By preventing these packet reception interrupts, packet
processing happens more predictably. The Linux networking
API (NAPI) tries to reduce the number of interrupts generated
but still relies on them [17]. Therefore, the NAPI itself will

cause interrupts impacting network performance and latency.
To handle network IO on VMs, we use single root IO
virtualization (SR-IOV). SR-IOV splits NICs into independent
virtual functions (VFs) that can be directly bound to VMs.
VFs reduce latency by bypassing the handling of packets by
the VM host.

IV. MEASUREMENT METHODOLOGY

This section presents the main challenges of performing
high-performance latency measurements for packet process-
ing applications. Afterward, we describe our toolchain and
measurement setup for our subsequent case study.

a) Accuracy vs. precision: The quality of latency mea-
surements can be evaluated along two dimensions—accuracy
and precision. For our measurements, we consider accuracy
as a measure to describe how close a measured timestamp
is to the real event. Precision is defined as the statistical
variability between different measurements, i.e., how close
the individual measurements are to each other. Low latency
measurements require high accuracy, as the already low
measurement values reduce the tolerable margin of error. A
low precision measurement system may heavily impact tail
latency measurements through statistical errors introduced by
the measurement system itself. Therefore, high precision is
essential to measure rare events reliably.

b) Software timestamping vs. hardware timestamping:
Packet reception on modern servers happens asynchronously,
i.e., received packets are copied from NIC to RAM and recep-
tion is signaled to the CPU eventually. Software timestamping
can only happen after the reception is announced to the CPU,
causing low accuracy. Without the optimizations mentioned in
Section III, interrupts caused by the OS may eventually delay
the timestamping process of the CPU, causing a low precision.
The previously mentioned problems do not impact hardware
timestamps: packets are timestamped shortly and accurately
after reception on the NIC itself, and they are timestamped
precisely, not impacted by OS interrupts.

c) MoonGen: MoonGen [11] is a packet generator that
supports hardware timestamping without relying on special-
ized and expensive hardware. It uses the hardware timestamp-
ing features of widely deployed Intel 10G and 40G NICs,
such as the X520, X710, or XL710 [18], [19]. The hardware
timestamping feature was integrated into these NICs to provide
precise timestamps for the precision time protocol (PTP). NICs
that implement PTP in hardware do typically not support
timestamping all packets at line rate. Therefore, MoonGen
relies on a sampling process, i.e., only up to 1 kpkt/s are
timestamped. This is a severe limitation, as the sampling would
require extensive measurement times to observe rare latency
events reliably.

To capture tail latencies more effectively, we prefer times-
tamping the entire packet stream. The Intel X550 NIC [20]
offers hardware timestamping of all packets with a resolution
of 12.5 ns. However, the NIC can only timestamp all received
packets, not the transferred packets. To timestamp the outgoing
traffic, we introduce an optical splitter or terminal access point

LoadGen DuTI

J

I

J

Timestamper

J J

Fig. 2. Measurement setup with external timestamper

(TAP) into our measurement setup. An example of such a setup
is shown in Figure 2. In this setup, a separate timestamper
is introduced that taps into the optical fiber connection. This
setup allows timestamping the entire ingoing and outgoing
unidirectional traffic between the two other network nodes.
The optical splitter allows a third interface to tap into an
optical fiber connection and timestamp all packets sent by
another interface. Tapping works passively, therefore, only a
static offset is introduced to our latency measurements due to
slightly longer fibers for the measurement setup. The impact of
the additional fibers can be calculated using the length of the
fiber and the medium propagation speed (approx. 0.72 c [11]).
The passive component does not impact the precision of our
measurement; the impact on accuracy can be corrected if the
fiber lengths are known.

MoonGen supports the timestamping method of X550-based
NICs through a userscript called MoonSniff. We determine the
forwarding latency in three steps. First, we use MoonSniff to
record timestamped pcaps of the ingress and egress interface
of a device under test (DuT). Second, we extract packet
signatures from the pcaps and import them into a PostgreSQL
database [21]. Third, we match the packets from the ingress
pcap to their respective counterpart of the egress pcap. This
kind of matching can be efficiently computed using database
joins. The join operation can be adapted to consider specific
parts of the packet header to identify matching packets. After
the matching packets have been identified, the database can
calculate the forwarding latency using the packets’ times-
tamps. In this database-driven approach, different analyses are
realized as SQL statements. We use PostgreSQL to calculate
maximum and minimum values, percentiles, latency and jitter
histograms, and worst-case latency time series.

V. CASE-STUDY

In the following, we use our measurement methodology to
evaluate our proposed low-latency architecture. We focus our
analysis on the impact of the nohz full option, we investigated
the other optimizations (cf. Section III) in previous work [8],
[9].

A. Setup

The setup, shown in Figure 2, is based on the presented
measurement methodology. Our setup involves three nodes,
the DuT hosting different applications, the load generator
(LoadGen) connected to the DuT via two 10G links, and the
timestamping device (Timestamper) that monitors both links
via optical TAPs. We kept hardware and software identical
to our previous work [8], [9], to generate easily comparable
results. All three nodes use the Intel Xeon D-1518 SoC

(4× 2.2 GHz) and its integrated Intel 10G dual-port X552
NIC. The DuT runs Debian buster (kernel v4.19) with the
self-compiled kernel described in Section III. We use KVM
as hypervisor, DPDK version 18.11 as forwarder, and version
3.0.0-beta of Snort [22].

The test traffic uses constant bit rate (CBR) with 64 B
sized packets. We select UDP to avoid any impact of TCP
congestion control on latency. The payload of the generated
traffic contains an identifier for matching the different packets
for the subsequent latency calculation.

B. Case-study scenario

Our case study investigates the differences between network
applications in three different scenarios: DPDK-l2fwd is the
baseline scenario running the integrated L2 forwarder of
DPDK with as little processing overhead as possible, Snort-
fwd represents a simple application scenario running the Snort
intrusion-detection system without an active ruleset, acting as
forwarder to analyze the additional overhead of Snort, and
Snort-filter with Snort applying the community ruleset for in-
trusion detection. Traffic is not filtered to allow timestamping.
This scenario quantifies the rule application overhead.

Our system is prepared according to the guidelines intro-
duced in Section III. All measurements are performed in a
bare-metal and a virtualized environment.

C. Measurements

We measure the selected scenarios for packet rates between
10 kpkt/s and 120 kpkt/s (using a step width of 10 kpkt/s be-
tween measurements). DPDK-based measurements offer con-
sistent and stable performance even for short measurements.
Therefore, we perform our investigations for a specific packet
rate over a measurement time of 30 s. We report three results
for each scenario: the lowest rate as a common baseline across
all scenarios, the highest rate without packet loss on the DuT
and the lowest rate under overload. For the DPDK forwarder,
the reported rates are 10 kpkt/s, 60 kpkt/s, and 120 kpkt/s,
as even with 1 Mpkt/s, the DPDK forwarder could not be
overloaded.

D. Latency Evaluation

We present our latency figures as high dynamic range
histograms (HDR histograms) [23]. HDR histograms report
the measured latency (y-axis) in relation to their percentiles
(x-axis). The characteristic feature of HDR histograms is their
logarithmic x-axis that highlights the tail latency behavior of
the observed application.

1) DPDK-l2fwd: The DPDK forwarder, shown in Figure 3,
demonstrates the results for three packet rates 10 kpkt/s,
60 kpkt/s, and 120 kpkt/s on HW and VM. Latency steadily
increases from approx. 3 µs to 3.4 µs up to the 99th percentile
across all measurements. After that, there is a sudden, steep
increase in latency up to 4.1 µs. The increase happens earlier
for lower packet rates. It also happens earlier for the virtualized
application, compared to the respective rate on the bare-metal
application.

0 50 90 99 99.9 99.99 99.999 99.9999
0

1

2

3

4

Percentiles [%]

L
at

en
cy

[µ
s]

HW @ 10 kpkt/s VM @ 10 kpkt/s

HW @ 60 kpkt/s VM @ 60 kpkt/s

HW @ 120 kpkt/s VM @ 120 kpkt/s

Fig. 3. Forwarding latency of DPDK forwarder for different packet rates on
bare-metal (HW) and virtualized (VM) scenario

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
0

1

2

3

4

Measurement time [s]

L
at

en
cy

[µ
s]

HW @ 10 kpkt/s

Fig. 4. 5000 worst-case latency events of the DPDK forwarder (HW)
measured at a packet rate of 10 kpkt/s

To analyze the latency events further, Figure 4 shows the
5000 worst-case events for the measurement with 10 kpkt/s
over the measurement time. We omitted the plots for the other
packet rates due to their high similarity. We exclude the initial
15 s from each measurement because we want to measure the
steady-state behavior of our application without the effects
caused by the packet generator start-up. Figure 4 shows two
levels of latency, the first level at approx. 3.4 µs the second
level at approx. 4.1 µs. In between the two levels, there is
a gap with very few events. This almost empty gap is the
reason for the steep increase in latency shown in Figure 3.
The latency level at 4.1 µs shows a regular pattern. With all
interrupts disabled, we assume the cause for the regular latency
increase to be internal to the forwarding application. However,
due to the low impact on latency, we did not investigate this
phenomenon any further.

2) Snort-forwarding: Figure 5 shows the latency perfor-
mance of the Snort forwarder. The Snort forwarder, on HW
and VM, offers a median forwarding latency of approx.
14 µs. Up to a packet rate of 80 kpkt/s, the application is not
overloaded. For the HW scenario, the worst-case latency is
approx. 46 µs, and approx. 20 µs for the VM scenario.

Increasing the packet rates even further leads to an over-
loaded system; packet loss occurs and latency rises signifi-
cantly to a level of 30 ms (HW) and 3 ms (VM). The reason for
the difference between HW and VM scenarios is the smaller
buffer size for the virtualized setup. There, the buffer is split

0 50 90 99 99.9 99.99 99.999 99.9999

101

103

105

107

Percentiles [%]

L
at

en
cy

[µ
s]

HW @ 10 kpkt/s VM @ 10 kpkt/s

HW @ 80 kpkt/s VM @ 80 kpkt/s

HW @ 90 kpkt/s VM @ 90 kpkt/s

Fig. 5. Forwarding latency of Snort forwarder for different packet rates on
bare-metal (HW) and virtualized (VM) scenario

0 50 90 99 99.9 99.99 99.999 99.9999

101

103

105

107

Percentiles [%]
L

at
en

cy
[µ
s]

HW @ 10 kpkt/s VM @ 10 kpkt/s

HW @ 60 kpkt/s VM @ 70 kpkt/s

HW @ 70 kpkt/s VM @ 80 kpkt/s

Fig. 6. Forwarding latency of DPDK forwarder for different packet rates on
bare-metal (HW) and virtualized (VM) scenario

among multiple VFs leading to the observed latency decline.
3) Snort-filtering: The latency of the Snort filtering appli-

cation is displayed in Figure 6. Due to the more complex
processing, the median forwarding latency rises to approx.
17 µs and the application becomes overloaded for lower packet
rates. The worst-case latency of the bare-metal forwarder
rises to approx. 20 µs for packet rates up to 60 kpkt/s. For
the virtualized forwarder, the worst-case latency increases
to approx. 76 µs for packet rates up to 70 kpkt/s. In this
scenario, the virtualized forwarder works more efficiently,
leading to a higher non-overloaded packet rate than its bare-
metal counterpart. However, the higher tail latency for the VM
scenario and beginning packet loss indicates that the VM setup
is on the brink of overloading at the given packet rate. If the
packet rate is increased on both systems, respectively, latency
again rises significantly to a level of 30 ms (HW) and 3 ms
(VM).

E. Impact of nohz full

In previous work [9], we performed measurements with an
identical setup and the same applications running a Linux RT
kernel. Figure 7 shows the latency improvements that could
be achieved when switching from the RT-based to a NOHZ-
based kernel investigated in this paper. Like the HDR plots of
our previous measurements, the x-axis lists the percentiles, the
y-axis the relative latency improvement of the NOHZ kernel
compared to the RT kernel. At the horizontal 100-%-line, both

0 50 90 99 99.9 99.99 99.999 99.9999
0

100

200

300

400

500

Percentiles [%]

R
el

at
iv

e
di

ff
er

en
ce

[%
]

DPDK-fwd HW @ 10 kpkt/s DPDK-fwd VM @ 10 kpkt/s

Snort-filter HW @ 10 kpkt/s Snort-filter VM @ 10 kpkt/s

Snort-fwd HW @ 90 kpkt/s Snort-fwd VM @ 90 kpkt/s

Fig. 7. Relative improvement between RT-based and NOHZ-based kernel for
selected scenarios

kernels forward packets with the same latency. Above 100 %
the NOHZ kernel offers lower latency, below the RT kernel.

To compare the results, we selected measurements repre-
senting three distinct scenarios. In the first scenario, the DPDK
forwarder (HW), we see almost the same latency up to the 99th
percentile. For higher percentiles, the latency improves by up
to 320 %, i.e., the latency of the NOHZ kernel drops to roughly
1/3 compared to the RT kernel. In the VM scenario, the
latency of the NOHZ kernel improves across all investigated
percentiles. Up to the 99th percentile, the latency improvement
remains below 4 %, however, the improvements rise to over
450 % for the higher percentiles. Our previous measurements
can help explain the better performance of the NOHZ kernel.
On the NOHZ kernel, we measure only minimal overhead for
the virtualized scenarios. On the RT kernel, we continuously
measured higher latencies in virtualized scenarios. Without
this virtualization overhead, the latency figures for the NOHZ
kernel are consistently lower than their counterparts measured
on the RT kernel.

The second scenario investigates the latency differences for
the Snort filter. In the non-virtualized scenario, the latency
improvements start to show at the 90th percentile and rise
to almost 200 %, i.e., the latency is approximately halved.
For higher percentiles, the latency improvements drop to a
level of 190 %. In the VM scenario, latency improvements are
more significant. The improvements reach approx. 400 % at the
99.99th percentile and drop to 350 % for higher percentiles.
When comparing the virtualized and the non-virtualized re-
sults, the improvements for the virtualized scenario are visible
across all investigated percentiles. These improvements result
from the lower virtualization overhead of the NOHZ kernel
compared to the RT kernel.

The third scenario compares the latency of the Snort for-
warder in an overload scenario. Here, the differences between
the RT and the NOHZ kernel are lower than 3 % for any given
percentile for either VM or HW. In this case, the NOHZ kernel
offers hardly any improvement over the RT kernel.

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
10−2

10−1

100

Measurement time [s]

L
at

en
cy

[m
s]

Fig. 8. 5000 worst-case latency events of the Snort forwarder (HW) measured
at a packet rate of 10 kpkt/s

F. Latency spikes

The previous section demonstrated significant latency im-
provements that can be achieved using our optimization tech-
niques. Especially the NOHZ kernel prevents any interrupts on
specific CPU cores and offers consistently lower latency than
the already optimized RT kernel. However, we noticed very
rare, but at the same time, highly impactful interrupts in some
of our measurements. Figure 8 presents the 5000 worst-case
latency events that happened over a single measurement run.
There, we measure an overall worst-case latency above 1 ms.
A closer investigation identified the TLB shootdown interrupt
as the root cause for this latency spike.

The TLB shootdowns are mentioned by Rigtorp [4] as a
potential source of latency and jitter. The transition lookaside
buffer (TLB) is a cache that accelerates virtual memory
address translation by caching previous translation results.
Certain events, such as memory unmapping or changing
memory access restrictions, require a flush of the TLB for
all CPU cores. This flush is realized as interrupt and causes
the observed latency spikes.

Rigtorp [4] mentions several cases where the usage of
RAM is reorganized, causing TLB shootdowns. Releasing
memory from an application back to the kernel can cause
TLB shootdowns and should, therefore, be avoided. He further
recommends not using other techniques such as transparent
hugepages, memory compaction, kernel samepage merging,
page migration between different NUMA nodes, or file-backed
writable memory mappings.

Our measurements show that (re-)starting our forwarding
application after each measurement run causes TLB shoot-
downs. We can limit the number of TLB shootdowns by
starting the forwarding applications only once at the start of
our experiment. We do not restart our forwarding application
between the individual measurement runs. In that case, the
TLB shootdowns happen in the first few minutes during
application runtime. After that, all subsequent measurements
happen without any further interrupts due to TLB shootdowns.
In this paper, we only present the measurements after the initial
TLB shootdowns.

VI. REPRODUCIBILITY

We consider reproducibility a key factor of experimental
research. Therefore, we created a github repository [24] and
a website [25] that provide all artifacts necessary to repro-
duce the presented measurements: the experiment and plotting
scripts, and the pcap files that were used to create the plots
of this paper. The investigated software components such as
DPDK or Snort are available publicly.

VII. CONCLUSION

Measuring the tail latency of packet processing systems is
essential. Despite their scarcity, the absolute value of these tail
latency events may render a packet processing system unfit
for critical URLLC-driven services such as industrial control
systems. Our paper presents a methodology to measure these
tail latencies and a software stack to lower the tail latencies
of packet processing applications.

Our measurement methodology relies on hardware times-
tamping to accurately and precisely determine latencies, which
cannot be achieved using software timestamping. For the
first time, we present a function for MoonGen that allows
timestamping all, rather than a few selected packets during
experiments. Our entire measurement setup relies on free,
open-source software and affordable off-the-shelf hardware.
The presented low-latency software stack utilizes various
techniques applied to typical Linux server systems to pro-
vide consistent low-latency packet processing. Our case study
demonstrates that a non-overloaded Snort IPS can achieve a
consistent forwarding latency below 25 µs.

A particular focus of our case study is the investigation of
the NOHZ kernel and its impact on latency. A direct com-
parison between the NOHZ kernel and an already optimized
RT kernel shows a negligible impact on the median latency.
However, the impact on tail latency is significant, with tail-
latency reductions to as low as roughly 1/5 of their original
value on the RT kernel. We still observe sporadic latency
events that may cause spikes in the ms-range. However, these
events only happen within minutes after the start-up of an
application. Afterward, this kind of interrupts are not observed
and latency remains at consistently low values.

Our investigations uncoverd regular patterns (cf. Figure 4)
that we cannot explain yet. We plan to do further measure-
ments to determine the root cause of the observed pattern.

ACKNOWLEDGMENT

The German Research Foundation funded our research
partially (Modanet, grant no. CA595/11-1). Additionally, we
received funding by the Bavarian Ministry of Economic Af-
fairs, Regional Development and Energy as part of the project
6G Future Lab Bavaria.

REFERENCES

[1] NGMN Alliance, “5G E2E Technology to Support Verticals URLLC
Requirements,” 2019.

[2] AMD, “Performance Tuning Guidelines for Low Latency Response on
AMD EPYC-Based Servers Application Note,” Jun. 2018, Last accessed:
Sept. 22, 2021. [Online]. Available: http://developer.amd.com/wp-
content/resources/56263-Performance-Tuning-Guidelines-PUB.pdf

[3] J. Mario and J. Eder, “Low Latency Performance Tuning for Red
Hat Enterprise Linux 7,” Nov. 2017, Last accessed: Sept. 22, 2021.
[Online]. Available: https://access.redhat.com/sites/default/files/attach-
ments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf

[4] E. Rigtorp, “Low latency tuning guide,” Mar. 2020, Last accessed:
Sept. 22, 2021. [Online]. Available: https://rigtorp.se/low-latency-guide/

[5] M. Beierl, “Nfv-kvm-tuning,” Last accessed: Sept. 22,
2021. [Online]. Available: https://wiki.opnfv.org/pages/viewpage.ac-
tion?pageId=2926179

[6] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble, “Tales of the
Tail: Hardware, OS, and Application-level Sources of Tail Latency,” in
Proceedings of the ACM Symposium on Cloud Computing, 2014, pp.
1–14.

[7] D. Popescu, N. Zilberman, and A. Moore, “Characterizing the impact
of network latency on cloud-based applications performance,” 2017.

[8] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G QoS: Impact
of Security Functions on Latency,” in NOMS 2020 - IEEE/IFIP
Network Operations and Management Symposium, Budapest, Hungary,
April 20-24, 2020. IEEE, 2020, pp. 1–9. [Online]. Available:
https://doi.org/10.1109/NOMS47738.2020.9110422

[9] ——, “5G URLLC: A Case Study on Low-Latency Intrusion
Prevention,” IEEE Commun. Mag., vol. 58, no. 10, pp. 35–41, 2020.
[Online]. Available: https://doi.org/10.1109/MCOM.001.2000467

[10] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum, no
VM exits!(almost),” arXiv preprint arXiv:1705.06932, 2017.

[11] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Proceedings
of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015, K. Cho, K. Fukuda, V. S. Pai, and
N. Spring, Eds. ACM, 2015, pp. 275–287. [Online]. Available:
https://doi.org/10.1145/2815675.2815692

[12] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and
G. Carle, “Mind the Gap - A Comparison of Software Packet
Generators,” in ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS 2017, Beijing, China, May 18-19,
2017. IEEE Computer Society, 2017, pp. 191–203. [Online]. Available:
https://doi.org/10.1109/ANCS.2017.32

[13] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, G. A. Covington,
M. Bruyere, N. McKeown, N. Feamster, B. Felderman, M. Blott,
A. W. Moore, and P. Owezarski, “OSNT: open source network tester,”
IEEE Netw., vol. 28, no. 5, pp. 6–12, 2014. [Online]. Available:
https://doi.org/10.1109/MNET.2014.6915433

[14] Silicom, “Datasheet PE310G4TSF4I71,” Last accessed: Sept.
22, 2021. [Online]. Available: https://www.silicom-usa.com/wp-
content/uploads/2016/08/PE310G4TSF4I71-Programmable-
Application-Acceleration-10G.pdf

[15] M. Primorac, E. Bugnion, and K. J. Argyraki, “How to measure the
killer microsecond,” Comput. Commun. Rev., vol. 47, no. 5, pp. 61–66,
2017. [Online]. Available: https://doi.org/10.1145/3155055.3155065

[16] Intel 64 and IA-32 Architectures Software Developers Manual, Intel, 6
2021.

[17] J. H. Salim, “When napi comes to town,” in Linux 2005 Conf, 2005.
[18] Intel 82599 10 GbE Controller - Datasheet, Intel, 11 2019, rev. 3.4.
[19] Intel Ethernet Controller X710/ XXV710/XL710 Datasheet, Intel, 8 2019,

rev. 3.65.
[20] Intel Ethernet Controller X550 - Datasheet, Intel, 11 2018, rev. 2.3.
[21] PostgreSQL Global Development Group, “PostgreSQL,” Jul 2021.

[Online]. Available: https://www.postgresql.org/
[22] “Snort - Network Intrusion Detection and Prevention System,” Last

accessed: Sept. 22, 2021. [Online]. Available: https://www.snort.org/
[23] G. Tene, “HdrHistogram: A High Dynamic Range Histogram,” Last

accessed: Sept. 22, 2021. [Online]. Available: http://hdrhistogram.org/
[24] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “Reproducing

Evaluation Results,” Last accessed: Sept. 22, 2021. [Online]. Available:
https://github.com/gallenmu/hipnet21

[25] ——, “Reproducing Evaluation Results,” Last accessed: Sept. 22, 2021.
[Online]. Available: https://gallenmu.github.io/hipnet21/

