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ABSTRACT
Network stacks currently implemented in operating systems
can no longer cope with the packet rates offered by 10Gbit
Ethernet. Thus, frameworks were developed claiming to
offer a faster alternative for this demand. These frame-
works enable arbitrary packet processing systems to be built
from commodity hardware handling a traffic rate of several
10Gbit interfaces, entering a domain previously only avail-
able to custom-built hardware.
In this paper, we survey various frameworks for high-per-

formance packet IO. We introduce a model to estimate and
assess the performance of these packet processing frame-
works. Moreover, we analyze the performance of the most
prominent frameworks based on representative measurements
in packet forwarding scenarios. Therefore, we quantify the
effects of caching and look at the tradeoff between through-
put and latency.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous; C.4 [Performance of Systems]: Measurement tech-
niques

General Terms
Measurement, Performance

Keywords
netmap; PF_RING ZC; DPDK; software packet processing;
performance measurement

1. INTRODUCTION
Nowadays, 10Gbit Ethernet adapters are commonly used

in servers. However, due to overhead imposed by the net-
work stacks’ architectural design the CPU quickly becomes
the bottleneck, so that packet handling – even without any
complex processing – is impossible at line speed for small
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packet sizes. Software frameworks for high-speed packet
IO, e.g. netmap [1], Intel DPDK [2], or PF_RING ZC [3],
promise to fix this issue by offering a stripped-down alter-
native to the Linux network stack. Their performance in-
crease allows using commodity hardware systems as routers
and (virtual) switches [4, 5], network middleboxes like fire-
walls [6], or network monitoring systems [7]. Motivated by
the potential gain we analyzed the performance characteris-
tics of these frameworks.
Initially, we investigate the factors network bandwidth,

CPU performance, PCI express bandwidth, and connection
to main memory influencing the performance of arbitrary
packet processing applications. These factors are comprised
into a model describing this type of program based on the
previously mentioned frameworks. Various measurements
show the applicability of this model, with packet forwarding
as the basic test scenario. Each measurement is designed
to investigate the influence of a specific factor on the for-
warding throughput, e.g. the clock speed of the CPU, the
number of processed packets per call or the cache utilization.
Moreover, the latency of packet forwarding is also reviewed.
All measurements are designed to ensure the comparabil-
ity of our test results: running on the same CPU, equipped
with the same 10 Gbit NICs while using packet forwarders
applying the same algorithm for each of three frameworks
respectively to provide a fair comparison between them.
The paper is organized as follows: In Section 2, we de-

scribe the state of the art in fast packet processing. Related
work that serves as basis for our research is presented in
Section 3. Section 4 identifies bottlenecks for packet pro-
cessing in software and derives a model describing such ap-
plications. Subsequently, Section 5 presents our comparison
of techniques for fast packet processing. We conclude with
a summary of our results in Section 6.
This paper is based on a master’s thesis [8] offering a

more comprehensive discussion including the usability of the
frameworks and a closer description of the APIs.

2. PACKET PROCESSING IN SOFTWARE
Network traffic processing performance backed by com-

modity hardware systems has increased continuously in the
last years. The increase came both from software optimiza-
tions and hardware developments like the move from 1Gbit
to 10Gbit Ethernet, multicore CPUs and offloading features
that save CPU cycles.



2.1 Utilization of Hardware Features
On the hardware side the performance increase, beside the

higher bandwidth, came from offloading features that allow
shifting workload from the CPU to the Network Interface
Card (NIC). Checksum offloading, for instance, relieves the
CPU from CRC checksum handling. Now the NIC takes care
of calculating the CRC checksum and adding it to the packet
before transfer. On the receiving end, the NIC validates the
checksum and drops the packet in case of an error, without
involving the CPU. [9]
Direct Memory Access (DMA) allows the NIC to write

or read packets directly into or from RAM bypassing the
CPU. Modern NICs can even copy packets directly into the
cache of the CPU, which leads to a further increase in per-
formance [10].
Another part of the speed-up comes from increased CPU

performance. In addition to higher clock rates, the number
of CPU cores has changed from one to a growing number
of cores. NICs need to support multi-core architectures ex-
plicitly by distributing incoming packets of different traffic
flows to different cores. One of these techniques is Receive
Side Scaling (RSS), which allows scaling packet processing
with the number of cores. [9]

2.2 Linux Network Stack
On the software side the performance increase came, de-

spite the support of the new hardware features, from a more
efficient way to handle incoming traffic. The first approach
of generating one interrupt per incoming packet was unsuit-
able for high packet rates due to livelocks caused by inter-
rupt storms [11]. In such a livelock the system is almost fully
occupied with handling the overhead caused by interrupts
instead of processing packets.
NAPI, a network driver API introduced in kernel 2.4.20,

reduces the number of interrupts generated by incoming
traffic with the ability to switch to polling for packets dur-
ing phases of high load, effectively reducing system over-
head [11]. The NAPI-based network stack is sufficiently
powerful to scale software routers to multiple Gbit/s [12,13].
But even though performance improved, the Linux network
stack primarily focuses on offering a fully featured general-
purpose network stack for an operating system (OS) rather
than providing an interface for optimal performance needed
for software router applications [14].

2.3 High-Speed Packet Processing
Compared with a general-purpose network stack like im-

plemented in Linux, high-speed packet IO frameworks of-
fer only basic IO functionality: Layer 3 and above must
be implemented by the application whereas the Linux net-
work stack handles layer 3 and 4 protocols like IP and TCP.
As a benefit, these frameworks offer increased performance
compared to a full-blown network stack. In this paper we
focus on the most important representatives netmap [1],
PF_RING ZC [15], and Intel DPDK [2]. All three frame-
works require modified drivers and use the same techniques
for acceleration:

• Bypassing the default network stack, i.e. the packets
are only processed by the processing framework and
by the applications running on top of them.

• Relying on polling to receive packets instead of inter-
rupts.

• Preallocating packet buffers at the start of an applica-
tion with no further allocation or deallocation of mem-
ory during execution of an application.

• No copying of data between user and kernel memory
space as a packet is copied once to memory via DMA
by the NIC and this memory location is used by pro-
cessing framework and applications alike.

• Processing batches of packets with one API call on
reception and sending.

netmap.
netmap [1] exposes packet buffers to the application and

uses standard system calls, like poll() or ioctl(), to initi-
ate the data transfer. The work behind these system calls is
reduced compared to a default network stack. These system
calls only update the packet buffers and check the data pro-
vided by user programs for their validity to prevent crashes.
The network drivers of netmap are based on regular Linux

drivers. As long as no netmap application is active the
driver works transparently for OS and traditional applica-
tions. Upon starting a netmap-enabled application the NIC
is put into in a special “netmap mode”, i.e. the NIC becomes
inactive for the OS and no packets are delivered to the stan-
dard OS interfaces and traditional applications. Instead,
the packets are transferred to netmap specific data struc-
tures where they are available to the netmap-enabled ap-
plication. When closing this application the driver switches
back to transparent mode. Maintaining this compatibility in
the driver allows for an easy integration into general-purpose
operating systems. netmap has already been integrated into
the FreeBSD kernel [16] and inclusion in the Linux kernel
has been discussed [17].
Multiple applications have shown increased performance

by adapting netmap: Click [18] a software router, the virtual
switch VALE [4], and the FreeBSD firewall ipfw [6].
A notable difference of the different network APIs is the

usage of system calls. Linux does the entire packet han-
dling in kernel space to ensure a high degree of security
and robustness. DPDK and PF_RING ZC perform their
packet processing entirely in user space to provide high per-
formance. To provide robust and fast packet processing
netmap combines both approaches. Most of the workload,
i.e. packet processing, is done in user space. System calls
perform only basic checks on the packet buffers to initiate
reception and transfer of packets.

PF_RING ZC.
PF_RING ZC does not use standard system calls but

offers its own functions. The API of PF_RING ZC em-
phasizes a convenient multicore support [19]. It is NUMA
aware, i.e. on systems with multiple CPU sockets the packet
buffers can be allocated in memory regions a CPU can di-
rectly access. Moreover processes can be clustered for easy
data sharing amongst them.
PF_RING ZC features a driver with capabilities similar

to those of netmap, i.e. the driver is based on a regular Linux
driver acting transparently as long as no special application
is started. During the time such an application is active
regular applications cannot send or receive packets using
the respective default OS interfaces. This driver may also
be configured to the deliver a copy of the packets to be



available to the OS, while a PF_RING ZC application is
active, but the duplication process lowers the performance.
Ntop [20] offers a number of applications running on top

of PF_RING ZC. For example n2disk, a packet capturing
tool, or nProbe, a tool for traffic monitoring.

DPDK.
DPDK is a collection of libraries, which offers not only

basic functions for sending and receiving packets, but also
provides additional functionality like a longest prefix match-
ing algorithm for the implementation of routing tables and
efficient hash maps. It relies on a custom user space API
similar to PF_RING ZC instead of traditional system calls
used by netmap. The DPDK API [21] offers multicore sup-
port, additional libraries used for packet processing, and
features the highest degree of configurability amongst the
investigated frameworks.
The driver of DPDK does not feature a transparent mode,

i.e. as soon as this driver is loaded, the NIC becomes avail-
able to DPDK but is made unavailable to the Linux kernel
regardless of whether any DPDK-enabled application is run-
ning or not. DPDK uses a special kind of driver aiming to
do most of its processing in user space. This UIO driver [22]
still has a part of its code realized as kernel module but its
tasks are reduced. It only initializes the used PCI devices by
mapping their memory regions into the user space process.
A notable example for an application using DPDK, which

gained attention, is an accelerated version of Open vSwitch
called DPDK vSwitch [5]. An additional high-performance
software switching solution is xDPd [23], which supports
DPDK for network access.

Other Frameworks.
The already mentioned frameworks are not the sole so-

lutions offering high-speed packet processing capabilities in
user space.
PacketShader [24] is a packet processing framework using

the general purpose capabilities of GPUs for packet process-
ing. It also features a separate engine for fast packet IO.
The GPU part of PacketShader is not publicly available,
only the code of the packet engine was released, which can
be used on its own. However, this engine is not developed
as actively as netmap, PF_RING ZC, or DPDK leading to
a low number of updates in the repository [25].
PFQ [26] is a framework that is optimized for fast packet

capturing. It does not rely on specialized drivers like the
other frameworks and can be used with every NIC as long
as this card is supported by Linux. However, without modi-
fied drivers the NIC cannot push the packets directly to user
space. The lack of this feature leads to a performance disad-
vantage when compared to the other frameworks presented
by our paper. A notable feature of PFQ is the integration of
a Haskell-based domain specific language for implementing
packet processing algorithms [27]. PFQ focuses on providing
a framework to make packet processing easy and safe rather
than providing the highest possible performance. Therefore
the typical use cases for PFQ differ from the use cases of the
other frameworks.
Snabb Switch [28] aims to combine powerful packet pro-

cessing capabilities with the scripting language Lua. Using
a scripting language lowers the entry barriers for develop-
ers, as these languages are designed to be learned easily
and also allow developing applications with few lines in lit-

tle time. Snabb Switch’s design philosophy even applies to
the driver as it is also written in Lua. In 2012 this frame-
work was released. Being the youngest framework in this
enumeration it is not as mature as the other frameworks,
also no applications are known to use Snabb Switch as their
backend.
The three frameworks presented in this paragraph were

excluded from a thorough examination for various reasons.
For PacketShader the reasons were the unavailability of the
GPU part and low development activity. PFQ was not in-
vestigated because of different design goals leading to a per-
formance disadvantage compared to the other frameworks.
Snabb Switch was excluded because of its immaturity. This
paper only focuses on the three most established competi-
tors: netmap, PF_RING ZC, and DPDK, which appear to
be more mature, leading to a higher availability of applica-
tions using the three presented frameworks.

3. RELATED WORK
A survey of various packet IO frameworks was published

by García-Dorado et al. [14]. The theoretical part of their
investigation is quite comprehensive and the paper includes
measurements showing selected aspects of these frameworks,
e. g. the influence of the number of available cores and
packet sizes on the throughput. They investigate the packet
IO engine of PacketShader, PFQ, netmap, and PF_RING
DNA, a predecessor of PF_RING ZC. DPDK and Snabb
Switch are not investigated. However, the authors only an-
alyze packet capturing capabilities and neglect other aspects
of packet processing.
Throughput measurements of software packet forwarding

systems on commodity hardware have been conducted previ-
ously: Bolla and Bruschi analyze a Linux software router [13].
Studies of software router performance and the influence of
various workloads were published by Dobrescu et al. [12].
The highest throughput of a software solution implementing
an OpenFlow switch with DPDK was presented and mea-
sured in [29]. We also measured the throughput of Linux-
based forwarding tools in previous work [30]. These mea-
surements allow for a direct comparison with results from
this paper because they were performed on the same test
system.
The latency of a Linux software router was also measured

by Bolla and Bruschi in [13]. A technique to measure dif-
ferent parts of packet processing systems using commodity
hardware based on an understanding internal queuing was
described by Tedesco et al. [31]. Rotsos et al. [32] present
a FPGA-based method to measure the latency of various
software and hardware OpenFlow switches. They present
measurements for Open vSwitch running on Linux as an ex-
ample. Discussion of latency in software routers can also be
found in [33]. The authors describe a method that can be
used to distinguish the latency introduced by queuing from
the processing delay.
The selected literature shows that the performance of the

Linux networking part is thoroughly researched and well-
known. There are also papers investigating a specific frame-
work exclusively. However, measurements require similar
test conditions, i.e. comparable hardware and software se-
tups, to ensure comparability. The paper by García-Dorado
et al. [14] provides those conditions but measures only a few
selected aspects. Therefore we try to give a fair compari-
son by testing each framework on the same hardware. This



paper includes measurements not yet published in similar
papers, e.g. the transmission of packets or latency determi-
nation. We also introduce a new model to provide a basic
understanding how packet processing applications work and
how their performance can be estimated.

4. PERFORMANCE CONSIDERATIONS
We present a model that provides insights into the perfor-

mance of the packet processing applications built for high-
speed IO frameworks. It uses the main factors influencing
performance to provide an upper bound for the capabilities
of a software-based packet processing system and to show
the limits and potential bottlenecks.

4.1 Limits and Influencing Factors
Performance limits are grounded on four different charac-

teristics of the hardware:

1. The maximum transfer rate of the used NICs. Thus it
is determined by the Ethernet standards (i.e. 1GbE,
10GbE, or 40GbE).

2. PCI express is used to connect the NICs to the rest
of the system. Nowadays typical hardware uses PCIe
v2.0 with 8 lanes per NIC, which offers a usable link
bandwidth of 32Gbit/s [34] for every interface in rx
and tx direction respectively. Commonly available two
port NICs cannot reach the 32Gbit/s limit, which ren-
ders this limit irrelevant for this type of NIC.

3. As packet data is sent to the memory the RAM could
restrict the possible network bandwidth. A typical
system with DDR3 memory provides a bandwidth of
21.2Gbytes/s (dual channel, effective clock speed of
1333MHz [35]. Our measurements showed that this
bandwidth is high enough to support at least eight
network ports transferring and sending concurrently
at 10Gbit/s. In more sophisticated hardware setups,
i.e. servers with several CPUs, the actual configura-
tion may limit the achievable transfer rates. If a CPU
has to access a NIC or RAM attached to a different
CPU, the interconnect between CPUs may act as a
bottleneck.

4. The fourth component involved in packet processing is
the CPU. Due to modern offloading features of NICs
the processing load on the CPU can be kept low. Ex-
amples like netmap show that handling a fully loaded
10Gbit/s link is possible even if the traffic consists of
a high number of short packets. This is not the case if
the Linux network stack is used. However, if complex
packet processing algorithms are performed, the CPU
may lower the transfer rate even for high-speed packet
frameworks. Therefore the CPU is considered to be
the dominating bottleneck. [1]

4.2 Upper Bound for Packet Processing
In this section, we use the identified bottlenecks to con-

duct a generic model for packet processing. These limits act
as upper bounds for the number of packets per second that
can be processed.
The first upper bound is a fixed limit determined by the

used Ethernet standard (cf. Point 1 of enumeration in Sec-
tion 4.1). This limit is called rmax.

The second upper bound depends on the CPU of the
packet processing system (cf. Point 4 of enumeration in
Section 4.1). That computational limit is called cmax.
For simplicity we only consider these two bounds and omit

the upper bound for memory and PCIe bandwidth, as these
are not a bottleneck at least in our test setup. A combina-
tion of the upper bounds leads to the maximum number of
packets per second that can be processed, also known as up-
per bound of the throughput Tmax. As the upper bound of
the throughput cannot exceed a single upper bound, Tmax

can be described by the following formula:

Tmax =MIN(rmax, cmax) (1)

The value tmax itself is influenced by two factors, the line-
rate allowed by the Ethernet standard vethernet and the in-
dividual packet size spacketi (this size also includes bits for
preamble, start frame delimiter, padding and inter frame
gap).

vethernet ≥
n∑

i=0

spacketi (2)

If n in Equation 2 is maximal, it equals to rmax, i.e. n is
the number of packets that can be sent per second with re-
spect to their individual packet length spacketi and the band-
width of the Ethernet vethernet.
The value for cmax depends on the resources provided by

the CPU - the cycles. These processing cycles can either
be used to handle packets or to process other tasks. The
following formula uses fCPU to describe the available num-
ber of cycles provided by the CPU per second. Costs for an
individual packet are represented by cpacketi . All costs for
other processing tasks running on the CPU are summed up
in cother.

fCPU ≥ cother +
n∑

i=0

cpacketi (3)

The total costs of the packet processing in CPU cycles
is given by the sum in Equation 3. This sum contains the
number of processed packets represented by the number of
packets per second n and the individual costs cpacketi of the
packets. The maximum number of cycles per second fCPU

is a fixed value depending on the hardware. Therefore, the
CPU resources available for packet processing and the other
system tasks are bound by this limit, i.e. they have to be
smaller or equal than fCPU . To get the maximum number
of packets cmax, n has to be maximized with respect to
Inequation 3.
Figure 1 shows the combination of the two upper bounds

Tmax as combination of rmax and cmax in respect to growing
costs per packet described by the x-axis. For this section
only the dashed and dotted lines are relevant. The value
rmax depends on the size of the packets. When using mini-
mally sized packets with 64Byte and taking overhead data
like preamble or inter frame gap into account, 14.88 million
packets per second (Mpps) can be achieved on 10GbE. As
long as rmax is reached, the costs cmax are low enough to
be fully handled by the available CPU, the traffic is bound
by the limit of the NIC. At the point cequal the through-
put begins to decline. Beyond this point, processing time of
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Figure 1: Model for packet processing

the CPU does not suffice the traffic capabilities of the NIC,
i.e. the traffic becomes CPU bound and the throughput sub-
sequently sinks.
The costs per packet determine how many packets can be

processed without surpassing the computational limit cmax.
The actual shape of cmax cannot be determined as it de-
pends on the traffic and the processing task. Regardless
of the precise shape of this curve, the outcome stays the
same, i.e. higher per-packet costs decrease the throughput.
The hyperbolic shape of cmax depicted in Figure 1 holds for
packet processing frameworks and is explained in detail in
the following section.

4.3 High-Performance Prediction Model
According to Rizzo, packet processing costs can be divided

into per-byte and per-packet costs, with the latter dominat-
ing for IO frameworks; i.e. it is only slightly more expen-
sive to send a 1.5KB packet than sending a 64B packet [1].
This leads to two assumptions to be made. The first as-
sumption is that the per-packet costs are constant for high-
performance IO frameworks. The second one is that exper-
iments are performed under the most demanding circum-
stances if the highest packet rate is chosen, i.e. 64B packets
have to be used.
In case of constant costs per packet ∀i : cpacketi = cpacketconst

and a dedicated core for packet processing leads to cother =
0. If the packet processing application itself also generates
a constant load per packet and the high-performance frame-
works have roughly constant costs per packet and use ded-
icated cores for packet processing the Inequation 3 can be
simplified to the following inequation:

fCPU ≥ n · cpacketconst (4)

If packet processing includes actions that depend on the
type of packet or the traffic characteristics, computation
may become infeasible. Such a scenario may be packet mon-
itoring were certain types of packets require additional CPU
cycles for further analysis [36]. Without restriction to cer-
tain traffic patterns it is still possible to approximate the
overall costs with average per-packet costs or to do a worst
case estimation.
Due to the architecture of the frameworks, which all poll

the NIC in a busy waiting manner, an application uses all
the available CPU cycles all the time. If the limit of the
NIC is reached but n · cpacketconst is lower than the available

CPU cycles, the cycles are spent waiting for new packets
in the busy wait loop. If these costs are included, a new
value is introduced c∗packetconst and both sides of the former
Inequation 4 are now balanced:

fCPU = n · c∗packetconst (5)

The costs per packet c∗packetconst can originate from different
sources:

c∗packetconst = cIO + ctask + cbusy (6)

1. cIO: These costs are used by the framework for sending
and receiving a packet. The framework determines the
amount of these costs. In addition, these costs are con-
stant per packet due to the design of the frameworks
by completely avoiding operations depending on the
length of the packet, e.g. buffer allocation.

2. ctask: The application running on top of the framework
determines those costs, which depend on the complex-
ity of the processing task.

3. cbusy: These costs are introduced by the busy wait on
sending or receiving packets. If throughput is lower
than tmax, i.e. the per-packet costs are higher than
cequal, cbusy becomes 0. The cycles spent on cbusy are
effectively wasted as no actual processing is done.

Combining Equations 5 and 6 leads to:

fCPU = n · (cIO + ctask + cbusy) (7)

Figure 1 depicts the behavior of the throughput while
gradually increasing ctask as described by Equation 7. The
highlighted areas show the relative part of the three com-
ponents of c∗packetconst . Each area depicts the accumulated per-
packet costs of their respective component x called c%x .
The relative importance of c%IO compared to c%task de-

creases for higher task difficulties because of two reasons.
The first reason is the decreasing throughput with fewer
packets needing a lower amount of processing power. The
second reason is that while ctask increases the relative por-
tion of cycles needed for IO gets smaller.
Low values of ctask and only parts of the cycles spent on

cIO, increase busy waiting that leads to a high value for
cbusy. c%busy decreases linearly while c%task grows accordingly
until cequal is reached. This point subsequently marks the
cost value, where no cycles are wasted on busy waiting.
ctask increases steadily, which leads to a growing relative

portion of c%task.

5. PERFORMANCE COMPARISON
The available CPU cycles are the main limiting factor of

software packet processing (cf. Section 4.1). Subsequently,
the throughput of a packet processing application heavily
depends on the amount of CPU cycles available for its pro-
cessing task. This amount is influenced by numerous factors
and the following measurements present a selection of fac-
tors we consider relevant for real world applications: The
overhead caused by the complexity of packet processing, the
time the CPU spends waiting for data to arrive in cache, and
the effect of different batch sizes, i.e. whether the packet
throughput rises if more packets are processed per call. For



every factor a dedicated measurement is performed. As
batch size in particular determines the queuing delay of the
packets on the processing system and latency during packet
forwarding is also investigated.
Initially, we explain the test setup and various methods

to precisely determine the used CPU cycles and check them
for the applicability for our tests.

5.1 Measurement Setup
Our test setup consists of three distinct servers: a for-

warder running the investigated frameworks, a source, and
a sink connected via 10GbE links. The device under test
is equipped with a dual port Intel X520-SR2 NIC, the load
generator and sink use single port X520-SR1 NICs. These
cards use PCIe v2.0 with 8 lanes, which offers a usable link
bandwidth of 32Gbit/s in both directions. The Intel cards
were chosen, as driver implementations exist for each of the
investigated frameworks. Also possible performance influ-
ences introduced by different NICs are avoided. The server
acting as forwarder runs on an Intel Xeon E3-1230 V2 CPU.
The clock speed was fixed at 3.3GHz, with power conserv-
ing mechanisms, Turbo Boost, and Hyper-Threading deacti-
vated to make the measurements consistent and repeatable.
The forwarder statically forwards packets between the two

interfaces without consulting a routing or flow table. It mod-
ifies a single byte in the packet to ensure that the packet is
loaded into the first level cache. Forwarding is done in a
single thread pinned to a specific core.
As performance depends on the number of processed pack-

ets rather than the length of the individual packets, we use
constant bit rate traffic with the minimum packet size of
64B for all measurements in this paper to maximize the
load on the frameworks. The packets are counted on the
sink using the statistics registers of the NIC.
We conducted measurements with a version of netmap,

which was published on the 23rd March 2014 in the official
repository [37], PF_RING ZC version 6.0.2 [20] , and DPDK
version 1.6.0 [38].
Our packet generator MoonGen [39] was used for latency

measurements. It uses hardware features of our Intel NICs
for sub-microsecond latency determination.
Every data point in our performance measurements is an

average value. This value is calculated from 30 single mea-
surements over a period of 30 s. Confidence intervals are
unnecessary as results are stable and reproducible for all
frameworks. An observation also made by Rizzo in the ini-
tial presentation of netmap [1].

5.2 Determine the Transmission Efficiency
In our testbed all of the frameworks are able to forward

packets at full line rate with a single CPU core. To mea-
sure the transmission efficiency expressed by the CPU load
caused by packet transmission, the CPU load generated by
each framework needs to be compared. In Equation 7 this
efficiency is referred to as cIO. A low number of cycles spent
on cIO increases the number of cycles available for the ac-
tual packet processing task, i.e. ctask. This in return allows
more demanding applications to be built using more efficient
frameworks without performance penalties.

5.2.1 Known Approaches for Measuring CPU Load
However, due to their architecture (cf. Section 2.3), exces-

sive polling on the NIC causes the CPU cores used by the

frameworks to be under full load at all times. Therefore, a
simple comparison of CPU usage by a tool like top does not
work. For this kind of measurement there is no way to tell
the relative portions of the three components of c∗packetconst in
Equation 7 apart.
The use of a profiling tool would list the relative portion

of each called function. By adding up the result for the func-
tions associated with efficiency cIO, this component could be
determined. This method was also rejected as the overhead
introduced by the interruption caused by the profiling tool
itself lowers the throughput and affects the measurement.
Rizzo measured efficiency by reducing the CPU clock fre-

quency until the throughput of the NIC was beginning to
decline [1]. At this point no busy waiting cycles happen as
depicted in Figure 1. This results in a cbusy value of 0. The
packet processing task was simplified so that this compo-
nent named ctask can also be neglected. Only component
cIO remains, which is the efficiency of the framework. How-
ever even at the lowest supported clock speed (1.6 GHz) in
our test setup the forwarders transmitted at full line rate.
Therefore this solution could also not be applied.

5.2.2 Novel Method
To overcome the flaws of the previously presented methods

for determining the efficiency, we introduce a novel method
for our measurements. Therefore we add a piece of software
producing a constant load per packet on the CPU. The load
can be specified as a number of CPU cycles to wait. This
value can be increased until the throughput begins to de-
cline. Intel provides a benchmark method [40] based on
a clock counter called TSC. We used this guide to design
and calibrate this load mechanism. The code containing the
load generation and benchmarking mechanisms is available
at [41].
At the point of decline cbusy is known to be 0, ctask is

known by design. Subsequently cIO can be calculated. For
this experiment the forwarders were modified to implement
this emulated CPU load ctask by spending a predefined num-
ber of CPU cycles per packet beside the framework’s packet
IO operations. For the basic performance tests we ignore
cache effects that can occur during a lookup in a data struc-
ture (e.g. a forwarding or flow table). Therefore, we can
assume that packet processing applications spend a fixed
amount of CPU cycles per packet.

5.3 Measure the Transmission Efficiency
Figure 2(a) presents the results of throughput measure-

ments with different CPU loads for the task emulator. As
anticipated by our model in Figure 1, an increasing work-
load decreases the measured throughput. In the next step,
we get back to our goal of measuring the per-packet CPU
load consumed by each framework. To forward a packet, a
CPU core must dedicate a number of cycles for transmission
(cIO), i.e. for receiving and sending a packet, cycles for the
emulated task (ctask) and possibly polls the NIC unneces-
sarily (cbusy).
Knowing fCPU , and taking r and ctask from Fig. 2(a)

allows for the calculation of cbusy + cIO by applying our
Equation 7. These results are shown in Figure 2(b) for each
framework. Starting at around 220 cycles for cbusy+cIO the
graph decreases until the throughput is not longer limited
by the 10Gbit/s line rate. At this point, the throughput
becomes limited by the CPU and no busy wait cycles happen
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Figure 2: Transmission efficiency measurements

any longer, i.e. cbusy = 0. This allows for the separation of
the two components cbusy and cIO into two individual graphs
also depicted in Figure 2(b).
netmap becomes CPU bound with 50 cycles of additional

workload per packet, DPDK and PF_RING ZC after 150
cycles. At this point cIO, which describes the cycles needed
for a packet to be received and sent by the respective frame-
work, reaches its lowest value and stays roughly constant for
all higher packet rates. DPDK has the lowest CPU cost per
packet forwarding operation with approximately 100 cycles.
We measured a cIO of approximately 900 cycles for for-

warding applications based on the Linux network stack in
previous work [30]. This means that the frameworks dis-
cussed in this paper can lead to a nine-fold performance
increase over classical applications.

5.4 Influence of Caches
The forwarding scenarios in the previous section ignored

the influence of caches, which can introduce a delay when
accessing a data structure, e.g. the routing table. To imitate
this behavior the task emulator described in the preceding
section was enhanced to access a data structure while trans-
ferring packets.

The necessary time to access data residing in RAM is
shortened by the ability of modern CPUs to buffer accesses
to RAM by integrating a hierarchy of several caches differ-
ing in size and access time. To test for different scenarios
with only partly filled caches the size of the data structure
was made adaptable. The software influences what is put
into cache indirectly by accessing data in RAM, which is
then put into the cache or by giving hints to memory ad-
dresses via specialized commands. To optimize for common
access patterns, data close to already accessed addresses can
be prefetched by the CPU before it is accessed [42]. Our
tests showed that if a data structure is accessed linearly this
prefetching is working efficiently enough to hide the slow ac-
cess speed to RAM. In the scenario of a routing table the
data to be accessed is determined by the traffic and the ac-
cess pattern is likely to be non linear.
To mimic a worst-case scenario the addresses accessed

were randomized. Aiming for a realistic scenario the prefetch-
ing was counteracted by using a circular linked list with ran-
dom access pattern. This was achieved by randomly chosen
links between the list elements while ensuring that the per-
mutation contains a single cycle so that all memory loca-
tions are accessed when the list is traversed. This guar-
antees a random access on RAM or cache by iterating one
step through the list for each received packet. The size of
the linked list can be varied to emulate different routing or
flow table sizes. An implementation of this data structure
is publicly available [41].
Figure 3(a) depicts the throughput of the investigated

frameworks in relation to the list size of our task simulator.
For every packet processed one emulated table lookup was
performed. To investigate CPU-limited, rather than NIC-
limited, throughput a constant CPU load of 100 cycles was
introduced, the point in Figure 2(a) where the throughput
was beginning to decline for all three frameworks. This off-
set explains the lower throughput of netmap in Figure 3(a),
as expected from the data in Figure 2(a).
The CPU in our test server has 3 cache levels: A L1-

cache with 32KB, a L2-cache with 256KB and a L3-cache
with 8MB [42]. Measurements showed that the average ac-
cess time is 10 cycles for list sizes ≤ 32 KB, growing to 20
cycles for list sizes ≤ 256 KB, growing to 60 cycles for list
sizes ≤ 8 MB, and finally reaching 250 cycles for list sizes
larger than that.
The graph in Figure 3(a) shows no clear transition from L1

to L2 due to the low 10 cycle increase. The decline at around
256KB is visible due to the larger speed difference between
L2-cache and L3-cache. The next drop in the graph is the
transition between L3-cache and non-cached RAM accesses.
DPDK is slightly slower than PF_RING ZC when the L2-

cache is fully occupied by the data structure. This means
that DPDK has a slightly higher cache footprint compared
to PF_RING ZC.
Figure 3(b) plots the cache misses, obtained by read-

ing the CPU’s performance registers. Only the results for
DPDK are given. The results for netmap and PF_RING ZC
are similar and are not shown for improved readability of the
graph. The number of cache misses starts at a certain level
and begins to rise as a cache fills up until the size of the
test data exceeds the respective cache size. This observa-
tion holds for every cache level.
The data shown by Figure 3(a) can be used to test our

model against a different problem. In contrast to the previ-
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ously fixed load per packet, in this experiment the load per
packet was determined by the cache access times. However,
even under these circumstances the model provides a good
estimation if the average per-packet costs are used. For in-
stance, at a list size of 256MB ctask the average costs to
access a list element are 250 cycles. Taking the 100 extra cy-
cles into account, this leads to average costs of 350 cycles for
ctask. For DPDK the cIO is roughly 100 cycles and fCPU

is 3.3GHz. The expected throughput is 7.3Mpps with our
model, and the measured value in Figure 3(a) is 7.1Mpps.
The minor difference can be explained by the fact that the
test data structure also competes for cache space with data
required by the framework, which results in additional over-
head beyond the cache miss when sending or receiving pack-
ets. Therefore, the size of data structures required for rout-
ing also needs to be considered when designing a software
router.

5.5 Influence of Batch Sizes
In the following measurements, we analyze the influence

of the batch size, i.e. the number of packets handled by one
API call.
The tests shown in Figure 4 were conducted using dif-

ferent queue sizes with increasing CPU load using the task
emulator. For each iteration of the test, the batch size was
doubled starting at a batch size of 8 up to a batch size of
256. The results show that each framework profits from
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larger batch sizes. PF_RING and DPDK reach their high-
est throughput at a batch size of 32. The larger batch sizes
are therefore omitted for those frameworks in Figure 4 be-
cause they also do not have adverse effects on the through-
put. netmap needs a batch size of at least 256 to reach a
throughput performance close to the other two frameworks.
This is due to the relatively expensive system calls required
to send or receive a batch (cf. Section 2.3).

5.6 Latency
Increasing the batch size boosts throughput but raises la-

tency because the packets spend a longer time queued if pro-
cessed in larger batches. Overloading a software forwarding
application causes a worst-case behavior for the latency be-
cause all queues will fill up. So a high latency is expected
for all cases where packets are dropped due to insufficient
processing resources.
We used the IEEE 1588 hardware time stamping features

of the Intel 82599 controller to measure the latency of the
forwarding applications [9]. The packets are time stamped in
hardware on the source and sink immediately before sending
and after receiving them from the physical layer. The time
stamps do not include any software latency or queuing de-
lays on the source and sink. This achieves sub-microsecond
accuracy. [39]
Figure 5 shows the latency for different batch sizes under a

packet rate of 99% of the line rate1 and no additional work-
load. The latencies were acquired by sending time stamped
packets periodically (up to 350 time stamped packets per
second) at randomized intervals by using a different trans-
mit queue on the load generator. The time stamped packets
are indistinguishable from the normal load packets for the
forwarding application.
Both DPDK and PF_RING ZC are overloaded with a

batch size of 8, netmap with all batch sizes smaller than 256
as described in the previous section. This causes all queues
to fill up and the applications exhibit a worst-case behavior

1Using full line rate with constant bit rate traffic causes
delays after a minor interruption (like printing statistics)
because it is not possible to send faster than the incoming
traffic.
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that is typical for a system that is overloaded. DPDK und
PF_RING achieve a latency of 9µs with a batch size of 16
and the latency then gradually increases with the batch size.
PF_RING ZC gets slightly faster than DPDK for larger
batch sizes. netmap achieves a forwarding latency of 34µs
with a batch size of 256.
These latencies can be compared to other forwarding meth-

ods and hardware switches: Rotsos et al. measured a latency
of 35µs for Open vSwitch under light load and 3 - 6µs for
hardware-based switches [32]. Bolla and Bruschi measured
∼15µs to ∼80µs for the Linux router in various scenarios
without packet loss and latencies in the order of 1000µs for
overload scenarios [13].

6. CONCLUSIONS AND OUTLOOK
High-speed packet IO frameworks are no longer in fledgling

stages and allow for a multiple of the packet rates of classical
network stacks. The performance increase comes from pro-
cessing in batches, preallocated buffers, and avoiding costly
interrupts.
We described the processing performance of high-speed

packet IO frameworks. Starting with a model describing
packet processing software in general, this model is gradu-
ally adapted to reflect applications using high-performance
frameworks. For our experiments we rely on a precisly gen-
erated load on the CPU. The code generating these differ-
ent kinds of load on the CPU is publicly available [41].
Experiments showed the performance characteristics pre-
dicted by this model. Thus proving the assumptions right
made during the development of this model. The CPU time
spent on receiving and transmitting packets, for instance,
remained constant despite the influence of the varying pro-
cessing times per packet. Further measurements showed
that this model can be applied to estimate processing tasks,
which can be approximated with a constant average load. A
possible use case for this model is to evaluate the eligibility
of PC systems for specific packet processing tasks.
We also showed the trade-off between throughput and la-

tency with different queue sizes. Larger batch sizes increase
the performance but also the average latency. However,
there is also a minimal batch size where the frameworks
are overloaded. In that case latency is a multiple of what
it could be if the packets would be sent in larger batches.
These results can be used to choose the configuration and
the framework best fit for an application’s requirements, i.e.

smaller batch sizes for applications sensitive to high latency
or larger batch sizes for applications where raw performance
is critical.
If mere performance and latency figures are considered

DPDK and PF_RING ZC seem to be superior to netmap.
Though netmap has advantages. It uses well-known OS in-
terfaces and modified system calls for packet IO, leading
to increased performance while remaining a certain degree
of interface continuity and system robustness by perform-
ing checks on the user-provided packet buffers. DPDK and
PF_RING ZC favor more radical approaches by breaking
with those concepts, resulting in even higher performance
gains, but lack the robustness and familiarity of the API.
An application built on DPDK of PF_RING ZC can crash
the system by misconfiguring the NIC, a scenario that is
prevented by netmap’s kernel driver.
Our conclusion is that the modification of the classical

design for system interfaces results in higher performance.
The more these interfaces are modified, the higher the packet
rates that can be achieved. As a drawback, this requires
applications to be ported to one of these frameworks.
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