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Abstract—The evolution of the Internet of Things accelerated
the development of Cyber-Physical Systems. Among them, Net-
worked Control Systems (NCS) gained notable attention thanks
to their application to industrial operations. Experimental NCS
require expertise from control, computation, and communication
disciplines. This requirement, together with the fragmentation
of implementation platforms and experimental investigations,
represents a challenge for the reproducibility and comparison
of research results. In this paper, we tackle this problem by
proposing a novel NCS benchmarking methodology that aids
the reproducibility of NCS experiments. Relying on a novel
approach to model the architectural elements and the delays
of NCS, the methodology defines the experiment parameters and
the relevant Key Performance Indicators (KPIs) that need to
be observed during its execution. Furthermore, we detail the
implementation of the first reproducible benchmarking platform
for NCS. The proposed platform is open-source and designed
to be easily reproducible and extensible by anyone. Finally, we
replicate and evaluate the platform following the proposed NCS
benchmarking methodology. The experimental results evaluate
and compare the KPIs during the execution of the platform
in different benchmarking scenarios, proving the validity of the
proposed benchmarking methodology.

Index Terms—CPS, NCS, Open-source, Benchmarking, Repro-
ducibility, KPI, Delay, Jitter, Packet loss, QoC.

I. INTRODUCTION

The advent and evolution of the Internet of Things, where
billions of devices have gained networked connectivity and
Internet access, contributed to the rapid development of Cyber-
Physical Systems (CPS) [1]. A CPS consists of the intercon-
nection of sensors and actuators with a computation logic,
together interacting over the same physical system. In fact,
in CPS, the information acquired by sensors is processed and
used to instruct actuators to perform specific actions.

A specific class of CPS, where networked sensors and ac-
tuators logically belong to the same automatic control system,
is called Networked Control System (NCS) [2]. Over the last
decade, NCS gained popularity thanks to the capability of dis-
tributing control functions over a communication network, thus
enhancing the flexibility and functionalities of existing control
systems. Their application is particularly relevant to industrial
operations, where NCS can be employed, for instance, in the
closed-loop regulatory control of production machines [3]. For
these reasons, a considerable amount of work is present in the

literature that models and characterizes the performance of
NCS in different operating conditions [4].

Despite a large number of results achieved by the con-
trol, computation, and networking research communities, the
reproducibility and comparison of NCS experimental results
are still obstacles to overcome. This is challenging for dif-
ferent reasons. NCS theory requires expertise belonging to
control, computation, and networking domains, where differ-
ent methodologies and procedures have been developed to
evaluate the performances of their systems. Therefore, the
literature shows an extensive variety of hardware and software
platforms, experimental methods, and measured performance
metrics. As existing studies mainly focus on a few aspects
of the entire system, results do not provide a complete char-
acterization of the NCS. Additionally, the fragmentation of
hardware, software, and expertise increases the difficulty of
reproducing and comparing research results.

In this paper, we tackle this problem by aiding the repro-
ducibility and comparison of NCS research experiments. It en-
ables this by (i) proposing a novel NCS benchmarking method-
ology based on the joint expertise of control, computation, and
communication, (ii) presenting the implementation details of
the first open-source1 NCS benchmarking platform designed
for reproducible results, and (iii) evaluating the reproducibility
of the platform and the validity of the methodology with
experiments in different scenarios.

The rest of the paper is structured as follows. Sec. I-A
provides a review of the state-of-the-art. Sec. II presents the
novel NCS benchmarking methodology and Sec. III details the
implementation of the proposed NCS benchmarking platform.
Sec. IV evaluates the proposed methodology by benchmarking
the open-source NCS platform in different scenarios. Sec. V
concludes the paper.

A. Related Work

NCS have been extensively researched in the literature [4],
[5]. A vast majority of the existing research work follows
a theoretical approach. However, as stated by Lu et al. [6],

1The source code is available at: https://github.com/tum-lkn/NCSbench.



conveying full-scale practical research with a real implemen-
tation of a CPS is a difficult task due to the complexity
and the replicability of experimental platforms. Therefore,
research work in the field of NCS conducting experimental
studies is rather limited. Zhang et al. [7] and Chamaken
et al. [8] implement a hybrid setup of an NCS combining
hardware in the loop, i.e. a simulation of the plant dynamics,
with a real network. On the contrary, experimental results of
Kawka et al. [9] and Eker et al. [10] use the network in the
loop approach, i.e. a simulated network, with real hardware
as a control system. A different research approach provides
prominent examples where the complete NCS consists of
real hardware [11]–[14]. Drew et al. [11] propose an NCS
design that takes into account network delays and packet
dropouts, and evaluate it in an experimental scenario. They
show that, by optimizing the network-aware control logic,
their system performs better than the conventional network-
unaware controllers. Bachhuber et al. [12] conduct an end-
to-end latency analysis of a vision-based NCS. On the other
hand, Baumann et al. [13] present measurement results from
the case study of balancing an inverted pendulum over a multi-
hop wireless network. Mager et al. [14] propose a reliable
multi-hop wireless protocol that enables the remote control
of multiple experimental inverted pendulums. However, in all
these cases, authors do not address the issue of reproducibility
of their platforms to allow repeatable experimental results.

Although practical NCS implementations pose a major
challenge in reproducing NCS experiments, there has been an
attempt in the literature to define conceptual CPS benchmark-
ing scenarios [15]–[19]. Nethi et al. [15] present a platform for
the emulation of NCS to enable their comparison in different
scenarios. Wu et al. [16] develop FARE, a framework for
benchmarking the reliability of CPS, not tackling, however, the
specific aspects of NCS. Ding et al. [17] propose a framework
for the design of fault-tolerant industrial NCS parametrizing
the network and the control systems. The framework allows
experiments with real NCS, but does not tackle the aspects
of reproducibility and comparison. Boano et al. [18] and
Gallenmüller et al. [19] elaborate on how to implement
experimental benchmarks and define key performance indi-
cators (KPIs) for the comparison of experimental results.
Nonetheless, they do not conduct a practical study for the
verification of the proposed methods in their own work. To the
best of our knowledge, none of the existing literature tackles
the problem of reproducibility and benchmarking in a full-
scale practical scenario. Therefore, in this paper, we present
the first experimental platform and practical benchmarking
methodology for NCS.

II. BENCHMARKING METHODOLOGY

In this work, we present a novel benchmarking methodology
for NCS experiments. The methodology relies on the com-
bined knowledge of control, computation, and communication
domains and the experience gained during the implementation
of the proposed NCS platform of Sec. III. In fact, we not
only extend the existing methodologies [18], [19] including
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Fig. 1: Architecture of the NCS platform. The control, com-
putation, and communication domains of CPS are represented.
Every box is a component of the architecture, boxes sur-
rounded by thick black contours represent hardware elements.

experimental knowledge, but provide a novel approach to
model the architectural elements (Sec. II-A) and the delays
of NCS (Sec. II-B).

The purpose of the benchmarking methodology is to define
the necessary amount of information in order to reproduce
and evaluate experimental results using the NCS platform.
Following the ACM’s reproducibility terminology [20], we
first want to recreate our own results thereby establishing
repeatability. In a second step, we recreate the NCS benchmark
across the different involved research groups making our
results replicable. We provide the entire framework containing
the source code, the plotting scripts, and the measurements
used for this paper as open-source1, thereby encouraging
others to recreate our results and fostering the development
towards a fully reproducible benchmark.

We define benchmark as a series of experiments. An
experiment is a time-bounded execution of the NCS plat-
form. In order to reproduce experiments, the conditions of
the experimental evaluation must be detailed. In particular,
the duration Te of the experiment must be defined. In our
benchmark, experiments use a real-world setup and different
setups are possible, e.g. obtaining values through simulation
or emulation. The result of each experiment is a set of values.
From these results, as described in Sec. II-C, we derive key
performance indicators (KPIs) describing the most relevant
features of the system during the experiment. The KPIs may
depend on the settings an experiment is performed in. These
settings, relevant to describe an experiment, we call scenario
and define in Sec. II-A. A whole series of different experiments
and scenarios might be necessary to create a comprehensive
report for the behavior of the NCS.

A. NCS Architecture and Scenario Description

We propose an architecture for experimental NCS as in
Fig. 1. The architecture is composed of several software
and hardware elements organized according to the three CPS
domains [21]: control, computation, and communication.

The set of elements composing the control system is
twofold. On one side, the plant, i.e. the robot, mounts sensors
and actuators capable of sensing the physical system and
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Fig. 2: Model of the timings of an NCS together with the processing (P) and networking (N) delays of the control, computation,
and communication CPS domains.

executing the actuation commands respectively. On the other
side, the controller, which is detached from the plant, receives
the sensors readings, executes the control logic, and transmits
instructions to the actuator.

Two different computing systems provide computing power
and access to the network interfaces to both controller and
plant. The interconnection of the control application with the
network interface is achieved with the implementation of the
upper-layer protocols of the OSI communication stack.

The communication network physically interconnects the
computing system of the controller with the computing system
of the plant and enables the flow of information between
them. In our architecture, it defines the lower-layers of the
OSI communication stack.

To make the experiments and ultimately the benchmarks
reproducible, it is key to document all relevant information
of the NCS architecture in a scenario description. For every
component of the NCS architecture of Fig. 1, software (algo-
rithms) and hardware parameters must be specified to replicate
the experiments.

1) Control Parameters: The control application software
running on the computing systems and implementing the con-
trol logic that drives the NCS. The physical system, describing
the physical properties of the robot itself. The hardware used
on the robot, such as the used sensors and actuators.

2) Network Parameters: The network topology, describing
the connectivity between the nodes of the network.

In the scenario description, all the network parameters are
part of the lower layers. This involves all functions being part
of the network layer, link layer, and physical layer, which are
implemented in the network stack and network drivers of the
operating system, and in the eventual firmware executed by
the network interface cards (NICs).

The network hardware, i.e. the hardware models of the
network interfaces used by robot and controller.

The physical environment, defining the physical conditions
that the network operates in, such as the interference with other
wireless nodes. These properties strongly affect wireless net-
works, making them inherently difficult to reproduce without
an echo chamber. For our benchmark, we try to minimize the
impact of the physical environment on the measured results.
Our benchmark should be widely reproducible across different
research groups, therefore, we decided to not require access
to special equipment such as echo chambers. For this reason,
we suggest to execute the benchmark in a quiet wireless

environment, thereby minimizing the impact of external in-
terference and moving objects on the measurement results.
For benchmarks using wired networks, such as a full-duplex
switched Ethernet, the physical environment has no impact
on the measurement results as long as the network is not
overloaded. Therefore, wired network measurements are easier
to reproduce and can even be used to emulate the behavior of
wireless networks on the network layer.

3) Computing System Parameters: The higher layers, i.e.
the transport layer and higher layer protocols, are part of the
computing system, connecting the control and the networking
domains of the NCS. The transport protocol is implemented
in the OS, therefore the OS version is required for describing
the computing system parameters. The application protocol,
used for the logical exchange of sensor values and actuation
commands between the controller and the plant.

The hardware, which provides computing power and access
to the communication facilities.

B. Timings and Delay Model

When all the components of the NCS architecture are inter-
connected, information regularly flows between the plant and
the controller over the communication network. In particular,
every sampling period, the sensor measures the state of a plant
and sends it to the controller, which computes and sends a
command to the actuator that steers the plant.

The time evolution of the k-th sampling period is shown in
Fig. 2. At time tkS,R, the sensor values (S) of the plant’s sensors
are read (R), handed over to the plant’s network stack (STX) at
tkS,STX and transmitted over the communication network (NTX)
at tkS,NTX. The controller’s network interface receives the sensor
data (NRX) at tkS,NRX and its network stack delivers the packet
to the control application (SRX) at time tkS,SRX. Afterwards,
the controller calculates the actuation values for the actuators
and hands over the actuation message (A) to the network stack
at tkA,STX, which sends the packet over the network at tkA,NTX.
Finally, at time tkA,NRX, the plant’s network interface receives
the actuation packet, and, at time tkA,SRX, its network stack
delivers it to the actuator application, which applies (W) the
commands to the actuators at tkA,W.

Thanks to the timing diagram shown in Fig. 2, it is possible
to identify the delay components of the NCS and distinguish
the delays arising from the control system, computing system,
and communication network. Control system delays arise from
the processing time (P) of the control algorithms. At the robot



during sensing dkP,S and actuation dkP,A, and at the controller
computing the control logic dkP,C. Computing systems delays
arise while processing the packets from and to the network
interface at the robot dkP,STX, dkP,ARX and at the controller dkP,SRX,
dkP,ATX. Finally, network delays (N) can be classified in uplink
delay dkN,S, when sensor values are transmitted, and downlink
delays dkN,A, when actuation commands are transmitted.

In an ideal operation, all the delays are bounded and within
the sampling period of the control loop. However, in a real
implementation, the delays vary according to the chosen soft-
ware and hardware of the control system, computing system
and communication network. While shorter delays can be
compensated with simple techniques as busy waiting, the event
of higher delays must be carefully taken into account using a
proper control strategy.

C. KPIs

The KPIs capture the most important metrics to analyze
and understand the operation of the NCS platform during the
benchmarking experiment.

A fundamental aspect that has emerged during the im-
plementation and analysis of the proposed NCS platform is
the role of time and delays in the system. Delays, i.e. the
time needed for information exchange and processing on
the robot and the controller, strongly influence the overall
performance of the NCS. For this reason, an important part
of the proposed KPIs is relative to time and delays. Delays
can arise from control, computation, or communication, with
lower delays offering a better service for the NCS. We assess
the time KPIs by proposing a timings model of the NCS
(Sec. II-B) and by measuring the individual delays presented
in Fig. 2. For each measured delay, additional metrics can be
obtained to parametrize a large class of NCS. By calculating
the maximum, minimum, mean, and the probability density
function of the measurement values over a time window, it
is possible to characterize the stochastic fluctuations of the
delays.

Moreover, packet loss additionally affects the operation of
NCS. In general, packet loss can occur for several reasons,
such as buffer overflows in the operating systems and in
the network elements, or due to transmission errors arising
from the physical transmission of the packet. In our NCS,
we assume that packet loss is exclusively introduced by the
network and that the event of packet loss additionally arises
whenever a packet experiences a delay larger than a specific
delay upper-bound. As for the delays, also in this case,
additional metrics can be calculated to better characterize the
stochastic fluctuations of the packet loss.

On the other hand, Quality of Control (QoC) has an im-
portant role in the system. QoC is a metric that describes the
performance of a control system and depends on the physical
system and the control logic. QoC KPIs are functions that
quantify the evolution of the physical system’s state and the
controller commands over a time window, i.e. the input and
output information of the controller. One example is the LQR
cost function used for the design of LQR control laws.

(a) Side view of the robot. (b) Top view of the robot.

Fig. 3: Model of the two-wheeled Inverted Pendulum Robot.

III. NCS PLATFORM IMPLEMENTATION

In this section, the implementation details of the proposed
open-source1 NCS benchmarking platform are presented fol-
lowing the architecture of Sec. II-A. Our platform aims at
controlling, using a common IP network, a so-called two-
wheeled inverted pendulum robot (TWIPR), which has a long
tradition in literature [22], [23] and industry [24].

The implementation was developed keeping in mind repro-
ducibility design principles, providing a platform that can eas-
ily be reproduced and deployed for arbitrary research purposes.
Hence, all the software and hardware components used in the
proposed platform are low-cost and highly accessible. In fact,
our TWIPR is built using the Lego Mindstorms™ platform,
communicates using standard Ethernet and W-LAN network
interfaces, is open-source1, and is programmed using the
Python programming language that is supported by the vast
majority of the operating systems and computing machines.

This flexibility allows the proposed platform to be used for
benchmarking of arbitrary NCS. In fact, the elements of the
NCS architecture of Fig. 1 can be easily changed. Different
physical plants can be built using Lego™, new control logics
can be programmed in Python, arbitrary TCP/IP network
interfaces can be connected, and the most popular computing
systems and operating systems can be used.

The description of the implementation is organized as fol-
lows. In Sec. III-A, III-B, and III-C we detail the components
of the NCS architecture for every CPS domain. Sec. III-D
describes the measurement of the benchmarking KPIs.

Furthermore, we summarize in Tab. I the scenario descrip-
tion of a platform A and of a second reproduced platform B
used in our evaluation. The scenario above only presents a
minimal description of the most basic setup for our TWIPR
performing the task of self-balancing. Additional parameters
can be added to the scenario description for more complex
scenarios. For instance, a TWIPR able to move would require
the definition of the path and the surrounding environment.
Tab. II summarizes the time and control KPIs measurement in
our implementation.

A. Control System

The plant is built by following the default instructions of
the Gyro Boy robot of the Lego Mindstorms Education EV3
Core Set™ until step 61 [26]. As represented in Fig. 3, the



Parameter Description

Control Application SW Python 3 open-source1 code implementing the control logic of described in [25].
Control Physical System Gyro Boy robot of the Lego Mindstorms Education EV3 Core Set™.
Control HW DC brushed EV3 Large Servo Motors, EV3 Gyro Sensor.
Network TopologyA Two-hop network shown in Fig. 4 connected via the AP TP-Link TL841ND.
Network TopologyB Two-hop network shown in Fig. 4 connected via the AP Edimax BR6208AC.
Network Stack Controller Ubuntu 18.04 LTS (Kernel version 4.15).
Network Stack Robot Debian Jessie (Kernel version 4.4).
Network HW ControllerA Intel 82579LM 1 GbE NIC.
Network HW ControllerB ASIX AX88179 1 GbE.
Network HW RobotA Apple A1277 USB-to-Ethernet dongle, Edimax EW-7811Un W-LAN USB dongle.
Network HW RobotB Edimax EU-4306 USB-to-Ethernet dongle, Edimax EW-7811Un W-LAN USB dongle.
Network Physical Env. Quiet office environment (low interference, no moving objects), indoor 1-2m.
Computing Sys. Higher layers UDP, application protocol described in Sec. III-B.
Computing Sys. HW ControllerA Intel Core i2520M (2 cores, 2.5 GHz, 8 GiB RAM).
Computing Sys. HW ControllerB Intel Core i7-6700 (4 cores, 3.40 GHz, 16 GiB RAM).
Computing Sys. HW Robot 32-bit ARM9 SoC (1 core, 300 MHz, 64 MiB RAM).

Tab. I: Summary of scenario description parameters for two NCS platforms. Platform A, developed during the first
implementation, and platform B, reproduced for benchmarking purposes.

robot’s body is supported by two wheels, each one splined
to an actuator, the DC brushed EV3 Large Servo Motor™,
capable of rotating it. The control variables are the voltages
applied to the left and right motors, respectively, νl(t), νr(t) ∈
[−V̄ , V̄ ], where V̄ is the full-scale voltage of the motor and
equal to 8V .

An incremental encoder is mounted on each motor’s shaft
and measures the rotation angle of the corresponding wheel
with regards to the robot’s body. As in Fig. 3a, Φl(t) and Φr(t)
indicate the rotation of the left and rights wheels with regards
to z-axis. As in [23], Φ(t) describes the average rotation angle
of the two wheels with regards to the z-axis, i.e. Φ(t) = 0.5 ·
[Φl(t) + Φr(t)]. The robot can move onto a 2D plane, i.e. the
plane formed by axes x and y in Fig. 3b. The position of the
body in the 2D plane at time t is (xM (t), yM (t)). Moreover,
the orientation of the robot with regards to the x-axis at time
t is denoted by γ(t) and is called the yaw angle.

A one-dimensional gyroscope, the EV3 Gyro Sensor™, is
mounted on the body and measures the pitch rate Θ̇(t). With
regards to Fig. 3a, Θ(t) is called pitch angle and denotes the
angle at time t between the z-axis and the axis passing through
the robot’s body. Its derivative over time θ̇(t) is referred to as
the pitch rate. Due to the gravity force, the position Θ(t) = 0
exhibits an unstable equilibrium. The control goal is, thus, to
balance the robot, i.e. to hold Θ(t) = 0, while tracking a
desired position and orientation in plane x − y, i.e. to hold
(xM (t), yM (t), γ(t)) =

(
xrefM (t), yrefM (t), γref (t)

)
. This task

can be achieved by employing a closed-loop controller, that
gets the sensors measurements and computes the adequate
control action for the two motors. The plant is responsible
for the periodic operation of the control loop and regularly
triggers sensor readings every Ts. In a real implementation,
delays vary according to the chosen software and hardware,
which affect the sampling period, and packets can be lost due
to large delays or network erasure. Both cases are taken into
account by the control logic. Due to its complexity and space

Controller AP Plant
Wired

or
Wireless

Fig. 4: Two-hop network topology of the implemented NCS
benchmarking platform. The robot supports two network in-
terfaces: an Ethernet adapter or a 2.4 GHz W-LAN dongle.

constraints, we omit the full derivation of the control law for
our platform, which can be found in [25].

B. Computing Systems

Two different computing systems are deployed in our im-
plementation: one for the controller and one for the robot.

The robot should be mobile and battery powered, requiring
a computing system optimized for compact size and low
energy consumption. Any PC available to a researcher should
be able to run the controller, i.e. we assume a powerful
multi-purpose 64-bit computer and one of the widely spread
operating systems: Windows, macOS, or Linux. Such a con-
troller offers a flexible platform for implementing powerful
control algorithms that could not be processed on the resource-
constrained robot.

Both computing systems must implement compatible
higher-layer communication protocols. For this reason, they
deploy the widely spread TPC/IP network stack and the same
application protocol. The application protocol consists of two
messages: the sensor value message, created by the robot and
sent to the controller, and the actuation command message,
created by the controller replying to the sensor value message,
containing the voltages to be applied at the motors. In addition,
sequence numbers and timestamps are transmitted for packet
loss, reordering detection, and delay measurements.



KPI Description

dP,S Sensor readings on the robot.
dP,C Calculation of controller’s actuation commands.
dP,A Execution of actuation commands on the robot.
dN Average one-way network delay including stack

processing on robot and controller (STX, SRX).
∆̂T − dP,A Robot round-trip delay.
∆̂T Measured variable sampling period.
ΣΘ Total abs. deviation of the pitch angle.
ΣΦ Total abs. deviation of the wheels’ rotation angle.
Σν Total abs. deviation of the average motors’ effort.

Tab. II: Summary of time and control KPIs.

C. Communication Network

Our network is designed to be easily reproducible and flex-
ible with respect to the possible communication technologies.
It is structured according to the OSI communication model and
logically separated from the computing system at the network
layer, i.e. everything below is part of the communication
network.

The network topology defines the connectivity of different
network nodes at the network and link layers. In our case, a
simple two-hop topology is implemented and shown in Fig. 4.
The first hop connects the controller to a W-LAN Access
Point (AP) via Ethernet. The second hop connects the AP
to the robot in two different configurations: wired Ethernet
or wireless W-LAN network interfaces. In our architecture,
the network interfaces define the link-layer medium access
scheme. The robot has no native network interface, wired and
wireless connections are realized via the USB 2.0 interface,
which simplifies the choice of the network technology in use.
For any given experiment in this paper, only one of the two
connections is used exclusively.

Finally, the physical environment describes the physical
characteristics of the communication and is particularly impor-
tant in wireless. In our platform, the wireless communication
between the robot and the AP takes place in a quiet indoor
office environment, at an approximate distance of 1-2m, and
it is subject to low external interference.

D. KPIs Measurement

1) Time KPIs: We assess the time KPIs by measuring the
individual delays presented in Fig. 2. To evaluate the influence
of the network stack of the controller, we recorded a packet
trace on the ingress/egress network interface via tcpdump.

Recording network delays and performing clock synchro-
nization required a constant packet exchange and increased
processing, thus overloading the CPU of the robot and im-
pacting the control performance. Due to this limitation, we did
not record the specific delays dP,STX, dN,S, dP,SRX, and dN,A

attributed to the network communication on the robot. For this
reason, we calculate the average one-way network delay dN

assuming symmetrical network delays, and including the stack
delays of controller and plant,

dN = 0.5 ·
[
tkA,SRX − tkS,STX

]
. (1)

As KPI, we report each delay listed in Tab. II as median
value. We measure the jitter as a property of the delay
fluctuation. Low jitter allows a constant stream of information,
supporting smooth control performance. To determine jitter,
we provide quartiles and 99.9th percentiles in addition to the
median delay.

2) Control KPIs: We select the Integrated Absolute Errors
(IAE) of the states Θ and Φ, i.e. Σθ and ΣΦ. Additionally, we
calculate the total control effort over time, i.e., Σν .

ΣΘ = ‖Θ(kTs)−Θref‖ (2)
ΣΦ = ‖Φ(kTs)− Φref‖ (3)
Σν = 0.5 · (‖νl(kTs)‖+ ‖νr(kTs)‖) (4)

In our experiments the states’ reference is always set to zero,
indicating the initial wheels’ position and the z-axis of the
robot, i.e. Θref = Φref = ∅1xTe

. ΣΘ and ΣΦ represent
the cumulative absolute deviation of Θ and Φ from their
corresponding reference values during the experiment. Smaller
values of ΣΘ and ΣΦ correspond to a higher QoC. Σν
represents the total control effort spent to balance the robot.
Also in this case, a smaller Σν indicates better stability and
hence a higher control performance. The control KPIs are
summarized in Tab. II

With respect to the implemented control logic, an additional
metric shows the performance of the control system. The
number of predictions used by the robot to compensate for
packet loss and delays must be taken into account. As detailed
in [25], a prediction is applied whenever a packet is not
received within the delay upper-bound (Sec. II-C).

IV. PLATFORM EVALUATION

In this section, we provide a comprehensive evaluation of
the NCS platform and of the benchmarking methodology. We
achieve this by presenting the NCS benchmarking KPIs in
details and in different scenarios. The evaluation captures the
essence of the proposed benchmarking methodology. In fact,
experiments were performed reproducing the platform and
testing it with different computers and networks.

Every experiment of our evaluation is conducted as follows.
Before the experiment starts, the robot lies on the ground
continuously sending sensor values to the controller. The
controller, however, does not send actuation commands until
the robot is manually lifted to the vertical position. For this
reason, the beginning of the experiment is the time at which
the robot manually reaches the vertical position for the first
time, and corresponds to 0 s in our evaluation.

Afterwards, continuous exchange of information between
the robot and the controller takes place and enables the control
loop to balance the TWIPR. The duration of the experiment
is determined by the control logic and is equal to Te = 1400
sampling periods, i.e. 49 s with Ts = 35ms. Consequently, we
set a delay upper-bound equal to 29ms. This value is smaller
than the sampling period and takes into account the additional
time needed to instruct the actuators.

Whenever the experiment ends, the controller stops sending
actuation messages to the robot, opening the control loop. In
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Fig. 5: Time evolution and empirical distribution of the delays
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trip delays and of the measured sampling period.

this way, for every experiment, an even number of samples
is collected, and the KPIs can be correctly calculated and
compared.

A. KPIs Evaluation

KPIs belonging to the control, computation, and commu-
nication domains need to be evaluated to understand the
dynamics of an NCS. The scenario selected for the detailed
evaluation of the KPIs is described by the parameters of
platform A in Tab. I communicating over W-LAN.

Fig. 5 shows the time evolution and the histogram of the
delays of the controller, sensor, actuator, and network defined
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Fig. 7: Time evolution of the filtered pitch angle Θ, the filtered
avg. rotation angle Φ, and the avg. applied voltage at the
motors ν.

in Fig. 2. The sensor reading delay dP,S 2 demonstrates a
stable behavior with occasional outliers reaching up to 5.5 ms.
Similarly, the controller delay dP,C 1 is very stable, showing
almost no outliers. Overhead caused by the controller network
stack is constant and marginal (approx. 37µs) over the entire
experiment. The actuator delay dP,A 4 shows an unstable
behavior over the entire measurement period. Its jitter, also
expressed by the width of its distribution in the histogram, is
attributed to the control algorithm, which implements busy
waiting. Therefore dP,A 4 includes a waiting period that
directly depends on the previous steps and their individual
delays. In fact, in order to instruct the motors every 35ms,
actuation commands are only applied after a delay upper-
bound of 29ms from the beginning of the sampling period. In
our platform, approx. 6ms are required to actuate the motors.

When analyzing the jitter given in the histograms, dP,C 1
shows the most stable behavior (0.9 ms - 1.2 ms), indicating
that the controller always has enough computing power to
handle the control process in a timely manner. The sensor
reading delay dP,S 2 shows a minimal time of 2.4 ms for
sensor readings with a tail of up to 11.1 ms. The network delay
dN,S 3 roughly resembles a normal distribution ranging from
4.7 ms up to 15 ms, and it is originated by the CSMA/CA
mechanism of W-LAN in our physical environment.

Fig. 6 shows the time evolution and histogram of the cumu-
lative delays. The timestamp tA,SRX is collected by the robot



application after receiving the actuation message, resulting in
the delay ∆̂T −dP,A 5 . Where ∆̂T is the measured sampling
period of the NCS during the experiment. The histogram of 5
shows a wide distribution, ranging from 13.2 ms up to 35.1 ms,
employing the jitter of all the previous steps. However, if
dP,A is included in the plot (∆̂T 7 ), the jitter decreases, as
the actuator algorithm applies the actuation commands only
29 ms after the beginning of the sampling period. This effect
results in a rather constant measured sampling period ∆̂T 7 ,
and allows the compensation of the previous delays, leading
to a rather low jitter. Thus, the distribution of ∆̂T 7 is
more compact and allows a constant delivery of the actuation
commands close to the ideal sampling period ∆T 6 . Its jitter
is caused by the precision of the busy waiting technique and
by the time required to actuate the motors.

The impact of the control logic is reflected in Fig. 7,
showing the evolution of the control KPIs. The pitch angle
Θ (kTs) of the robot is highly varying, with occasional larger
spikes every few seconds. Despite this, we can observe that
its dynamic remains bounded during the entire execution and
that its average value is equal to −0.0014 deg. The evolution
of the motors’ applied voltage strongly depends on the pitch
angle. In fact, higher voltages are correlated with higher values
of pitch angle. This effect is also shown in the position of the
robot Φ (kTs), which presents faster and slower oscillations.
Faster oscillations, visible between 3-5 s, are caused by strong
and opposite actuations commands needed to compensate
high values of pitch angles and to balance the robot. Slower
oscillations arise whenever the control logic tries to bring
the robot to its initial position. This task has lower priority
compared to balancing the robot, and it is performed on a
larger time scale.

B. Benchmarking

We prove the validity of the proposed benchmarking
methodology and test the reproducibility of our platform by
conducting experiments in different benchmarking scenarios.

For this, we have built a second LEGO Mindstorms™ robot
and tested it in different physical environments. Its components
are fully described by the scenario description of platform
B in Tab I. It consists of a different computing system for
the controller, and different network hardware interfaces for
both controller and robot. This results in a total of four
scenarios for our benchmarking evaluation. We call A-wired
the scenario where platform A operates with Ethernet, and A-
wireless its operation with W-LAN. Two additional scenarios
arise from the reproduced platform B; the B-wired and B-
wireless, representing, respectively, the reproduced platform
communicating over Ethernet and W-LAN.

Tab. III and IV summarize the benchmark KPIs resulting
from the evaluation of the four scenarios. The time KPIs in
Tab. II are presented as median with 95% confidence intervals,
1st and 3rd quartiles, and 99.9-th percentiles.

Tab. III shows different performances of the deployed
computing systems and communication networks. In fact, the
median values of dP,C is lower for platform B than platform

Delay [ms] Median ±95% C.I. Q1 Q3 99.9%

A-wired
dP,C 0.94± 0.002 0.91 0.97 1.07
dP,S 3.55± 0.038 3.04 4.24 5.41
dN 4.38± 0.041 4.08 5.03 6.66

dP,A 22.20± 0.087 20.86 23.16 24.98
∆̂T 35.77± 0.042 35.21 36.41 37.73

A-wireless
dP,C 0.95± 0.002 0.92 0.96 1.05
dP,S 3.64± 0.049 3.03 4.36 6.20
dN 8.09± 0.053 7.54 8.54 10.88

dP,A 15.19± 0.118 13.79 16.55 19.94
∆̂T 35.89± 0.057 35.22 36.62 38.97

B-wired
dP,C 0.39± 0.001 0.38 0.39 0.45
dP,S 3.89± 0.034 3.55 4.49 5.73
dN 4.61± 0.026 4.40 4.82 6.57

dP,A 22.38± 0.065 21.58 23.10 24.69
∆̂T 36.02± 0.036 35.55 36.54 37.61

B-wireless
dP,C 0.37± 0.001 0.37 0.38 0.43
dP,S 3.84± 0.040 3.49 4.45 6.39
dN 5.25± 0.055 4.85 6.29 8.74

dP,A 21.27± 0.126 19.49 22.38 24.84
∆̂T 36.32± 0.049 35.70 36.95 38.76

Tab. III: Time KPIs of the four evaluation scenarios.

ΣΘ ΣΦ Σν Predictions

A-wired 762.91 152090 2066.9 0
A-wireless 938.30 217080 2637.4 10
B-wired 601.51 179590 2804.3 0
B-wireless 785.72 129440 2726.1 1

Tab. IV: Control KPIs of the four evaluation scenarios.

A, despite showing similar jitter and worst-case values. A
minor difference is noticeable in the sensor processing delays
dP,S; platform A has smaller median delays but with a higher
jitter. Also, the average network delays present differences.
The median of dN is always smaller in Ethernet than W-
LAN. In addition, W-LAN network delays have a higher
variance and worst-case delays up to 10 ms. The scenario
A-wireless shows the worst network performance, with the
highest median value and 99.9-th percentile. The actuator
processing delays dP,A directly depend on the busy waiting
procedure. Its quartiles reflect the network delays, being wider
and with larger worst-case values for wireless communication
in both platforms. Finally, the measured sampling period ∆̂T

is comparable in all four scenarios and mainly depends on the
busy waiting performed by the actuator. However, it presents a
higher median in platform B, and a larger jitter when operating
with W-LAN.

Tab. IV shows comparable values of QoC, for the two
NCS evaluated in the four scenarios. In general, ΣΘ and ΣΦ

are lower in wired than wireless scenarios thanks to smaller
median delays and jitter. However, platform A shows a high
value of ΣΦ caused by the high oscillations introduced by the
delays of its W-LAN network interface. The total controller
effort Σν is similar across the scenarios, showing a lower value
only in scenario A-wired. As expected, actuation predictions
on the robot, triggered by packets arriving later than 29ms,



were not observed in wired scenarios. However, in the scenario
A-wireless, 10 prediction events were observed, and, in the
more stable scenario B-wireless, only 1 event was observed
showing its superior QoC.

The results of this section prove the reproducibility of the
proposed NCS platform and the validity of the benchmarking
methodology. In fact, a new platform could be reproduced
and used for benchmarking. Furthermore, the proposed KPIs
are able to highlight the different performances of the two
computing systems and network interfaces.

V. CONCLUSIONS

In this paper, we presented a novel benchmarking method-
ology for NCS and a reproducible NCS experimental plat-
form. The proposed benchmarking methodology enables re-
producible experiments thanks to the experience acquired dur-
ing the implementation of the platform and the joint expertise
of control, computation, and communication domains. Relying
on a novel approach to model the architectural elements and
the delays of NCS, the methodology defines the scenario,
i.e. the experiment parameters, and the most relevant KPIs
for the performance evaluation of the platform. Following
the NCS architecture and delays model, we implemented
an open-source NCS experimental platform. The proposed
platform is designed to be easily reproducible thanks to low-
cost, accessible hardware and open-source software compo-
nents. We evaluated the proposed platform and the validity
of our benchmarking methodology reproducing the platform
and evaluating it in different scenarios. The evaluation results
prove the effectiveness of the proposed KPIs and the validity
of the benchmarking methodology.
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