
High-Performance Packet Processing and
Measurements

Sebastian Gallenmüller, Dominik Scholz, Florian Wohlfart, Quirin Scheitle, Paul Emmerich, and Georg Carle
Chair of Network Architectures and Services

Department of Informatics
Technical University of Munich

Munich, Germany
{gallenmu | scholz | wohlfart | scheitle | emmericp | carle}@net.in.tum.de

Abstract—Networks and network architectures are constantly
evolving, manifesting in new developments such as SDN, P4,
and 400G Ethernet. These novel paradigms and technologies
require network researchers to investigate and to adapt their
measurement facilities. We present two tools which can foster
this process.

The first tool, pos, supports a fully automated workflow for
performing and evaluating network experiments. One of its key
features is the testbed orchestration to maintain and recreate
a specified network test environment gaining reproducible ex-
periment results. The second tool, libmoon, is a user-friendly
userspace packet processing framework based on DPDK. Among
many other projects, libmoon powers MoonGen, a dedicated
packet generator in broad use by the community. MoonGen’s
hardware-supported generation and measurement capabilities
are central to our network experiments to reliably recreate
measurements. Further, a survey of scientific publications and
applications presents projects based on both libmoon and Moon-
Gen.

We argue that combining pos and libmoon/MoonGen creates
an ideal platform for network experiments. This platform offers
an affordable price, high flexibility, ease of use and generation
of reproducible experiments.

Index Terms—reproducible network measurements, high-
performance packet processing, libmoon, MoonGen

I. INTRODUCTION

Understanding the behavior of single network nodes is
essential for researching complex network structures especially
in the context of developments such as SDN, P4, or 400G
Ethernet. The most basic experiment setup for testing such
nodes is a two-machine network like it is required for the
well-known network benchmark described in RFC 2544 [1].
Therein the first machine acts as a device under test (DuT)
and the second as a packet generator representing the traffic
source and sink.

Despite the simple network setup, this configuration al-
ready involves significant complexity when it comes to the
internal hardware architectures and software stacks. Multiple
bus systems are involved in packet processing, for instance,
the NIC itself and connections offered by the CPU, such as
PCIe, cache, memory, or CPU interconnects like QPI and
Hypertransport. Depending on the ingress port and the kind
of network traffic, different paths through such a system are
traversed by the packet flow on its way to the egress port.
Load-dependent limits of the interconnects may be reached,

additionally influencing the performance. The software of such
systems can be equally complex. Different isolation tech-
nologies such as lightweight Linux containers, realized with
cgroups and namespaces, or full-fledged hypervisors, such
as Xen or KVM, influence packet processing performance.
Nowadays, applications employ userspace packet processing
frameworks such as DPDK [2] or netmap [3]. These frame-
works bypass the traditional kernel-based network stack, for
improving performance properties including jitter compared to
kernel-based approaches. With every single hardware and soft-
ware component offering adjustment possibilities, the overall
configurability of such systems is highly complex. This makes
identifying the settings with best processing performance a
highly complex task. Identifying suitable configurations relies
on the ability to reliably measure such systems, which in turn
requires the recreation of the exact configuration of a DuT.

Small variances in the traffic pattern, such as mi-
crobursts [4], can have an influence on the measured outcome.
Therefore, reliably generating packet streams according to a
specified pattern is crucial for recreating the outcome of an
experiment. However, software-based traffic generators often
fail at this task [4], [5]. Generation of traffic is only one part
of the problem, with measurement capabilities being equally
important. Testing high-performance network devices requires
means to quantify several performance properties. Precise
latency measurements are hard to perform [6], as hardware-
assisted technologies are needed to determine latency in
the nanosecond range necessary for network bandwidths of
10 Gbit/s and beyond.

This paper presents our approach for dealing with reliable
state or traffic pattern recreation and high-performance mea-
surements:

• We define our measurement goals and describe the means
to achieve them involving our testbed and the toolchain,
called pos, used to execute our network experiments.

• We present our main tools for conducting network ex-
periments: MoonGen, the underlying framework libmoon,
and typical use cases for both tools.

The paper is structured as follows. Section II describes
the goal for general reproducibility of network experiments
we aim for. In Section III, we introduce our experiment



methodology and our testbed that support the creation of
reproducible experiments. Subsequently, we present our packet
generator MoonGen as our main tool for creating experiments
in Section IV, and typical experiments and tools built on
libmoon, our general purpose packet processing framework,
in Section V. After discussing our current work in progress in
Section VI, Section VII concludes the paper.

II. TOWARDS REPRODUCIBLE EXPERIMENTS

Independent reproduction of results is vital to understanding
and validating scientific results. A full reproduction is aided
not only by resulting measurement data, which is occasionally
published along scientific publications, but also by meta-data
such as full measurement and configuration descriptions. This
includes, for example, tools and scripts used to configure, run,
and evaluate the experiment. An ACM policy [7] considers
reproducibility as a three-stage process, with full experiment
reproduction being the final stage:

1) Repeatability is the minimum requirement for scien-
tific publications. It can be achieved if experimenters
can recreate their previous results by using the same
hardware and tools as before.

2) Replicability is accomplished if other researchers can
recreate the results using the same tools as the authors
of the initial experiment. This requires all experiment
artifacts, including measurement data, as well as tools
and scripts to run and evaluate the measurement, to be
made accessible.

3) Reproducibility requires other research groups to invest
time and resources not only to understand our approach
but also, to come up and implement their own. While
we always encourage others to reproduce our results, the
incentives for doing so are still low.

Unfortunately, reproducing results is rarely being done in
computer science. Amongst other reasons, this methodology
is not yet appropriately incentivized for publications, and
as a consequence, rarely being done by research groups, as
it causes overhead with little reward. Our group has long-
term dedication to support reproducible research in computer
networking [8], [9].

Through the tools and methods presented in this paper,
we aim to accomplish replicable and repeatable experiments,
showing a way towards more reproducible research.

III. OUR METHODOLOGY

For our network experiments, we set up a testbed with the
focus on testing SDN. This testbed consists of 15 different
servers equipped with commodity hardware and 1G, 10G, and
40G Intel or Mellanox NICs (e.g., I350, X520, X540, X710,
and ConnectX-4 Lx EN respectively). A typical experiment
configuration and workflow in our testbed is depicted in
Figure 1, with two experiment hosts (DuT, LoadGen) and
an orchestrating server (pos). The entire experiment workflow
is controlled by our own tool called pos (plain orchestrating
service) running on a separate server which deploys ( 1 ),
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Figure 1. Typical experiment setup & workflow

configures ( 2 ), executes ( 3 ), and collects ( 4 ) the measure-
ment artifacts of network experiments, before automatically
evaluating ( 5 ) the measured data. As we use live images
for our experiments, configuration state is lost after a reboot
of the system. This enforces testbed users to use scripts for
configuring experiment servers and the subsequent evaluation.
On first glance this burdens users and might be seen as a
disadvantage, however, it has three major benefits:

1) The testbed operators profit as they can reuse the testbed
infrastructure for different projects and experiments by
simply rebooting the servers and deploying the necessary
configuration scripts. There is no need to maintain
separate testbeds for different projects.

2) Experiment designers profit as configuration scripts
enforce consistent configuration over all experiment
repetitions. This lowers the possibility of accidental
misconfiguration by missing or wrong configuration
commands that influence the behavior of the DuT in
a non-repeatable way.

3) The entire research community profits from this ap-
proach. By forcing experiment designers to use con-
figuration scripts, pos creates inherently repeatable ex-
periments, as the experimenter can easily rerun the
experiment and repeat the results.

While our testbed can be accessed remotely, we restricted
access to known and trusted persons (members of our research
group and research collaboration partners). We need to rely
on trust as we provide root access to all testbed machines,
which is often required for network experiments. The remote
access enables others to replicate our testbed experiments.
Thereby, our experiments reach the second stage for repro-
ducibility. Achieving the third stage, reproducibility, cannot be
achieved by relying on the testbed and its processes but rather
needs other scientists to create the same results utilizing their
tools and test equipment. However, releasing testbed artifacts,
including configuration scripts, test results, and evaluation
scripts, can foster the reproduction of results by other research
groups.

Our test setup allows for both black box tests and white
box tests. For typical black box tests, data is collected on the
egress and ingress ports of the load generator and used to
determine metrics such as throughput and latency. White box
tests are also possible by recording the behavior on the DuT
itself, for instance by profiling the interrupt rate of NICs or the
cache load caused by applications. Our automated testbed can
record many features in parallel, leading to gigabytes of data
for tests running only a few minutes. The data generated in the



testbed can be processed, plotted, and used to derive models
of high precision. However, such models may be complex and
difficult to handle or apply. Therefore, an important process is
the selection of the crucial measurement data for explaining
the relevant observed behavior, and to derive models requiring
a minimal amount of data to describe the observed behavior.
While in general having a lower accuracy, such models are
highly valuable as they can be applied more easily and foster
the basic understanding of complex systems (such as the
combined HW and SW of the DuT).

We support the selection process by choosing Jupyter
notebooks [10] as the backend for the evaluation (see ( 5 )
in Figure 1) and provide pre-built scripts for standardized
evaluations, e.g., for visualizing throughput or latency. The
experiment designer can extend the functionality of the Jupyter
notebooks to support more specific visualizations. By using
Jupyter notebooks we gain two important benefits: first, the
process is automated and makes the evaluation replicable
and repeatable, and second, notebooks support the interactive
evaluation and subsequently the selection process for the most
specific and relevant parameters.

Network experiments always require some kind of traffic
source. For our tests, a traffic source is needed which must
be able to fully load several 10G NICs. Small differences
in the traffic source can have an influence on the observed
behavior of a DuT [4], where we identified the burstiness of
the traffic as the root cause. Therefore, we need the means to
reliably and precisely create and measure traffic. While hard-
ware traffic generators by Ixia [11] or Spirent [12] would be
suitable devices, they are expensive and difficult to use when
aiming for replication and reproduction. Another hardware-
based platform is the NetFPGA with the Open Source Network
Tester (OSNT) by Antichi et al. [13]. NetFPGA, and OSNT
in particular, target network researchers by allowing network
measurements with high precision and accuracy, utilizing
programmable hardware at affordable prices. However, the
hardware is still more expensive than commercial NICs,
and dealing with programmable hardware is more complex
than dealing with commercial NICs. Therefore, we developed
our own software packet generator MoonGen, which uses
commercial-off-the-shelf hardware and is easily extensible.

IV. MOONGEN/LIBMOON

Since publishing MoonGen in 2015, we have continued
improving and adding features to it. As it matured, we deemed
refactoring a necessary step. This resulted in the formation
of our general purpose high-performance packet processing
framework libmoon. In the following, we will explain the
differences between MoonGen and libmoon, as well as the
provided protocol stack.

A. MoonGen
MoonGen is a high-performance, open-source software

packet generator based on the high-speed packet processing
framework DPDK [2]. MoonGen can generate minimum sized
packet at 10 Gbit/s (14.88 Mpps) using a single core with
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Figure 2. Architecture of MoonGen/libmoon

packets generated by user-defined Lua scripts. One important
feature is the hardware-assisted timestamping of packets,
which allows delay measurements in the sub-microsecond
range. The timestamping feature misuses registers on modern
Intel 10G NICs originally intended for the precision time
protocol (PTP). Due to hardware limitations, not the entire
packet flow can be timestamped but only a few thousand
packets per second. MoonGen also offers precise pattern
generation. By filling gaps in the packet stream with corrupt
packets arbitrary traffic patterns can be created. This allows
configuring the length of the gaps down to the byte level. The
corrupt data typically does not influence the packet processing
software of the DuT as corrupt frames are silently dropped
in hardware. Our approach allows patterns to be replayed
with higher precision than with other available software tools
relying on waiting to introduce inter packet gaps. Features
and implementation details of MoonGen are explained in more
detail in the following publications [4], [14].

B. libmoon

Since the initial publication of MoonGen, multiple applica-
tions were realized on top of it (see Section V). Investigating
the purpose of these applications we identified two fields of
application for MoonGen. Some applications use MoonGen
as it was originally intended – as a tool to generate realistic
traffic to benchmark and validate their prototype [15]–[19],
to simulate DDoS attacks [20], or as basis for benchmarking
suites [19], [21]–[23] to compare different third-party imple-
mentations.

However, some applications relied on MoonGen because
of its simple and convenient way to use DPDK [24]–[26].
Therefore, we decided to split MoonGen in two parts – a
packet processing framework called libmoon and a packet
generator called MoonGen. libmoon provides a simple API
for DPDK. Figure 2 shows the new architecture with the
former monolithic MoonGen split into libmoon and MoonGen.
There, MoonGen does not use DPDK directly anymore but
instead is an application based on libmoon, consisting of only
a few hundred additional lines of code. Programmers can now



decide to either modify a packet generator, or to build entire
applications based on libmoon.

C. MoonStack
libmoon provides the protocol stack API MoonStack that

combines performance and usability, as an extension to mere
byte-level operations in DPDK. MoonStack is a novel dynamic
protocol stack developed to define arbitrary packet headers to
conveniently implement new protocols for simple and rapid
prototyping. It was designed to perform well even for packet
rates beyond 10 Gbit/s while modifying packet headers at line
rate.

The architecture of the stack is influenced by the general
structure of libmoon user tasks offering two kinds of utility
functions. Slow functions can be used to fill one or all headers
of a packet buffer using only a single function call. All header
fields are filled with sensible default values or user-defined
values when using labels to reference specific header fields.
These slow functions should be used during start-up of the
application, essentially creating packet templates for the kind
of traffic that the application later uses or modifies. During run-
time of the application, all operations are performance-critical.
Therefore, the stack provides dedicated functions that allow
manipulating each header field of the stack separately. This ad-
ditional layer offers data type abstractions and performs bit and
byte conversions for the user. As these are lightweight, LuaJIT-
compiled wrapper functions, performance is not impaired in
comparison with directly performing byte-level operations on
the underlying C structure. Micro-benchmarks have shown that
in both cases memory locality of the sequential packet data is
exploited, only causing performance penalties when requiring
to load a new cache line.

MoonStack can be extended easily to support new or
even custom-made protocol headers. This is essential as new
protocols emerge rapidly, for instance for optimized usage in
data centers [27], [28] or to tunnel packets in environments
with specific requirements [29], [30]. To add a new protocol
header, the format of the underlying C structure of the header
must be defined. Wrapper functions are created automatically
for standard integer data types. For complex data types like
addresses, these must be created manually. Optionally, a de-
veloper can define default values per field. Default values can
also depend on the next header in a protocol stack or the length
of the total packet. This allows for the previously mentioned
reasonable default values, which can change depending on
the current stack, e.g., different EtherType based on the used
Internet Protocol version.

Based on the different headers available – at the time
of writing 16 different protocol headers are implemented –
complex protocol stacks can be created using MoonStack’s
own simple embedded description language. Thereby, merely
the order of the headers within the total stack must be
defined. Including one protocol header multiple times (e.g.,
for tunneling IP over IP) is possible. Additional options allow
to customize the subtype of the header (e.g., Ethernet with
or without VLAN tag) and even to adjust the length of

variably sized fields (e.g., TCP options). This design allows the
protocol stack to be highly flexible while requiring low effort
and no overhead when adding a new header to libmoon or
creating a new stack that is required by the user’s application.
For instance, with 10 to 20 lines of code, a complex operation
like VXLAN en- or decapsulation can be accomplished [31].
Even more complex encapsulation protocols like IPsec are
simple to implement [25].

It is important to note that MoonStack only offers support
for the syntax of the packet stack, however, not the semantic
implementation for most protocols. In other words, Moon-
Stack creates packets as a sequence of bytes with specific
values based on an order of protocol headers and their fields.
However, the logic behind protocols like TCP using sequence
numbers, retransmissions, or even general state keeping is
not handled by MoonStack. This functionality must be im-
plemented by the user for the specific application for most
protocols, as only utility protocols like ARP, ICMP, and LACP
are implemented as part of MoonStack. MoonStack serves
two purposes: it can either be used for packet generation
in measurement experiments, or it can be used as a library
realizing protocols for general packet processing applications.

V. EXPERIMENTS AND USE CASES

In the following, we present selected applications running
on top of MoonGen/libmoon. We categorized these programs
into four different areas of application:

A. High-Performance Applications
We selected two high-performance applications, which were

originally written on top of MoonGen. However, they only use
MoonGen because of its convenient interface to DPDK – the
functionality which was taken out of MoonGen and shifted
to libmoon since then. Nowadays, these applications would
rather be realized on top of libmoon.

a) FlowScope [32]: is a tool to record and analyze
packet dumps for network debugging and network forensics.
Established tools fail at recording or analyzing bandwidths of
100 Gbit/s. FlowScope is able to capture at this rate even with
128 Byte packets when using multiple threads. Compared to
Bro Time Machine [33], a factor 50 performance increase can
be achieved.

FlowScope utilizes receive side scaling (RSS) and multi-
queues leading to an efficient multi-threaded design. However,
the key to its performance is founded in the novel in-memory
data structure, which is organized as a ring buffer, illustrated
in Figure 3. The elements of this ring buffer (or outer queue)
are queues which contain the actual packets. This structure of
queues within queues coins QQ, the data structure’s name. QQ
supports the multi-producer/multi-consumer scheme. Figure 3
depicts the producers on the left and the consumers on the
right-hand side. Every producer has exclusive access to one
of these inner queues for recording incoming packets, which
renders explicit synchronization redundant. After an adjustable
amount of recorded data or a specified timeout the producer
stops filling its inner queue. This inner queue is handed over
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to the outer queue and the producer begins filling a new inner
queue. After releasing an inner queue, it can be consumed by
one of two different processes - the analyzer or the dumper.
The analyzer allows peeking at packets without removing them
from the queue. Using libpcap based filter expressions, an
analyzer can trigger a dumper process, which dumps selected
packets to disk. This operation removes the packet from the
queue. Access to the outer queue is rare and hence handled
with locks to facilitate multiple accessors. A lock-based outer
queue allows implementing special features such as the time-
traveling dumper process that would be hard to implement in
a fully lock-free queue. An inner queue is only handed out to
a single producer or consumer and does not need locks, this
allows us to maintain a high performance despite using locks
at the high-level interface which is accessed only rarely.

Whereas QQ offers unprecedented throughput figures, it
introduces a considerable amount of latency. The latency
originates from the desired size or specified timeout of the
inner queues. Packets can only be read after adding the inner
queue to the outer ring of queues.

b) MoonRoute [24]: is a software router built on top of
MoonGen/libmoon. This router preserves the main features of
the underlying framework, i.e., high performance and a flexible
architecture.

High performance is achieved by several methods. NIC
features such as multiple queues and RSS allow distributing
traffic in hardware to CPU cores at almost no overhead.
This allows for efficient utilization of modern multi-core and
future many-core architectures. At the same time the individual
worker threads of the router are kept independent to avoid
processing delays introduced by synchronization. We avoid
information sharing wherever possible, and utilize lock-free
data structures for processing. For shared information, e.g.,
the routing table, the router maintains two copies of a data
structure utilized in a double buffering approach. The active
copy is read-only, therefore lock-free, and shared across all
workers. The inactive copy is updated by a single worker.
After an update the copies are swapped, i.e., all workers switch
to the former inactive copy and the previously active copy
becomes the inactive one and can be updated. There are two
different kinds of threads: dedicated forwarding threads which
are kept intentionally simple but fast and slow but powerful
worker threads which perform additional tasks such as error
handling (ICMP) or address resolution (ARP). Employing
different workers forms two different packet processing paths,
a fast path and a slow path. MoonRoute also heavily relies on

batching between its internal processing modules to improve
the performance.

Flexibility is achieved by composing MoonRoute into dif-
ferent reusable modules. The full functionality of the router
is formed by chaining different modules sharing a common
API. New functionality is realized by implementing a new
module. Modules can either be written in Lua for quick
and dirty prototyping or, for better performance, written in
C and imported utilizing LuaJIT’s foreign function interface
(FFI). The modularized approach also allows exchanging the
implementation of a module with another algorithm, if the
API remains the same. For instance, the double buffering
approach used for the implemented routing table can easily be
transferred to any given data structure, such as other routing
tables or prototypes.

B. Benchmarking Tools
Benchmarking tools in this area of application are based

on MoonGen, which was enhanced to perform automated
measurements.

a) RFC 2544 benchmarking tool: We implemented a
prototype benchmarking tool for performing RFC 2544 com-
pliant tests [21], which defines basic testing procedures for
benchmarking network interconnect devices, e.g., throughput
or latency tests. We transferred the principles successfully
applied in our testbed to our benchmarking tool, i.e., we
aim for reproducibility and automated configuration. To make
device configuration reproducible, we integrated methods to
configure different devices into our tool. The full RFC com-
pliant benchmarking procedure involves several benchmarks,
e.g., for measuring throughput and latency. Our benchmarking
tool can load an individual configuration for each of the
devices under test automatically.

We also enhanced the benchmarks themselves, where the
specified tests, dating back to 1999, no longer seemed ap-
propriate. For instance, the latency test suggests a single
timestamped packet after a 60-second warm-up and cool-down
phase of the DuT. This test should be repeated 20 times
and as result, the average latency is reported. MoonGen is
able to timestamp several thousand packets per second. These
thousands of individual measurements allow creating a latency
distribution, from which latency percentiles can be deducted.
This allows a more detailed assessment of the service quality
provided by a DuT. We also identified that all our investigated
devices did not change the latency distributions after a warm-
up phase of 60 s, therefore we reduced the warm-up phase to
a few seconds and the overall benchmarking time to 30 s for
latency measurements.

The architecture of the benchmarking tool is modular. Each
benchmark, such as throughput, latency, back-to-back, and
frame loss benchmarks, is realized as its own module. Unfor-
tunately, there is no unified way to reliably configure different
devices. Device configuration is therefore handled in different
modules to reflect the varying configuration possibilities like
SSH or SNMP. In case none of the configuration possibilities
are available, configuration can be done manually by the user.



Even if SSH or SNMP are used, there are differences in
device configuration. Subsequently adding support for a new
device comes down to implementing a separate module for
this device. At the end of the benchmark the tool creates
a final report as LATEX document, not only containing the
measurements required by RFC 2544 but also additional
graphs, i.e., latency distribution graphs.

b) OPNFV benchmark: The OPNFV project is an open
source platform for building, deploying, and testing network
functions. They maintain their own automated testing tool
called VSPERF [22], which supports several packet generator
backends, such as Spirent, IXIA, or MoonGen.

c) FLOWer [34]: Regular server hardware, offering a
limited number of NIC ports and bandwidth, is restricted when
it comes to high-performance packet generation. Therefore,
testing a switch with 10 or more ports becomes infeasible.
We demonstrated that MoonGen can surpass these limitations
when combined with an OpenFlow hardware switch. This
hardware switch replicates the packets generated by MoonGen
on all its ports, creating a high-bandwidth traffic generator,
which allows testing another switch on all available ports.
The usage of OpenFlow features such as groups, meters, and
installed flow table entries to count statistics allows us to
generate diverse flows beyond mere replication of incoming
traffic.

C. Traffic & Packet Generation
MoonGen/libmoon was already used by various scientific

publications for its packet generation capabilities. Rincón et
al. [20] implemented a DNS flood attack tool on top of
MoonGen. Due to ethical considerations, Rincón et al. did
not release the full tool but only released the nonhazardous
parts of their DNS query generator.

Kulkarni et al. [16] benchmarked their framework for net-
work functions, and Zaostrovnykh et al. [17] measured the
performance and latency of their verified NAT implementation.

Shahbaz et al. [15] load tested their P4 software switch.
They provide a repository [35] including the code of the switch
and VM setups for the DuT and the load generator. Based on
these scripts we were able to replicate the published results in
our own testbed.

D. MoonGen/Libmoon under Test
MoonGen itself was subject to an investigation performed

by Primorac et al. [6]. They compared the hardware and soft-
ware timestamping capabilities of different tools. The differ-
ences between the hardware timestamps reported by MoonGen
and by a Spirent hardware packet generator only diverged be-
yond the 99.99th percentile. We believe this to be an effect of
different traffic patterns. Software-based timestamping showed
worse results over all tested tools and scenarios. We also
performed a study on multiple software packet generators [4]
that shows the limits of software timestamping compared
to hardware timestamping. Additionally, we investigated the
influence of traffic patterns on the latency response of the
tested device. We then showed that most packet generators fail

to follow the requested distribution as they generate undesired
bursts in the traffic. Instead of using constant bitrate traffic
we suggest using traffic distributed according to a Poisson
process, which is easier to generate in a reliable manner and
at the same time resembles real traffic patterns more closely.

E. Collection of MoonGen/Libmoon Examples
Table I contains an overview of the publications mentioned

before. The table contains their individual usage scenario and
references the publications or the code artifacts if available.

VI. FUTURE CONSIDERATIONS

Encouraged by the adoption of MoonGen in the research
community and beyond we constantly improve and add new
functionality to MoonGen and libmoon.

A. Overcoming Challenges of TCP
Although new protocols that aim to (partially) replace TCP

have emerged or are being standardized [44], [45], TCP is
and seems to remain the most used and important transport
protocol in the future Internet because of its widespread
enrollment. Consequently, it is an important capability being
able to benchmark TCP applications or build new applications
based on TCP using open source frameworks. For this, a
fully functional TCP protocol stack must be implemented,
combining both the functionality of the protocol with the
performance required to satisfy packet rates of 10 Gbit/s or
more preferably on a single core.

The implementations of TCP in the kernels of Linux or
FreeBSD reveal several problems. Implementations residing in
the kernel of an OS are optimized for high compatibility and
reliability rather than performance. The complexity of the TCP
protocol itself poses a challenge for the maintainer of a specific
implementation. Due to increasing bandwidth demands and
stricter upper bounds for the latency of modern applications
and network characteristics, TCP is constantly being devel-
oped. Introducing new extensions like TCP Fast Open or the
BBR congestion control algorithm into a stack focused on
reliability takes time. Slow development and release cycles
led to the implementation of QUIC as a userspace library [44].
Looking at these problems, we think that libmoon requires a
userspace TCP stack not bound by the limitations of a kernel
stack to enable high performance and quick prototyping.

Userspace TCP stacks have already been realized. Projects
like mTCP [46] for netmap or DPDK and MultiStack [47] for
netmap move the stack to userspace, completely bypassing
the kernel. The disadvantage is apparent: not using the kernel
functionalities requires the TCP stack to be implemented from
scratch. This conflicts with the aforementioned problem of
TCP being complex. Therefore, this approach risks that only
a subset of TCP’s functionality is implemented, or that the
project cannot keep up with updates and new extensions to
TCP, resulting in not being maintained or compatible.

Instead of developing a new TCP stack from scratch, trying
to integrate an existing fully functional kernel or userspace
stack into a packet processing framework is another solution



Table I
PROJECTS USING MOONGEN/LIBMOON

Name Usage scenario Publication Code

High-performance applications

FlowScope Tool for high-performance flow capture and analysis [32] [26]
MoonRoute Extensible high-performance router [24] [36]

Benchmarking tools

RFC 2544 Modular benchmarking tool [21] [37]
OPNFV VSPERF Automated NFV testing framework [22] [38]
FLOWer High-performance switch benchmarking [34] [39]

Traffic & packet generation

DNS flood query generator DNS implementation and flooding attack tool [20] [40]
NFVnice Throughput and latency measurements [16] -
Verified NAT Throughput and latency measurements [17] -
PISCES Throughput measurements [15] [35]

MoonGen / libmoon under test

MoonGen investigation Precise and accurate rate control and timestamping [4] [41], [42]
MoonGen timestamping Investigation of timestamping in MoonGen and other packet generators [6] -

Additions to MoonGen / libmoon

MoonStack Easy-to-use and efficient packet creation - [43]

pursued. StackMap [48] is an interface which does not bypass
the kernel. It incorporates the existing stack of the Linux
kernel in an optimized way benefiting from the mature TCP/IP
kernel implementation. The authors show that the observed
performance limitations of the Linux TCP/IP stack are not
due to its processing of the different protocol related layers,
but rather because of I/O bottlenecks at layer two and at the
Socket API.

The third type of TCP stacks can be found in embedded
systems, for example, the stack lwIP [49] is commonly used in
resource-constraint environments on microcontrollers. Unlike
typical academic userspace stacks, it is mature software,
deployed in Internet-of-things applications, with a fully fea-
tured TCP implementation. A core feature of lwIP is that it
supports a wide range of CPU architectures, network chips,
and operating systems. Its external interface can be adapted
for a library such as DPDK, and can be used in a normal
userspace process.

Thus, we decided to integrate the userspace TCP stack
into libmoon. We currently evaluate if a dedicated high-
performance stack such as mTCP or a mature, feature-rich
stack such as lwIP is the best fit for libmoon regarding the API,
the usability, and the performance. Integration of an existing
TCP stack provides libmoon with the desired functionality,
while avoiding the time-consuming task of developing our own
TCP stack. With the function-rich TCP protocol integrated into
libmoon, a basis for testing webservers and firewalls is given.

VII. CONCLUSION

We believe MoonGen and the underlying framework lib-
moon to be two highly relevant tools for the research com-
munity as the selected examples in Table I indicate. The
latter offers a convenient platform to build modular high-

performance applications or other tools. MoonGen provides
means to reliably and precisely control the generated traffic
as well as to reliably measure latency and throughput of the
received traffic – two essential requirements when performing
network experiments and making them reproducible.

However, utilizing MoonGen only gives control over half
the setup, i.e., the load generator side. Full reproducibility
also requires control over the DuT. Therefore, we present
our measurement orchestrating tool pos, which provides the
facilities to recreate configuration state on the DuT making
our experiments repeatable. The testbed was used in several
student projects successfully replicating results. We plan to
release pos in a more mature version, which will enable
replication on a wider scale. However, the larger problem
of reproducibility in the computer networking community
will require further work on incentives and ecosystems, as
discussed in a recent SIGCOMM workshop [9], [50], [51].
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