
Design and Deployment of Link-Layer Boosters
for Per-flow Improvement of QoS in Wireless Internet Access

Christian Hoene, Iacopo Carreras, Tianwei Chen, Adam Wolisz1

Technical University of Berlin – Telecommunication Networks Group (TKN) – Berlin – Germany

Ph.: + 49 30 314 23818, Fax: +49 30 314 23819, e-mail: hoene|chen|wolisz@ee.tu-berlin.de

1 This work has been partially supported by the IST Project MOBIVAS.

ABSTRACT
The transport mechanisms of Internet have an inherent
drawback, which is due to their generality. Internet has
to support a broad range of services (data, audio,
video, etc.) on top of a unique protocol stack. On the
other hand, it is well known, that there is a high
potential for QoS and efficiency improvement if joint
source and channel coding are used. Utilization of this
potential is especially attractive in the case of
interactive multimedia transmitted over wireless
channels. In this paper we present the Mobile
Adaptation System (MAS), which supports the dynamic
deployment of boosters for flow selective link level
packet treatment in wireless Internet access. These
boosters use the knowledge of the importance of
individual packets, or relations among packets in order
to optimise the link layer transmission. We discuss our
approach using as example a speech property based
(SPB) booster for improvement of the perceptual quality
of Voice over IP transmission in Wireless LANs.

1. INTRODUCTION
Wireless Internet access is already available. Huge
investments in third generation access technologies will
hopefully help to improve its quality, speed and
usability. The aim of the paper is to show how the
Quality of Service (QoS) of wireless communication
services can be enhanced by individual treatment of
packets within selected data flows.
 Commonly the requirements for transmission QoS
for multimedia streams are artificially and imprecisely
extracted from the applications and formulated as
requirements on network or transport level in terms of
throughput, delay, jitter as well as loss probabilities.
Different network solutions are compared according to
these requirements.
 A more attractive approach consists in comparing
different networking solutions by direct measuring of
the perceived quality of multimedia applications (see
e.g. [1]). Users might evaluate the subjective quality of
speech and video, or measurement tools calculating the
objective quality by simulating the user’s perception
might be utilized. Such tools include multiple metrics
and are to be developed separately for each type of
multimedia application. The network/transport level
QoS influences the perceived quality, but the network
metrics are in a non-trivial relation to the perceived
metrics.
 One example of direct usage of the perceived QoS
are recent investigations by Sanneck, Long Le et al. [2],

who have studied the impact of packet losses to the
speech quality. They analysed modern frame-based
codecs like the ITU-T G.729 and have found out that
losses of different frames (referred to as voiced and un-
voiced) have a different impact with respect to
perceived speech quality. In fact frame losses during an
unvoiced/voiced transition impair the quality most
significantly. Another example is the transmission of
MPEG video, which consists of three different types of
frames. Each of these types has a different importance
for the decoder, thus losses have different impact
depending on the frame type (in fact loss of some of the
frames implies that some other frames are useless to the
decoder, and might be dropped in advance as well).
 As wireless links are expected to be bottlenecks in
the future mobile Internet, offering much lower bit rates
than their wired counterparts and dynamically changing
the quality (fading), the above considerations are
especially appropriate in this case. Unfortunately
enough, the Internet treats – at the moment – all packets
in the same way. Furthermore the main stream of
discussions toward extensions of the recent Internet
model by some QoS support tends to assure specific
treatment of whole flows. If individual packets within a
single flow might be marked differently, there is still no
clear way to define conditions like: increase the
importance of the following packet in the stream after
the previous one has been dropped.
 On the other hand joint source and channel coding
(e.g. images over wireless [3]) has attracted recently
more and more attention especially for transmission in
difficult environments like wireless. It is well known
that under finite delay requirements and in case of
varying channel properties, joint source-channel coding
is superior to Shannon’s proposed separation of source
and channel coding [4]. This difference might be even
more dramatic if limits on the computational capacity of
portable end-systems will be taken into account. But
joint source-channel coding violates essentially the
Internet’s layering principle.
 In this paper we propose the usage of intelligent,
flow specific, link layer protocols, which should utilize
the knowledge application requirements in addition to
their local knowledge of channel conditions, in order to
optimise the perceived quality of multimedia services.
 We apply the term link-layer booster for these
protocols, as boosters (see [5]), which transparently
enhance existing protocols, seem to be the most
attractive way to implement our concept. By definition
boosters do not modify the syntax or semantics of the

Administrator
appeared in Proc. of European Wireless 2002, pp. 170-176, Florence, Italy, February 2002

exchanged end-to-end protocol messages and they work
transparently with regard to other protocols.
 We argue that it is important to have the possibility
to exchange such boosters dynamically, this becomes
necessary as new applications, or new coding schemata
– calling for different processing – are deployed.
 In this paper we discuss in §2 an architecture and
protocol stack that supports per-flow treatment of the
wireless link with link-layer boosters. In §3 we
introduce the Mobile Adaptation System (MAS), which
allows the dynamic deployment of boosters to re-
configurable terminal in order to cope with changing
applications and environments. In §4 we describe the
design and implementation of a Speech Property Based
(SPB) Booster that improves the quality of voice over
wireless LANs. It uses characteristics of human speech
production and features of modern audio codecs to
differentiate packets regarding their importance for
perceptual quality. We present our experimental
measurement results of both the SPB booster and the
Mobile Adaptation System. Finally we complete the
paper with a summary of the results and an outline of
further research.

2. ARCHITECTURE
For the sake of simplicity in this paper we will constrain
our considerations to a wireless Internet access scenario
with a single hop wireless link as illustrated in figure 1.
A mobile terminal can use different wireless access
networks to connect to the Internet. It communicates
with corresponding hosts over the Internet backbone.
Typically the throughput of the Internet backbone, and
the wireless link differ significantly, for example by the
order of a magnitude, because of different physical
limitations of the underlying mediums. Thus, the
wireless link has the largest impact on the end-to-end
QoS. One should be aware, that the typical Internet
approach to improve QoS by overprovisioning is very
unattractive in the case of wireless links, because of the
high cost of spectrum licencing, as demonstrated for
example during the recent UMTS frequency auctions.

Figure 1: Wireless Internet access

To provide per-flow treatment of QoS over wireless
links, the logical architecture of both mobile terminal
and access point have to be extended. We describe here
the supporting architecture for the mobile terminal,
having in mind that the access point has to be designed
correspondingly.

 Four additional building blocks are introduced in the
protocol stack of the mobile terminal (Fig. 2):

Socket

Scheduling

Radio Modem
A

Flow
Classification

Mapping
for G.729/

RTP

default
TCP/UDP/IP

protocol stack

enhanced Link
Layer Protocols

enhanced Link
Layer Protocols

Radio Modem
B

Mapping
for

MPEG4

Mapping
for NFS/

RTCP

Maping Flows
to Link Layer

Protocols,
e.g. for

Figure 2: Transport plane on mobile terminal. The white
boxes are either new in our architecture, or substantially

extended in functionality.

2.1 Classification
A classification module identifies the flows of
multimedia applications. The flow classifier uses
information from the transport and application layer
(there are different ways to extract such information – a
good example might be found in [6]). It is placed below
the Socket API and above the Internet protocol stack.
Whereas we assume that the flow classification is
autonomous, the introduction of QoS sockets [7] will
extend the classification unknown applications.
However, QoS sockets are still neither widely deployed
nor used.2

2.2 Mapping
Flows are individually mapped to specific link-layer
protocols, processing the stream of data with respect to
the semantic knowledge about its structure (see e.g. §4).

2.3 Scheduler
Multimedia applications produce multiple flows thus a
scheduler is always necessary in order to mediate their
access to the shared transmission channel (as
represented by an individual radio-modem). Introducing
the possibility to treat individually packets within a
single flow, as well as dynamic adaptation to the
channel state opens new requirements for the schedulers.
Simple FIFO schedulers, like used recently, will be
substituted by much more complex ones.

2 On the access point classification algorithms of flows
are more complex. Their detailed description is beyond
the scope of this paper.

2.4 Enhanced Link Layer
The transmission conditions on a radio channel vary
substantially; there are also several possibilities to
influence the quality of the transmission of the radio
channel. Let us mention here only some of them, such as
adjusting the transmission power, usage/non usage of
multiple antennas, etc. Those special features have to be
accessed over a specific common device driver API. We
propose such API, following the approach presented in
the Rooftop Data-Link API [8].

3. MOBILE ADAPTATION SYSTEM
The traditional Internet protocol stack is general enough
to support a broad range of applications over
heterogeneous networks. The introduction of new
communication services or protocol enhancements is
rather seldom. Furthermore, it takes a long time to create
new ones, as it can be seen in the case of the ongoing
deployment of IPv6. The link-layer boosters are
designed to support a specific combination of
multimedia application and wireless bearer. This
combination is a priori unknown, because users install
applications dynamically and the networking
environment changes (at least due to terminal mobility).
Thus the link-layer boosters have to be updated from
time to time.
 We argue, that network operators are responsible for
deployment of the link layer boosters, because they have
an immanent interest to increase the efficiency of the
access network as well as an interest in competing in the
offered QoS. On the other hand it is obvious that the
majority of users do not want to actively bother about
configuration of their terminals. Thus, our architecture
bases on the assumption that the protocol update in the
mobile terminal is triggered and executed by the
networking operator (responsible for the access
network).

3.1 Design
Traditionally, active or programmable networks have
been proposed to accelerate the introduction of new
communication services and to cope with the pace of
network evolution [9]. Programmable networks abstract
the networking hardware and include environments to
download and install the networking software above the
hardware abstraction. First of all, programmable
networks usually assume the existence of a common
abstraction of the underlying hardware. Unfortunately
such an abstraction is not available yet for mobile
terminals. One effort for creating such abstraction has
been done within the DAPRA Rooftop APIs [8]
describing a functional framework of radio APIs for
various layers. This framework supports a broad range
of different radio technologies, but an abstraction of the
MAC layer, which link-layer protocols have to use, is
missing. In addition this approach is not really
disseminated. The Software Defined Radio Forum
proposes the separation of MAC and link-layer in the
Joint Tactical Radio System (JTRS) [10]. However, a
detailed description of the API does not exist so far.
Thus, proprietary interfaces have to be used, which
differ for each radio modem type and often are tightly
coupled to dedicated hardware. (An overview of link-
layer APIs for wireless LANs can be found in [11].)

 On the other hand programmable networks come
along with a rather significant overhead because of both
the abstraction discussed above, and dedicated
execution environments. On a device with constrained
resources this overhead might overwhelm the benefit of
the link-layer boosters.
 Our re-configurable terminal is based on an
approach called dynamic software updating, as
introduced by Hicks [12]. Protocol modules are
downloaded to update or extend the existing code.
Whereas dynamic software updating reduces the priori
assumptions of the functions and allows efficient
implementations, the questions when, what and from
whom to download the code have to be solved.
 Because boosters provide a special type of
communication services, we use a service discovery
mechanism to locate the booster (Fig. 3). First service
providers (boosters) register their communication
service at a service directory, which stores all
communication services of an access network. Next, the
client (mobile terminal) and the service directory try to
find each other. The directory provides the client the
description of an appropriate communication service.
This information comprises the kind of service, a
download address (URL) of the code to support the
service and optional service configuration parameters.
The client can download the code of adaptation agent
(AA) and starts its.

 Download agent (3) and link layer (5) code from

Mobile Terminal Base Station Internet
Backbone

Communication
Service Directory

Protocol Manager
Service Discovery

adaptable
link layer
boosters

Code
Database

(6) configure and
install

link layer code

(2) discover directory
and request

Communication
Service

 (1) register booster to

Adaptation
Agent

(4) install
adaptation agent

link layer
boosters

Figure 3: Mobile Adaptation System
To download the link-layer protocols, we follow an
agent-based approach, described by Hall for the post-
development configuration management of software
development [13]. The AA configures, downloads,
installs link-layer protocols. If it is necessary the client
re-installs former versions of the link-layer protocols.
 Three main building entities, the service discovery,
the Adaptation Agent, Link Layer execution
environment are described in the following.

3.2 Service Discovery
To implement the service discovery we have decided to
use the IETF service location protocol (SLP) [14],
because of its simplicity and increasing popularity. SLP
comprises service agents, directory agents and user
agent, and exchange and stores description of services.
 A set of parameters are used to identify
communication services. We used the following fields.
The SLP type field describes the service class, e.g.
“wireless/linklayer”. Two parameters specify the agent’s
interfaces. (e.g. “java.net.ProgramDevDriver” for an

interface that a agent uses). An other parameter
describes the execution environment for the agent:
“downloadable protocols version 3”. At last we included
some human readable descriptions of the
communication service.
 An user agent on the mobile terminal tries to
discover a directory agent by sending IP multicast
messages or the directory agent announces himself by
sending a multicast message. After locating a directory
agent the user agent asks for a suitable communication
service and requests the downloading location of the
upgrade agent.
 The directory agent decides, which communication
service is most suitable for the mobile terminal, if
multiple boosters are available. Our service discovery
framework is general enough to support different
strategies to choose the right upgrade agent. Afterwards
the download location, which is an Internet URL
address, and optional a protocol configuration is sent to
the user agent.

3.3 Adaptation Agent (AA)
The client downloads the code of the adaptation agent
from code database, whose Internet address (URL) has
been obtained with the service discovery.
 To cope with various problems of mobile code
technologies, we have decided to use the Java
framework. The AA runs in an execution environment,
which is based on the enhanced Sandbox of Java 2.
Thus the agent is portable, save, secure. It can run on
various hardware platform and operating systems.
 Furthermore Java includes mechanisms to download
code efficiently and on demand. The Java Archive
(JAR) package supports the transfer of code (and other
data) in a compress format [15] and as a single JAR file.
Furthermore it can verify the integrity and origin of code
by checking code signatures, which are part of a JAR
file. Thus providers of code can assure the system
stability. Their trusted code can run even outside of the
secure sandbox.
 One task of the AA is to identify the operating
system, its version and the type of radio modem. It uses
this information to download and to install a platform-
specific link-layer protocol.3

3.4 Link-Layer
As the link-layer booster includes code influencing
directly the radio modem, we have decided to include
the link-layer booster in the device driver of radio
modems. In a Linux system device drivers are part of
the kernel. The Linux kernel supports an extension
mechanism [16], which is used to exchange kernel
modules (e.g. device drivers) at run-time.
 The PCMCIA card manager [17] loads dynamically
device drivers, if a new PCMCIA card is inserted in a
slot. The card manager looks up the name of the
PCMCIA card to find a suitable device driver and
configuration scripts. Next, it executes the configuration
scripts and installs Linux kernel modules. If a module
cooperates with other modules, this module dependency

3 The java environments can be used for transport- and
network-protocols, too. However, the protocol
performance is too slow to be usable.

is resolved automatically and all needed modules are
loaded in the right order. If the PCMCIA card is a
networking card, the card manager sets the right network
configuration or triggers a DHCP client to request for an
IP address.
 In our design we have decided to retrofit this
PCMCIA card manager for the installation of new
device drivers and link-layer protocols. We have
extended the card manager to support name spaces,
which describe different configurations. If the
adaptation agent requests an exchange, the card manager
simulates the removal of the wireless PCMCIA card to
unload the current driver. Afterwards a new name space
is set and the card manager loads the newly downloaded
configuration scripts, module dependency files, and
kernel modules. Next the injection of the PCMCIA is
simulated to reinstall and configure the new device
driver.

3.5 Performance Measurements
For a proof of concept we have implemented our design
and conducted some performance measurements. A
notebook with a Pentium II 400MHz running LINUX
2.2.19 has been used as a re-configurable terminal. It
was connected over a wireless LAN with an access point
emulated by a standard PC. No other applications could
use any of the resources during the measurements. On
the access point we have placed the booster, the
directory agent and the code server on the PC emulating
the access point.
 We are interested in the efficiency of booster
discovery, downloading and installation. In table 1 the
communication overhead due to downloading is shown
while in table 2 the time scale of the update process is
presented.

Action User data

in bytes
Network
packets

Duration
in ms

SLP: DA discovery 123 2 11,3
SLP: service
request 389 2 29,3
Agent download 2971 14 64,5
Device driver
download 45822 58 277,4
Device driver
exchange 8680,6
DHCP 628 3 6,3
ARP 56 2 0,1
Total 49989 81 9069,5

Table 1: Network traffic due to booster download
Action Start time

in ms
End time
in ms

SLP: DA discovery 0 11
SLP: service request 8614 8643
Agent download 8725 8790
Device driver download 8795 9072
Device driver exchange 10403 17380
DHCP 17380 17387
ARP 17407 17407

Table 2: Time scale of booster download
It is probably most interesting to look into the details of
device driver exchange mechanism as it takes quite a

long time, during which no network connectivity is
available. In table 3 we have listed the actions of the
card manager during the exchange. Most time is wasted
during the simulated removal and insert, because the
card manager has to run external programs and scripts.

Action Time scale in ms
Start 0
Identification of PCMCIA card 0,3
Simulated removal 0,4
Change of the name space 3247,8
re-loading configuration files 3248,0
Simulated insert 3259,2
Finished 8681,0

Table 3: Exchange of link-layer protocol
On the other hand the gap between the DA discovery
and the service request, due to implementation details, is
less critical, as during this time network connectivity
with the “old” software is available.

4. THE SPEECH PROPERTY BASED BOOSTER
In the following we will summarize the design,
implementation and performance measurements of a
speech property based (SPB) booster which improves
the voice transmission of G.729 coded speech over
IEEE802.11 wireless LAN in the case of high loss rates
(more details can be found in [18]).

The basic idea of this booster is based on the
observation that not all the packets have the same
importance for objective speech quality [2]. Considering
the speech signal properties and low bit rate codecs
features, it is possible to distinguish between important
and unimportant packets.

In order to evaluate the performance of the booster
mechanism, we have set up an experimental
measurement environment. The speech audio quality of
the normal VoIP architecture has been compared with
the speech audio quality using the novel booster
mechanism. Because we are interested in the quality of
the perceived speech audio, an objective measurement
method has been used. The adopted metric is the
perceptual distortion (EMBSD) [19], which yields
results that have a high correlation with the MOS, the
metric used in the case of subjective, human based tests.

Voice quality is reduced by packet losses even
though common voice codecs include concealment
algorithms, which interpolate lost audio segments.
Packet losses can occur due to errors on the wireless
link and late arrivals. We use a simulated play-out buffer
to limit the maximal transmission time of voice frames.
The play-out buffer drops packets that are too late. It is
assumed that sufficient bandwidth is available to avoid
losses due to congestion and queuing delays in the
backbone.

We have experimented with three approaches
providing an improved treatment of important packets4:

4 Several approaches to improve the Voice over IP have
been already studied, let us mention just two of them:
For Voice over IP Bolot [20] has proposed to use an
open loop error control mechanism based on forward
error correction. He argued that ARQ mechanisms are
not acceptable for interactive audio applications because

• Selective packet loss recovery protects packets by
using different configurations of the physical and
data link layer and switching between them on a
per-packet basis. We have simply changed the
maximum number of link layer packet
retransmissions in case of transmission error. This
is in compliance with the IEEE 802.11 standard.

• The second approach, called redundant
transmission, protects the packets classified as
important by performing a redundant transmission.
The booster mechanism is responsible for
duplicating several times the important packets.
The Internet protocol stack has no restrictions
regarding the duplication of IP packets.

• The third approach, referred to as hybrid solution,
protects the important packets by both adding
redundancy and using a selective packet loss
recovery procedure.

4.1 Design of the SPB booster
In figure 4 the architecture of the booster mechanism is
shown in the case of mobile terminal sending to the
corresponding host. The booster is composed of a
transmitting side, located on the mobile terminal, and a
receiving side, located on the access point. Both parts of
the booster are located at the MAC- and link layer. The
part located on the mobile terminal is responsible both
for classifying the packets (the “analysis” block) and for
providing this information to the booster. Consequently,
the MAC/link layer adopts or does not adopt a protected
transmission, depending on the classification of the
packet. The part located in the bridge is responsible for
making the booster mechanism transparent to the rest of
the system.

CODEC

RTP

UDP

IP

MAC Booster MAC Booster MAC

IP

UDP

 RTP

 CODEC

IEEE 802.11 ETHERNET

Analysis

 Local Host Access Point

Bridge

MAC

Remote

 Figure 4: Speech property booster

4.2 Measurements and Evaluation
We have evaluated the SPB booster using an
experimental set-up with commercial wireless LAN
equipment. The measurements have been taken in our
office environment using a laptop that has been
connected over wireless LAN to a base station, and an
corresponding host. We transmitted speech samples

they dramatically increase end-to-end latency. The
discussed solutions are only end-to-end. Bakin [21] has
developed an FEC Booster for UDP applications over
terrestrial and satellite wireless networks. The booster is
similar to our redundant solution, but protects multiple
consecutive packets by additional parity packets.
Therefore, it increased the latency, because the lost
packets can only be reconstructed after receiving all
other packet in a FEC block.

using Java based RTP applications and a modified
wireless LAN driver. We have measured packet losses,
transmission delay, and both objective audio quality and
packet losses.
 The following plots are based on 400 measurements,
each 15 s long, conducted in the case of high error rates,
occurring on the outer limit of the transmission range
during movement of the mobile terminal. The efficiency
of the above discussed approaches has been compared
with the standard, unprotected Voice over IP
architecture.

Figure 5: Frame losses vs. frame buffer size
In figure 5, the speech frame loss rate vs. the play-out
buffer length measured in G.729 frames is presented
(the scale has to be multiplied by 10ms to get the time
dimension!).

Figure 6: EMBSD vs. frame buffer size

In figure 6, the perceptual distortion (EMBSD) as a
function of the play-out buffer size is plotted for all the
investigated cases. Lower values of the index
correspond to a better speech quality. Although ideally
received samples would have a distortion of zero, due to
the coding losses of G.729 lowest value of 0.9 have
been observed if no transmission losses occurred.
 Out of this sample results, it can be seen that
utilization of the SPB booster leads in our experiments
to an improvement of the audio quality. In the case of
hybrid and redundant transmission these gains are due to
a reduced loss rate (and come on the expense of
additional channel load!). Contrary, in the case of
selective packet loss recovery the voice quality is
improved only by an intelligent distribution of the
packet losses!

6. SUMMARY AND CONCLUSION
In this paper we have presented an architecture to
improve the transmission mechanisms over wireless
links. We propose the use of link-layer boosters, which

take into account the multimedia application
requirements and the channel properties.
 We have discussed the design of a re-configurable
terminal, which uses service discovery and upgrade
agents to download and install these boosters.
Unfortunately extended programmability comes along
with additional resource consumption. Using a prototype
implementation we have identified network traffic of 50
kbytes for the download and a service interruption of 9s
for the exchange of the link-layer. As the protocol
exchange should not be treated as a frequent event, we
assess this values as promising for the first prototype.
We are, however, investigating possibilities for their
improvement.
 A speech property booster has been developed and
implemented as an example for the usage of our
approach. Our experimental measurements have been
successful in showing that the perceptual voice quality
over wireless LAN can be significantly improved.
 We are continuing our efforts on further
optimisation of the SPB booster for voice transmission,
in addition we are working on similar approach for
MPEG-4 Video transmissions for wireless LANS. In
addition we consider solutions for proper boosters also
for other wireless technologies.

ACKNOWLEDGEMENTS
Authors would like to thank the colleagues from the
TKN Group, especially Morten Schläger, as well as
MOBIVAS partners for numerous motivating
discussions. We would like to express our gratitude to
Ing. Enrico Gregori (CNUCE Pisa) for having made the
visit of Iacopo Carreras at Technische Universität Berlin
possible. Christian Hoene thanks the Technical
University of Berlin for providing a scholarship for a
visit at Columbia University and Prof. Campbell for
coaching him during this visit.

REFERENCES
[1] A. Watson and M.A. Sasse. “Measuring Perceived
Quality of Speech and Video in Multimedia
Conferencing Applications”, In Proceedings of the
ACM Multimedia Conference, pp. 55-60, Bristol, UK,
September 1998.
[2] H. Sanneck, N.T.L. Le, and A. Wolisz. “Intra-flow
Loss Recovery and Control for Voice over IP”,
Proceedings of ACM Multimedia, 2001.
[3] N. Farvardin and V. Vaishampayan, "Optimal
quantizer design for noisy channels: an approach to
combined source-channel coding", IEEE Trans. Inform.
Theory, Vol. 33, pp. 827--838, Nov. 1987.
[4] C.E. Shannon, “A mathematical theory of
communication”, Bell System Technical Journal,
27:379--423,623--656, 1948.
[5] D.C. Feldmeier, A.J. McAuley, J.M. Smith, D.S.
Bakin, W.S. Marcus, and T.M. Raleigh, "Protocol
boosters", IEEE Journal on Selected Areas in
Communications, Special Issue on Protocol
Architectures for 21st Century Applications, 16(3):437-
444, April 1998.
[6] T. Harbaum, M. Zitterbart, F. Griffoul, J. Röthig, S.
Schaller, H. J. Stüttgen, “Layer 4+ Switching with QoS
support for RTP and HTTP”, Proceedings of IEEE

Globecom Conference, Rio de Janeiro, Brazil,
December 1999
[7] Microsoft Cooperation, “Windows Sockets 2
Application Programming Interface, An Interface for
Transparent Network Programming Under Microsoft
Windows, Revision 2.2.2, August 7, 1997”,
ftp://ftp.microsoft.com/bussys/winsock/winsock2/
[8] Rooftop API, www.sdrforum.org
[9] A. T. Campbell et al., "A Survey of Programmable
Networks", ACM SIGCOMM Comp. Commun. Rev.,
Apr. 1999.
[10] Software Defined Radio Forum,
http://www.sdrforum.org/
[11] Data-Link Programming, http://www-tkn.ee.tu-
berlin.de/research/dp/
[12] M. Hicks and S. Nettles. “Active networking means
evolution (or enhanced extensibility required)”, in
Proceedings of the Second International Working
Conference on Active Networks, October 2000.
[13] R.S. Hall, D.M. Heimbigner, A. van der Hoek, and
A.L. Wolf, “An Architecture for Post-Development
Configuration Management in a Wide-Area Network”,
in Proceedings of the 1997 International Conference on
Distributed Computing Systems, pages 269--278. IEEE
Computer Society, May 1997.
[14] E. Guttman, C. Perkins, J. Veizades, and M. Day.
“Service Location Protocol, Version 2”, IETF RFC-
2165, Nov. 1998.
[15] Sun Microsystems, Inc. Java Archive (JAR) File.
http://www.javasoft.com/products/jdk/1.2/docs/guide/jar
[16] Matt Welsh, “Implementing Loadable Kernel
Modules For Linux”, Dr. Dobbs Journal, 20(5), 1995.
[17] Linux PCMCIA Information Page, http://pcmcia-
cs.sourceforge.net/
[18] C. Hoene, I. Carreras, and A. Wolisz, "Voice Over
IP: Improving the Quality Over Wireless LAN by
Adopting a Booster Mechanism - An Experimental
Approach", in ITCOM 2001, Denver, USA, August
2001.
[19] W. Yang, M. Benbouchta, and R. Yantorno,
“Performance of the modified spectral distortion as an
objective speech quality measure”, in Proc. ICCASP,
vol. 1, Seattle, Washington, Mai 1998.
[20] J.-C. Bolot, and A. Vega-Garcia, "The case for
FEC-based error control for packet audio in the
internet", ACM Multimedia Systems, 1997.
[21] D. Bakin, W. Marcus, A. McAuley, and T. Raleigh,
“An FEC booster for UDP application over terrestrial
and satellite wireless networks”, International Mobile
Satellite Conference (IMSC 97), Pasadena, California,
June 1997.
[22] L. Muños, M. García, J. Choque, R. Agüero, and
P.Mähönen, “Optimizing Internet Flows over
IEEE802.11b Wireless Local Area Networks: A
Performance-Enhancing Proxy Based on Forward Error
Correction”, IEEE Communication Magazine, pp. 60-
67, December 2001

