
Benchmarking Networked Control Systems
Sebastian Gallenmüller∗, Stephan Günther∗, Maurice Leclaire∗, Samuele Zoppi†,

Fabio Molinari‡, Richard Schöffauer§, Wolfgang Kellerer†, Georg Carle∗
∗Chair of Network Architectures and Services, Department of Informatics, TUM, Germany

†Chair of Communication Networks, Department of Electrical and Computer Engineering, TUM, Germany
‡Control Systems Group, Technische Universität Berlin, Germany

§Heisenberg Communications and Information Theory Group, Freie Universität Berlin, Germany
Email: {sebastian.gallenmueller, guenther, maurice.leclaire, samuele.zoppi, wolfgang.kellerer, carle}@tum.de,

molinari@tu-berlin.de, schoeffauer@zedat.fu-berlin.de

Abstract—Smartification of devices and ever-increasing con-
nectivity are major factors paving the way towards the creation
of networked control systems (NCS). Traditionally, both domains
involved in an NCS, network and control, are considered sep-
arately. Towards a novel methodology for benchmarking such
systems, we propose a series of key performance indicators (KPIs)
that are based on well-established foundations of both worlds.
These KPIs form our framework for the development of an NCS
benchmark. The majority of KPIs, particularly those from the
network domain, are applicable to any type of NCS. We are
currently implementing an evaluation platform based on Lego
Mindstorms to demonstrate and apply our framework. Both the
benchmarking framework and our platform are designed with
high affordability and easy reproducibility in mind.

We plan to release our source code and construction manuals
to motivate others to recreate our benchmark.

Index Terms—networked control system, benchmarking, Lego
Mindstorms

I. INTRODUCTION

In recent years, many devices such as phones, light bulbs,
and other home appliances were equipped with microcon-
trollers transforming them into smart devices or cyber-physical
systems (CPS). A CPS can roughly be split into two com-
ponents: the actual physical system or plant, and a micro-
controller managing this plant. If the microcontroller controls
a process on the plant, both components form a control
system. Traditionally, controller and plant are integrated into
the same device forming a robust, self-contained control
system. Coordination of multiple CPSes requires an exchange
of information between these independent systems, leading to
a network of CPSes or a networked control system (NCS).

An NCS requires the expertise of formerly separated do-
mains, namely the control domain and the network domain.
Both disciplines have established their own procedures and
methodologies when it comes to comparing and rating the
performance of their systems. In this paper, we provide a
holistic approach towards the development of a benchmarking
framework: we describe a common methodology for bench-
marking the control as well as the network aspects of an
NCS. We specify a common scenario to benchmark an NCS
that defines the relevant key performance indicators (KPIs) to
determine the quality of the control process and the network
through repeatable experiments. In addition, we describe the
application of this benchmark on an example platform. To

that end, we currently develop an NCS based on the widely
used Lego Mindstorms which we want to evaluate using
our benchmark. We plan to release construction manuals and
software as open source to establish a low-cost benchmarking
framework for NCSes.

The remainder of the paper is organized as follows: we
investigate relevant foundations for benchmarking in the con-
trol and network domain in Section II, and propose a uni-
fying benchmark methodology for NCSes in Section III. In
Section IV we describe our own open-source benchmarking
framework. Section V concludes the paper.

II. RELATED WORK

The problem of modeling the effects and constraints intro-
duced by the network on a control system is well studied in
literature [1]–[3]. A traditional, control-oriented approach to
the problem is to model the network as a source of random
delays and dropouts [1], [2]. A more detailed survey on the
constraints introduced by the network on control systems
is presented by Zhang et al. [3], together with practical
applications arising from NCSes.

Besides modeling and summarizing the effects of the
network on control systems, the problem has been studied
with several experimental case studies on benchmark control
systems. In particular, a variety of measurements has been
conducted for inverted pendulums [4]–[6] (which, according
to Boubaker [7], have been used since the 1950s as a control
benchmark for its simple structure but nonlinear dynamics)
and batch reactors [8]–[10]. All these implementations perform
real-world measurements of standard NCSes to proof the
validity of their contributions. However, they make use of
specific hardware and software solutions, which, together with
different and scattered measurement scenarios, introduce a
major obstacle for reproducibility. For this reason, different
techniques are difficult to compare in a single, repeatable NCS
benchmark scenario.

An exemplary definition of the elements needed to en-
able the benchmarking of different NCSes is presented by
Niemueller et al. [11]. Here, the KPIs and context of an
industrial CPS are identified and presented in a holistic bench-
mark scenario. However, this benchmark is limited to high-
level multi-robot systems and does not cover the low-level
interconnections of closed-loop NCSes.



Network

Actuator

Plant

Sensor

Controller

Fig. 1. Control loop of an NCS

Similarly, there exist standard benchmarks exclusively fo-
cusing on the network domain such as RFC 2544 [12] or
similar benchmarks [13], [14]. Due to technical advance, the
benchmarks need to be extended to reflect this progress [15].
However, these benchmarks still offer only limited insight into
the behavior of applications, such as controllers which utilize
those networks.

III. FRAMEWORK FOR REPRODUCIBLE NCS
BENCHMARKING

A simple model of an NCS is shown in Figure 1. This
control system involves a single controller and a single plant
visualizing the typical flow of information in a control loop–
additional information flows, e.g. configuration of the sensor,
are neglected. Sensor and actuator of the plant are connected
to the controller over an arbitrary wired or wireless network.
We intentionally decided on the most basic system consist-
ing of the minimum number of components involved, thus
powerful enough to demonstrate our benchmarking framework
while minimizing the chance of misconfiguration and simplify
reproducing experiments.

a) Reproducibility: according to ACM [16], is the recre-
ation of experimental results that can be achieved on three
different levels. Experiments are considered repeatable if the
same people can recreate their results, replicable if other
persons can recreate results using the same setup, and finally
reproducible if other researchers can recreate results using
their own equipment. By defining the experiment conditions
and releasing software as well as construction manuals as
open-source, this paper aids the process towards reproducible
experiments.

b) Benchmarking framework: Our framework defines a
series of repeatable experiments. In each experiment, a set
of values is measured. In the context of our benchmark, an
experiment can be performed by measuring a real-world setup,
or by obtaining values from a simulation or emulation. A
whole series of different experiments might be necessary to
achieve the expected behavior of the NCS. The process of
identifying these conditions we call challenge. The results of
the experiments depend on the conditions of the experiment
during the time of execution. An entire set of conditions
relevant to an experiment defines a scenario, which includes
the set of parameters that are relevant for evaluation. To make
the experiments and ultimately the benchmarks repeatable,
replicable and reproducible, all relevant information of a
scenario has to be documented in a scenario description
specifying the

L1

L2

L3

L1
PHY

L2
MAC

L3
Network

L4
Transport

L7 App
Controller

L1
PHY

L2
MAC

L3
Network

L4
Link

L7 App
Device

Channel state
(e.g. distance, SNR)

Network state
(e.g. topology, congestion)

L1 KPIs
channel quality

L4 KPIs → Quality-of-Transport

L7 KPIs → Quality-of-Control

Fig. 2. KPIs on different layers of the ISO / OSI stack

1) application software with a specific controller or plant,
2) network stack including the various protocols and tech-

nologies,
3) network topology describing the connectivity between

the nodes of the network,
4) physical conditions such as distance of nodes, model and

parameters of the channel model and noise floor (SNR),
5) interference with other nodes in the network or with

external transmitters outside the network (SINR), and
6) hardware of the controller, the network, and plant.
The outcome of an experiment is a set of measured values

and parameters. Utilizing these results we derive KPIs describ-
ing the quality of the whole system or of subcomponents of
the system in a repeatable way. As the CPS and the network
require their own KPIs, we decided to split these KPIs along
the layers defined by the ISO / OSI model with the control
system KPIs on Layer 7 (see Section III-B) and the network
KPIs on Layers 4 to 1 (see Section III-A). Figure 2 depicts
the vantage points of our measurements on the left side. The
layers are investigated separately due to different network
behavior. We consider our benchmark to be network-agnostic,
i. e., we want to be able to apply it using different network
technologies such as wireless LAN (IEEE 802.11), low power
wireless networks (IEEE 802.15.4), Ethernet (IEEE 802.3) and
others. Therefore, we specify only the interface to the highest
layer we want to investigate. For instance, we specify using
a UDP socket when investigating the network starting at the
transport layer.

c) Challenge: The challenge is central to our benchmark-
ing framework to identify scenarios where the NCS can oper-
ate successfully. When designing an NCS one usually expects
a certain service level from the whole system, i. e., the quality
of control. This quality of control can be expressed using
Layer 7 KPIs. Our benchmarking framework can now help
to find scenarios, i. e., a set of conditions that is able to fulfill
these requirements. Based on certain desired KPIs, it may be
possible to directly infer the required quality of the network
KPIs, e. g. the maximum allowable delay. This reduces the set
of possible scenarios for testing. In other cases, the network
KPIs may not be directly inferable from the Layer 7 KPIs. For
these cases, scenarios can only be determined experimentally
by gradually modifying the conditions of the scenarios.

In the following, Subsection III-A describes KPIs to char-
acterize network links, such as packet rate, loss rate, delay,



TABLE I
TABLE OF KEY PERFORMANCE INDICATORS

Sym Description

r packet or message rate
R data rate [bit/s]
ε packet loss rate
δ one-way delay from source to destination
δs serialization delay
δp propagation delay
τn inter-packet time between n-th packet and its predecessor
In jitter of n-th packet and predecessor
P bandwidth-delay product expressed in number of packets

inter-packet time, jitter, and bandwidth delay product. Sub-
section III-A focuses on the control system, presenting two
different sets of KPIs: a set of generic KPIs applicable to a
wide range of different control systems and set of specific
KPIs adapted to our specific device under test–an inverted
pendulum.

A. Network Domain

1) Packet rate: The packet rate r denotes the number of
packets being transmitted or received. Since the maximum
packet rate is limited by per-packet overheads such as process-
ing time and medium access, it is often more important than
the actual data rate, which in addition depends on the packet
size. For scenario specification and analysis, the following
issues are relevant:

First, the average rate at which packets are transmitted at
the source node may differ from the rate packets are received
due to losses. When referring to the rate at the destination,
the term goodput may be used describing the gross data rate
minus actual losses in the network.

Second, the rate may differ depending on the layer of the
ISO / OSI model that is being considered: multiple messages
transmitted by a controller may be aggregated at the transport
layer and sent as a single frame on the link layer. Conversely, a
large message may be split into multiple packets at the network
layer and transmitted as multiple individual frames while being
reassembled at the destination’s network layer. It is therefore
important to clearly state which layer one is referring to.

There exist naming conventions for the protocol data unit
of different layers, e. g. frame on the link layer and packet
on the network layer. On the transport layer, there is no
general term as it depends on the specific implementation,
e. g. datagram-oriented protocols such as UDP versus stream-
oriented protocols such as TCP. Data units at the application
layer can be referred to as messages. Unfortunately, there is
no common term on the physical layer except physical layer
protocol data unit (PPDU), which refers to transmission on
the physical layer including any signaling overhead.

These terms may be used to implicitly state the layer under
consideration, but it is not always practical to do so. However,
we encourage to clearly state the layer under consideration.

2) Loss rate: The loss rate denotes the fraction of packets
transmitted but not received. Given the number of packets p

that were successfully received and the number q of missed
packets, the loss rate is given as ε = q/(p+q). Besides the
mere rate, the pattern in which the losses occur should also be
described. The Gilbert-Elliot model [17] is able to characterize
such lossy wireless channels.

In practice, the loss rate can most easily be determined
by the receiver using sequence numbers in each transmitted
packet. In case of unreliable physical links such as wireless
networks, those sequence numbers are part of the MAC header.
Sequence numbers are inserted by the transmitter. When a
receiver detects a gap in the sequence number of subsequent
packets, it can determine the exact number of missed packets
in between. Note that this demands that no re-ordering occurs
after sequence numbers where chosen.

3) Delay: The term delay commonly refers to the total
time needed to transmit (medium access plus serialization) a
packet and forward it to the destination (propagation delay plus
processing and buffering delays at intermediate nodes). It is
often referred to as one-way delay in order to avoid confusion
with the round trip time (RTT). The latter also includes the
delay for an answer from the destination back to the source,
which may take a different path and thus potentially differs
significantly from the delay from source to destination.

The time for medium access significantly differs depending
on the actual implementation of the medium access and
physical layer: while it is in the single-digit microsecond range
and rather constant for switched, full-duplex Gigabit Ethernet
networks [18], it is orders of magnitude larger in wireless net-
works due the complex medium access strategy and the shared
nature of the medium [19]. If multiple transmitters contend for
medium access, both the delay and its standard deviation may
well be in the range of milliseconds for individual nodes.

Timestamps can be acquired from the hardware of network
interfaces for transmitted or received packets. To timestamp
events in software, clock counters of CPUs can be used,
such as the TSC on x86-CPUs. For synchronizing timestamps
across different devices, clocks need to be synchronized for
instance by utilizing protocols such as PTP. These protocols
offer higher accuracy if the synchronization is done via a wired
connection. Therefore, an additional wired connection beside
a wireless connection is beneficial during the execution of the
benchmark.

The serialization delay can be approximated1 by the frame
size L and the bit rate R once control over the medium is
gained, i. e., δs = L/R. For high-speed connections such as
Gigabit Ethernet, it may be neglected.

The propagation delay depends on the distance d a signal
has to travel, the speed of light c, and a medium-specific
constant ν: δp = d/νc. The constant ν is approximately one
for wireless transmissions in air and vacuum, roughly 2/3 for
copper cables, and slightly larger in fibers. For transmission
in local networks, the propagation delay can obviously be

1Wireless networks, for instance, prepend signaling information on the
physical layer at a different data rate during the physical layer convergence
procedure. Therefore, the relation between frame length and bit rate is only
an approximation.



Src DstNetwork

packet n
packet n− 1

τ out
n τ in

n

Fig. 3. Illustration of inter-packet times and jitter. Packets are transmitted by
a source in regular intervals τoutn = τoutn−1. Variable delays in the network
result in a different inter-packet time τ inn at the destination.

neglected, but may be the dominating part for long range or
satellite transmissions.

Finally, processing and buffering delays differ between
forwarding nodes along the path from source to destination and
on the current load of those nodes. In general, those delays are
difficult to quantize and particularly hard to measure without
direct access to the respective node.

Whether or not individual summands of the delay may be
neglected depends on the demands of the NCS. Even for
our example of an inverted pendulum the delay requirements
heavily depend on the used control algorithm.

Given synchronized clocks at source and destination, the
times toutn when the n-th packet is transmitted and tinn when
it is received are known. The one-way delay is then given
as δn = tinn − toutn . However, the transmit and receive times
are still subject to noise due to processing delays on both
sides. Depending on the required time resolution, it can be a
challenging task to determine the delay even if both source
and destination are fully controllable.

4) Inter-packet time: The inter-packet time (IPT) at the
source between the n-th packet and its predecessor is given
as τ outn = toutn − toutn−1, assuming that messages are transmitted
as individual packets and neglecting processing delays and
medium access; that value should directly correlate to the time
between two individual messages sent by an application. The
IPT at the destination, however, is influenced by any variable
effects contributing to the total delay. This effect is shown in
Figure 3.

5) Jitter: Jitter is defined as the difference between the IPTs
at the source and destination for a specific pair of packets. For
the n-th packet and its predecessor we therefore obtain

In = τ inn − τ outn = tinn − tinn−1 − (toutn − toutn−1). (1)

If the jitter is subject to significant short-time changes, it may
interfere with connection-oriented transport protocols such as
TCP [20].

Note that jitter may also be negative: if packets are buffered
in the network and then released as burst with smaller inter-
packet time than at the source, we have that τ inn < τ outn

yielding In < 0. We further note that–in the absence of losses–
the long-term averages of the IPT at source and destination
must be the same. If this would not hold, the network would
buffer an ever-increasing amount of packets over time.

6) Bandwidth-delay product: The bandwidth-delay product
commonly expresses the amount of data in flight between

source and destination, and is thus expressed in bit. However,
it may also be used to quantify the number of packets currently
in flight between source and destination. For the scope of
an NCS, the latter is probably the more interesting metric
as packets containing sensor data or control feedback are
expected to be small and of more or less constant size.
Furthermore, sensor data that arrives too late at the controller
is commonly considered as loss, which is why aggregation of
multiple sensor values in single packets is expected to be of
little help.

To that end, the bandwidth-delay product expressed as
packets concurrently in flight from source to destination is
given by P = δr. We expect that simple metric to be one of
the most important from a controller’s perspective.

B. Control Domain

Analyzing the interplay between system robustness and
performance is a key concern for control designers. Each con-
troller is designed according to a model of the system. A model
can be more or less accurate, e. g. in the case of the inverted
pendulum, many control strategies are designed according to
a linearized model around the equilibrium position. Thus,
variation of parameters can directly affect the stability of the
system. Robustness is then defined as the ability of the closed-
loop system to be insensitive to component variations [21]. A
quantitative measure of the system robustness is essential.

Besides guaranteeing the stability of the controlled system,
a designed control strategy is also evaluated based on some
performance indicators measuring the controller effectiveness
[22], [23]. The system’s ability to reject disturbances, to keep
the control variables bounded within some thresholds, to get
faster to the equilibrium, or to guarantee a small error after the
transient phase are some examples of performance measures.
The reader can easily deduce that robustness and performance
indicators are closely related.

To the best of our knowledge, most prior suggestions
for benchmarking CPSes take a high-level approach. Indeed
this does seem appropriate for more complex systems where
performance cannot easily be tied to specific system states
(time-dependent variables). On the other hand, this limits their
usability for more traditional CPSes where performance is
objectively definable. We try to solve this conflict by taking
a two-stage approach defining the standard quality of control
techniques. We define high-level or generic KPIs applicable
to a variety of CPSes. Additionally, we describe KPIs specific
to our use case–the inverted pendulum.

1) Generic KPIs: We assume there exists an identifiable
(analytic) system state which has to be steered according to
some reference. Let this reference be equal to zero and let the
system be inline with it. Then we can list the following KPIs:

• The maximal disturbance that may occur such that the
state can still be steered back to the reference.

• The time it takes to steer the state back to reference
after applying a specific disturbance. Here we define an
environment ±ε around the reference. The reference is



considered reached when we can be sure to stay within
that environment. Different definitions are possible.

• The energy needed to steer the system back to reference
after a specific disturbance. Here, energy refers to the
integral of the state trajectory (or some related trajectory)
over time.

While these KPIs are defined with respect to disturbances, one
can also use KPIs that describe the ability of the system to
follow a change in reference. Here, we can list:

• The difference that remains between state and reference
when the system is exposed to a specific reference, e. g.
linearly growing as most systems exhibit an integrating
behavior and thus do not show any difference when only
exposed to a jump in the reference.

• The relative maximum value that is reached by the
state trajectory when trying to follow a specific jump in
reference.

• The time needed to steer the system to a new reference
after a jump to that new reference.

• The energy needed to steer the system to a new reference
after a jump to that new reference. Again we refer to some
kind of integral over time.

2) Specific KPIs: With respect to the example of the in-
verted pendulum control problem, we can define the following
KPIs specific to the inverted pendulum or similar systems:

• θ0m: the maximum initial angle of the pendulum (with
zero initial speed) from which the controlled system can
get to asymptotic stability.

• v0m: the maximum initial longitudinal speed (with initial
null angle) that allows the controlled system to reach
asymptotic stability.

Control performance can be evaluated by starting from
different initial conditions chosen from a given set X0. Ac-
cordingly, ∀x0i ∈ X0, the following indicators are stated:

• θmax(x
0
i ): starting from x0i , this indicator measures the

maximum value assumed by the pendulum angle.
• umax(x

0
i ): starting from x0i , this indicator measures the

maximum value assumed by the control action, e. g. DC
motor injected current.

• Tmax(x
0
i ): starting from x0i , this indicator measures the

oscillation period, defined as the maximum time differ-
ence between two consecutive oscillation peaks of θ.

Finally, a robustness indicator which measures the ability
of the controlled system to react to some disturbances is
presented here:

• du,max: maximum allowed impulse disturbance on the
control variable.

All these KPIs do theoretically depend on the communica-
tion delay between controller and plant. However, due to the
control loop, it is likely that in most cases the dependencies
are non-linear, leaving us only with the option of simulation
or experimentation.

Controller AP AP Plant

unreliable
wireless channel

Fig. 4. Test setup for a cyber-physical network

C. Reproducibility vs. Non-Determinism

Certain KPIs might behave non-deterministically, such as
the delay or packet loss. Reporting only an aggregated num-
ber, such as average or median, as a KPI does not suffice
to enable repeatable experiments. Therefore, we propose to
additionally report more expressive data such as entire logs
or histograms allowing to model repeatable behavior. Another
important feature to explain the CPS KPIs are disturbances
or interferences. These should also be quantified and reported
accordingly to aid the process of understanding and repeating
the observed behavior of the CPS.

IV. EVALUATION PLATFORM

Our goal for the evaluation platform is a simple, low-cost
platform which can easily be extended to allow others to repli-
cate our setup and repeat our experiments. We opted for a well-
known NCS setup: an inverted pendulum as shown in Figure 4.
The inverted pendulum is built from Lego Mindstorms which
is widely available, reasonably priced, and easily extensible
either in software or in hardware.

A scenario description (see Section III) presents our setup:
The OS of the inverted pendulum is the open-source Debian-
based ev3dev2. Both applications running on the inverted
pendulum and the controller are written in Python, an easy-
to-learn scripting language. Additionally, the controller ap-
plication is portable, i. e., the controller supports multiple
OSes. The network stacks involved are the network stacks
of Linux / ev3dev for the inverted pendulum and the net-
work stack of the OS on the controller. Our applications
use UDP sockets for communication. The inverted pendulum
utilizes Mindstorm’s USB interface for network access. From
a hardware perspective, any network is supported as long as
there are USB adapters available. Depending on the hardware
equipment, arbitrary network topologies are supported. The
physical conditions should be simple enough to be replicated
by interested parties. Therefore, we use a distance of up to
a few meters between controller and plant. As interference
is hard to recreate especially for wireless networks without
specialized equipment, we suggest to test in a quiet envi-
ronment in a closed room without any devices utilizing the
same frequencies as the NCS in the same room. In addition,
we propose to measure and document the properties such as
attenuation and interference. Even though that does not solve
the problem of expreriment recreation, it can at least offer an
explanation if repeated results differ from the original results.
Additionally, the documentation would allow others capable of
recreating a physical environment to replicate the experiment

2http://www.ev3dev.org/



results. We aim for a large degree of freedom for the hardware
by supporting multiple OSes for the controller, utilizing USB
network devices, and an easily adaptable and extensible Lego
Mindstorms hardware. We even plan to support alternative mi-
crocontrollers for the inverted pendulum based on a Raspberry
Pi.

In order to define the relevant information and parameters
of the scenario mentioned above, different types of challenges
can be applied to the system. For instance, the system can
be challenged by setting different initial positions or applying
different external forces to the balancing problem of the
inverted pendulum’s controller. Similarly, challenges can be
introduced by the network considering, for instance, network
cross-traffic or external Wi-Fi interference.

V. CONCLUSION

We presented a novel benchmark methodology based on
benchmarks from both disciplines joint in NCS, namely the
control domain and the network domain. This allows us to
create a new benchmark tailored to the specific needs of
an NCS. Therefore, we identify the relevant parameters to
recreate test conditions when performing the benchmark. The
result of our benchmark is reported as KPIs. We define two
sets of indicators that are either used to describe the quality of
control of a CPS or the quality of transport of the underlying
network.

Furthermore, we present our own NCS evaluation frame-
work based on the Lego Mindstorms platform. The platform
was built with cost efficiency, flexibility, and ease-of-use in
mind, leading to a framework which can easily be recreated
by others fostering the reproduction of our results. Up to
now we only published the outline of an NCS benchmarking
framework defining the KPIs of both domains without any
measurements. We intend to release an evaluation with test
results for a specific NCS, the inverted pendulum, in future
work. To further promote our benchmark, we plan to release
our software and instruction manuals in the near future on
GitHub.

VI. ACKNOWLEDGMENTS

This work was supported by the DFG Priority Programme
1914 Cyber-Physical Networking and by the German-French
Academy for the Industry of the Future.

REFERENCES

[1] L. Xiao, A. Hassibi, and J. P. How, “Control with Random Com-
munication Delays via a Discrete-Time Jump System Approach,” in
Proceedings of the 2000 American Control Conference. ACC (IEEE Cat.
No.00CH36334), vol. 3, Chicago, USA, Jun. 2000, pp. 2199–2204.

[2] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A New Method for
Stabilization of Networked Control Systems With Random Delays,”
IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1177–1181,
Aug. 2005.

[3] L. Zhang, H. Gao, and O. Kaynak, “Network-Induced Constraints
in Networked Control Systems – A Survey,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 403–416, Feb. 2013.

[4] A. Chamaken and L. Litz, “Joint Design of Control and Communication
in Wireless Networked Control Systems: A Case Study,” in Proceedings
of the 2010 American Control Conference, Baltimore, USA, Jun. 2010,
pp. 1835–1840.

[5] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, “Closed-loop Control
Over Wireless Networks,” IEEE Control Systems, vol. 24, no. 3, pp.
58–71, Jun. 2004.

[6] C. Peng, D. Yue, and M. R. Fei, “A Higher Energy-Efficient Sampling
Scheme for Networked Control Systems over IEEE 802.15.4 Wireless
Networks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5,
pp. 1766–1774, Oct. 2016.

[7] O. Boubaker, “The Inverted Pendulum Benchmark in Nonlinear Control
Theory: a Survey,” International Journal of Advanced Robotic Systems,
vol. 10, no. 5, p. 233, Jan. 2013.

[8] M. S. Mahmoud and M. Sabih, “Experimental Investigations for Dis-
tributed Networked Control Systems,” IEEE Systems Journal, vol. 8,
no. 3, pp. 717–725, Sep. 2014.

[9] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems,” Proceedings of the IEEE, vol.
104, no. 5, pp. 1013–1024, May 2016.

[10] J. Arajo, M. Mazo, A. Anta, P. Tabuada, and K. H. Johansson, “System
Architectures, Protocols and Algorithms for Aperiodic Wireless Control
Systems,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1,
pp. 175–184, Feb. 2014.

[11] T. Niemueller, G. Lakemeyer, S. Reuter, S. Jeschke, and A. Ferrein,
“Benchmarking of Cyber-Physical Systems in Industrial Robotics: The
RoboCup Logistics League as a CPS Benchmark Blueprint,” pp. 193–
207, Sep. 2016.

[12] S. Bradner and J. McQuaid, “RFC 2544: Benchmarking Methodology
for Network Interconnect Devices,” Mar. 1999.

[13] ITU-T, “Y.1564: Ethernet service activation test methodology Recom-
mendation,” Feb. 2016.

[14] Metro Ethernet Forum, “MEF 14: Abstract Test Suite for Traffic Man-
agement Phase 1,” Nov. 2005.

[15] D. Raumer, S. Gallenmüller, F. Wohlfart, P. Emmerich, P. Werneck,
and G. Carle, “Revisiting Benchmarking Methodology for Interconnect
Devices,” in The Applied Networking Research Workshop 2016 (ANRW
’16), Berlin, Germany, Jul. 2016.

[16] ACM, “Artifact Review and Badging,” http://www.acm.org/publications/
policies/artifact-review-badging, last accessed: Mar. 23 2018.

[17] P. Ferre, D. Agrafiotis, T. K. Chiew, A. Doufexi, A. Nix, and D. Bull,
“Packet Loss Modelling for H.264 Video Transmission over IEEE
802.11g Wireless LANs,” in IEEE International Workshop on Im-
age Analysis for Multimedia Interactive Services, WIAMIS, Montreux,
Switzerland, Apr. 2005.

[18] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural
Breakdown of End-to-End Latency in a TCP/IP Network,” International
journal of parallel programming, vol. 37, no. 6, pp. 556–571, Jun. 2009.

[19] S. M. Günther, M. Leclaire, J. Michaelis, and G. Carle, “Analysis of
Injection Capabilities and Media Access of IEEE[802.11] Hardware
in Monitor Mode,” in IEEE Symposium on Network Operations and
Management (NOMS), Krakw, Poland, May 2014.

[20] M. E. Jobst, S. M. Günther, M. J. Riemensberger, G. Carle, and
W. Utschick, “Adaptive Suppression of inter-packet Delay Variations in
Coded Packet Networks,” in IEEE International Symposium on Network
Coding (NetCod), Sydney, Australia, Jun. 2015.

[21] K. J. Aström and R. M. Murray, Feedback Systems: an Introduction for
Scientists and Engineers. Princeton University Press, 2010.

[22] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. Wiley New York, 2007, vol. 2.

[23] P. Bolzern, R. Scattolini, and N. Schiavoni, Fondamenti di Controlli
Automatici. McGraw-Hill Italia, 1998.


