
R5N : Randomized Recursive Routing for
Restricted-Route Networks

Nathan S. Evans
Technische Universität München

Munich, Germany
Email: evans@net.in.tum.de

Christian Grothoff
Technische Universität München

Munich, Germany
Email: grothoff@net.in.tum.de

Abstract—This paper describes a new secure DHT routing
algorithm for open, decentralized P2P networks operating in
a restricted-route environment with malicious participants. We
have implemented our routing algorithm and have evaluated
its performance under various topologies and in the presence
of malicious peers. For small-world topologies, our algorithm
provides significantly better performance when compared to
existing methods.

I. INTRODUCTION

Distributed Hash Tables (DHTs) [13], [11] are a key data
structure for the construction of completely decentralized ap-
plications. DHTs are important because they generally provide
a robust and efficient means to distribute the storage and
retrieval of key-value pairs.

In recent years, DHT designs have become increasingly
efficient and robust under churn [9], [12], [14], [18] and
Sybil attacks [10], [16], [19]. Other research has addressed
implementation concerns, such as optimizing network perfor-
mance. In practice, modern DHTs restrict participation to so-
called super-nodes, excluding peers with limited connectivity
from direct participation. The primary reason for this is that
virtually all previous DHT routing algorithms (with the notable
exception of Freenet [15]) are based on the fundamental
assumption of universal connectivity between all participating
nodes (or rely on unstable NAT traversal).

This assumption means that modern DHTs cannot function
properly in networks with limited connectivity (mobile, ad-
hoc wireless, sensor, friend-to-friend, etc.). Following [15],
we refer to these networks where peers are not free to directly
connect to arbitrary other peers (and therefore route in the
DHT) as restricted-route networks. We need to distinguish be-
tween the network topology created by a peer-to-peer overlay
and the underlying network infrastructure, so we use the term
restricted-route underlay topology to describe the resultant
restrictions imposed on the overlay routing algorithm.

This paper introduces a new randomized DHT routing
algorithm, R5N , which enables our DHT to operate effectively
over restricted-route networks and also increases security and
resilience to various attacks compared to existing algorithms.
R5N only assumes that the topology is connected and, in
particular, does not require or use a coordinate system for
organizing peers. A primary goal of R5N is providing an open

network where users can join or leave at any time without
approval by a certificate authority or other trusted entity.

The R5N design itself is relatively simple, essentially
combining a random walk with recursive Kademlia-style [11]
routing. Our design also includes topology augmentation using
a combination of distance-vector and onion-routing, a novel
replication strategy and an API to verify content integrity.
Using distributed emulation, we demonstrate that this new
algorithm has performance comparable to Kademlia if the un-
derlay is unrestricted, and outperforms Kademlia and random
walks for various restricted-route topologies. We also show
that our algorithm has advantages in terms of availability
and fault-tolerance, especially in the presence of malicious
participants. Compared to Kademlia, we generally see a larger
number of replicas and higher success rates for data retrieval.

Our algorithm has been implemented and released as free
software; the release includes the measurement tools and
topology generators used for the experiments presented in this
paper.

II. RELATED WORK

A DHT imposes structure upon the network underlay by
connecting peers to a certain subset of all nodes in the network.
The size and method of construction of the routing table is one
of the key design choices that distinguish DHTs. For example,
Kademlia [11] has routing tables of size O(log n) and can
route requests to the proper destination with O(log n) steps.

Another key design choice for a DHT is the routing or
lookup behavior, which is categorized either as iterative or
recursive [6]. In iterative routing, the initiator directly connects
to each hop and retrieves information about the next hop until
the initiator has a direct connection to the final destination. As
a result, the initiator of a request has full control over which
node(s) the request is forwarded to at each step — and can
possibly tackle problems (such as node failures or malicious
participants) during the propagation (for example, by choosing
alternative paths).

With recursive routing, the request is forwarded through the
network from the first hop onwards according to the routing
algorithm and the initiator is only involved again as the final
destination of the response, if there is any. A key benefit of
recursive routing is that the initiator does not have to be able

to connect to each peer that participates in request routing.
However, recursive routing is also less fault-tolerant due to
the initiator’s lack of control.

A. Kademlia

We use a modified version of Kademlia [11] as the basis
of our routing algorithm. The Kademlia algorithm has been
shown to work well in networks with common rates of
churn [12] and has, in practice, proven capable of handling
millions of peers [17]. Kademlia uses XOR to determine the
distance between elements in the key space.

Kademlia’s routing table is structured as an array of k-
buckets. Kademlia uses as many k-buckets as there are bits
in the address space. Each k-bucket can hold up to k peers.
The i-th k-bucket stores up to k peers whose identifiers are
between distance 2i and 2i+1 from the local peer. Routing in
Kademlia is iterative; at each step the initiating node picks r
closest peers for the next step. Those r peers are queried and
return a set of peers closer to the key, and routing continues in
this fashion until no closer peers are found. Finally, Kademlia
stores data at the r closest peers to the key. Kademlia achieves
O(log n) routing performance: in each step the distance to the
destination is at least halved.

One failing of Kademlia is that it has been shown vulnerable
to numerous attacks, such as poisoning [10] and Sybil [16]
attacks. For example, an adversary may want to deny par-
ticipants access to a particular key. This can be achieved by
creating r peers with identifiers closer than the closest current
peer to the key; afterwards, all requests will effectively end at
an adversary-controlled peer. Access to the data is then under
the control of the adversary.

B. Restricted-Route Topologies

We use the term “restricted-route topology” to refer to a
connected underlay topology which prohibits (restricts) direct
connections between some of the nodes. Common DHT rout-
ing algorithms show diminished performance or even arrant
failure when operating over a restricted-route underlay. A
common solution on the Internet is to restrict participation
in the DHT to peers that are not encumbered by NAT or
firewalls. However, this solution limits load-distribution for
P2P applications on the Internet and does not work at all for
physical networks or friend-to-friend networks. For these types
of networks, some other method of routing must be employed
to cope with restrictions on direct communication.

C. Freenet

Freenet [15] is the only efficient DHT design we are aware
of which works well in restricted-route networks without coor-
dinates. The main problem with Freenet’s DHT is the inherent
vulnerability of the critical location swapping operation [5].
This operation allows an adversary with only a few peers
anywhere in the network to cause massive peer identifier
clustering, leading to possible data loss and destroying the
load balancing properties of the DHT.

III. DESIGN OF R5N

The basic idea of R5N is to take advantage of the limited
connectivity of restricted-route networks by using the large
number of peers that are closer to a key than any of their
neighbors for replication. A PUT operation is used to store
data at a random subset of these peers, and subsequent GETs
then attempt to reach one of the replicas. PUTs are repeated
at a certain frequency to refresh data. Since R5N performs
non-deterministic routing, repeated PUTs are likely to result
in data being stored at different peers. Furthermore, since our
design specifies that this refresh period is significantly shorter
than the timeout of content at the replica nodes, this increases
the chance of success for subsequent GET operations.

Naturally, a GET may still fail to find its target value. In
this case, R5N expects peers performing GETs to retry a
few times. Since routing of GETs is also non-deterministic,
repeating the GET operation has a high chance of reaching
different peers and hence improves the chance of finding the
data. While the GET failure rate is guaranteed to decline over
time, the specifics depend on a replication parameter r, the
network topology and the number and behavior of adversaries
in the network.

Since both GET and PUT operations take different paths
each time, an adversary has little chance to successfully place
his nodes in the network to block particular key-value pairs.
Depending on how the restricted-route underlay is constructed,
an isolation attack on nodes may still succeed.

The remainder of this section will detail the various com-
ponents required for the R5N routing algorithm. Specifically,
we will discuss routing table construction, request processing,
content replication and application-level requirements (specif-
ically content validation).

A. The Routing Table

Routing tables in R5N are constructed and maintained in
the same manner as in Kademlia (Section II-A), with the
main difference being that R5N expects that (especially higher
numbered) buckets will be empty even though peers with
appropriate identifiers exist in the network — direct connec-
tions were simply not possible or peers were not discovered
because lookups failed (where they would have succeeded in
Kademlia). As in Kademlia [11], this results in O(log n) con-
nections to neighbors. It should be noted that a small difference
in routing table maintenance arises indirectly because FIND
PEER messages are routed non-deterministically, in the same
manner as GET and PUT requests.

B. Routing

Routing in R5N is recursive and is performed in two
distinct phases. In phase one, a request for a key is routed
for some number of hops using random neighbors from the
routing table. In phase two, routing is deterministic using the
peers from the routing table that are closest to the given target.
Each request includes the number of hops h that the request
has traversed so far, and each peer is supposed to increment the
counter by one at each hop. Once the hop counter exceeds a

threshold of T ≈ log n where n is the size of the network, the
request enters the second phase. The intuition behind this is
that we first make the starting point in the network independent
from the location of the initiator and then efficiently find a
nearest peer. Assuming the underlay topology is a restricted-
route topology, there are many peers that are nearest to the
key as far as their immediate neighborhood is concerned:

Lemma 1 (Number of Nearest Peers in a Random Graph). For
a random network with n peers and c random connections per
peer, the expected number of nearest peers in the network to
any random key is n

c+1 .

The optimal number of random hops taken is equal to the
mixing time of the graph [8]. The Markov mixing time for
various graphs is well known. In a full clique, the optimal
number of random steps to take is 1; in a completely random
graph, it is O(log2 n) steps [1]. For small-world and social
networks, the mixing time has been shown empirically to be
O(log n) [2]. Since we expect R5N to be used primarily in
network topologies that more or less conform to small-world
topologies, T ∼ log n random hops should be enough to arrive
at a sufficiently random point in the graph.

Each request also contains a unique identifier and a 128-
bit Bloom filter (each route message is approximately 1k bits
in our implementation) which are used to improve efficiency
by preventing looping and limiting repeated forwarding of the
same request to the same peer. The Bloom filter is updated
with the list of peers selected for forwarding the request to
at each hop — those peers that match the Bloom filter are
excluded from the selection process.

C. Processing Requests and Replies

Each peer that receives a routing request performs the
same basic sequence of operations. First, the peer determines
whether it is closer to the key of the request than any of
the peers in its routing table. If the current peer is a nearest
peer, PUT requests are not forwarded; instead the data is
stored locally. GET requests where the only possible result is
found locally are also not forwarded. Otherwise, the request
is forwarded to neighboring peers; these are selected from the
routing table using random peer selection or the XOR distance
metric depending on the current hop counter. The number of
forward replicas is calculated according to the replication level,
network size estimate and number of hops traversed so far as
described in Section III-D.

For handling replies, each peer tracks a bounded number
of active requests, including the respective identity of the
preceding peer. Responses are forwarded along the request
paths until they reach the original peer or are discarded by a
peer that lacks path information (due to memory limitations,
for example). It should be noted that most other DHTs do
not require this additional state since, in traditional DHTs, the
normal routing mechanism can also be used to route replies.
For R5N , this is not feasible due to path randomization. Were
R5N to use randomization for replies, the success rate for
replies to reach the intended initiator would be rather low.

In contrast, randomization for the lookup is acceptable since
many peers are expected to store the data due to replication.

D. Replication

In R5N , replication is used not only to protect against node
failure, but also to improve the chances of a lookup operation
finding the desired datum in the absence of failures. For R5N ,
the highest GET success rate would be achieved if there are
n

c+1 replicas in the network (Lemma 1). We use r to describe
the desired replication level and for R5N the target value is
r ∼

√
n

c+1 ; this choice represents a trade-off between the cost
for PUTs and the performance for GETs.

If the initiator were to transmit r PUT requests to obtain
r replicas, there would be a good chance of collision in the
resulting paths and this might be a strong burden on the direct
neighbors of the initiator, especially since in the underlay
the initiator may not even have r neighbors. Instead, R5N
attempts to have (on average) 1 + (r−1)h

T PUT requests active
in the network at hop h.

Lemma 2. Let h be the number of hops in the network that
the query has already traversed. If the network is large enough
that r random paths of length T are unlikely to merge and if
h < T , then the average number of peers to which a peer
forwards a request to should be

Υr,h := 1 +
(r − 1)

T + (r − 1)h
(1)

in order to achieve the desired replication level r at T hops.

A full discussion and proof of this Lemma can be found
in [4].
R5N uses a biased random selection, forwarding to either

bΥr,hc or dΥr,he peers to reach on average Υr,h peers for the
next hop. We continue to forward to Υr,h peers for h ≤ 2 · T
(instead of just until h < T) to compensate for path collisions,
inaccuracies in the network size prediction and not forwarding
PUT requests from nearest neighbors.

E. Content Validation

A key concern for any DHT is the integrity of the content
stored in the system. R5N provides an application with hooks
for integrity checks to detect malformed key-value pairs.
The application designer writes appropriate content validation
functions for discovering malformed key-value pairs. Such
pairs are then not forwarded or stored by well-behaved peers,
reducing storage and bandwidth requirements in the presence
of faulty or malicious participants and making DHT pollution
more difficult.

Another possible issue is allowing multiple values to be
stored under the same key. Requests in R5N include a Bloom
filter which matches replies already known to the requester.
While Bloom filters offer a compact way to filter replies, they
can also produce false-positives. R5N mitigates this problem
by having the requester provide an additional 32-bit mutation
value which modifies the hash function used for testing the
Bloom filter. This alters the bit positions which are set in the

Bloom filter, making it less likely the same previous false
positive will match. By re-issuing the request with a different
mutation value, these false-positives can be eliminated.

IV. EXPERIMENTAL RESULTS

We’ve evaluated R5N for various underlay topologys. In
this paper, we will focus on small-world topologies created by
extending a 2D-torus by adding or rewiring random links [7].
More extensive experimental results can be found in [4].

Unless stated explicitly otherwise, the presented experi-
ments were done using a fixed replication level of r = 10
and a fixed network size estimate parameter T = 4, ensuring
that only the shape of the topology and the node degree are
parameters for the evaluation.

We chose these values for r and T to enable a fair
comparison between R-Kademlia and R5N . Specifically, we
chose a value of r that is attainable by R-Kademlia for the
various topologies (see Figure 1 for details). Furthermore, as
explained in Section III, T is set to correspond roughly to the
number of hops required by R-Kademlia.

A. Experimental Setup
We have analyzed the expected performance of R5N using

mathematical analysis, simulation and emulation [3]. Due to
space constraints, the experimental results presented in this
section are only based on our experiments using emulation. For
these experiments, we implemented R5N atop an existing P2P
framework. The results presented in this paper were obtained
by emulating 2025 peers on a single desktop, which is close to
the limits of our hardware and since 452 = 2025 this number
allows for the construction of a clean 2D-torus topology as a
starting point for our small-world topology construction. Our
emulation does not model network latencies; however, this is
not a significant problem since R5N currently ignores link-
latencies in its peer selection strategy.

B. Adversary Model
We consider a number of types of malicious adversaries with

diverse goals in our design. We assume that each participating
malicious node has similar resources to that of a normal
participant in the network, and may eavesdrop, alter, send and
receive messages. This enables flooding and poisoning attacks
(where specific keys are inserted for purposes of denial-of-
service or blocking access). An adversary is assumed to be able
to create or impersonate multiple peers running simultaneously
with free choice of peer identity for identification and lookup
in the DHT. We also assume that adversaries may collude in
order to achieve a specific goal, for instance to perform a sybil
or eclipse attack. Finally, we assume that encrypted messages
intercepted at the network level are unable to be decrypted by
peers other than the intended recipient.

While flooding and poisoning attacks can be detrimental
to DHTs in general, we do not focus on attacks on data — it
entirely depends on the specific application using R5N and its
implementation of the validation hooks (see Section III-E) to
address this issue. For this paper, we are primarily concerned
with routing-level security.

C. R-Kademlia

We use a variant of Kademlia, which we call R-Kademlia,
as a point of comparison with our own algorithm. The iterative
routing in the original Kademlia design performs so badly in
a restricted-route topology that it is not useful for comparison.
R-Kademlia is a recursive implementation of Kademlia that is
otherwise as faithful to the original design as possible.

The first — and biggest — problem with a recursive imple-
mentation of Kademlia is that r concurrent requests are meant
to be kept in flight until no closer peers are found. R-Kademlia
initiates r requests at the first peer. These requests terminate
once a nearest peer is reached; however, the initiator has no
way to guarantee this. Peers in R-Kademlia are responsible
for attempting to forward requests only to peers that have
not encountered the request already using a Bloom filter (as
explained in III-B). Peers also maintain a limited store of
recent requests; thus, if the same request reaches a peer twice,
the Bloom filters are merged. Using these techniques, we
mimic the iterative routing of Kademlia, with the exception
that the initiator cannot control the next-hop decisions.

D. Worst-Case Network Performance

For networks with few connections, the success rate of R5N
is significantly higher than it is for R-Kademlia. The worst
case for R5N when compared to R-Kademlia is hence an
unrestricted underlay topology (clique). In this case, both R-
Kademlia and R5N will always find the data at the nearest
peer on the first attempt, but R5N is expected to take longer.
Table I shows the average number of hops taken for the two
designs in this worst-case scenario for R5N .

TABLE I: Average hops for R-Kademlia and R5N in clique
underlay topologies of different sizes. As expected, R5N takes
about twice as many hops as R-Kademlia.

Size of Average hops per PUT Average hops per GET
network R-Kademlia R5N R-Kademlia R5N

100 2.70 ± 0.06 3.96 ± 0.06 2.54 ± 0.03 4.63 ± 0.17
250 3.06 ± 0.10 4.26 ± 0.10 3.10 ± 0.06 5.96 ± 0.27
500 3.08 ± 0.46 4.38 ± 0.45 3.38 ± 0.06 6.17 ± 1.14
750 3.19 ± 0.74 4.37 ± 0.83 3.50 ± 0.04 6.29 ± 1.04

1000 3.63 ± 0.07 4.47 ± 0.93 3.64 ± 0.04 7.29 ± 0.95

E. Replication Performance

As described in Section IV-C, R-Kademlia attempts to
achieve a certain replication level r by starting r requests
in parallel from the initiating peer. In contrast, R5N prob-
abilistically chooses multiple peers to forward the request
to at each hop. Neither approach is able to precisely hit
the specified replication target; however, R5N produces the
same number of replicas with significantly fewer messages
when compared to R-Kademlia (Figure 1) for the small-world
topology. This is because sending out many parallel requests
from the same initial peer increases the chance that paths will
at times converge, while requests that branch at later hops
are likely to be further apart in the network and carry more

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

T
o

ta
l
H

o
p

s

Number of Replicas

Hops Per Replica R-Kademlia
Kademlia LLS Regression

Hops Per Replica R5N
R5N LLS Regression

Fig. 1: Average hops required per replica; varying replication
level r.

information about which peers have already been routed to
and therefore overlap with lower probability. We limit results
to 30 total replicas or less; at higher replication levels R5N
outperforms R-Kademlia.1

Figure 2 compares the total number of replicas after several
rounds of PUT operations for the same key-value pair (without
churn or replica expiration). The figure shows the number
of replicas that is achieved by either R-Kademlia and R5N
for the case where either the same peer performs the PUT
operation or where the source of the put operation is chosen
at random in each round. If the same peer performs the
PUT operation using R-Kademlia, the PUT paths always
converge at the same nearest peers and, hence, the number
of replicas remains constant. In contrast, with R5N , random
peer selection achieves significantly higher levels of replication
over time. If PUTs in R-Kademlia are started at a random
peer, the resulting replication levels are only slightly higher,
suggesting that the random phase achieves its mixing goal.

1Due to R-Kademlia’s inability to create more replicas than connections.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

R
e

p
lic

a
s
 P

re
s
e

n
t

in
 N

e
tw

o
rk

Number of Rounds

R5N Random
R-Kademlia Random

R5N Same
R-Kademlia Same

Fig. 2: Replication over time; same starting peer vs. random-
ized starting peers. Note that standard deviations are quite
small due to usage of the same topology in each trial.

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

N
u

m
b

e
r

o
f

S
u

c
c
e

s
s
fu

l
G

E
T

 R
e

q
u

e
s
ts

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

Fig. 3: Number of malicious peers at random locations in a
network with 2025 peers vs. percentage of successful GET
requests. Each of the µ malicious peers drop all requests they
receive, representing the simplest type of malicious participant.

F. Robustness Against Active Adversaries

An additional goal for our routing algorithm is to perform
well in the presence of malicious participants. Handling mali-
cious participants well subsumes handling peer failure due to
bugs, churn or misconfiguration. The design of R5N already
explicitly addresses malicious peers that attempt to perform
denial of service (DoS) attacks on the network by bounding
the resource multiplier effect of all operations. Peers cannot
send requests that consume significantly more resources than
“normal” requests, so an adversary can only multiply its
own bandwidth by less than the average number of hops
for requests multiplied by the replication level r. Similarly,
poisoning attacks may be mitigated using content validation
hooks (Section III-E).

An active adversary could also join the network with peers
that simply passively drop all requests that are received. For
these experiments, we vary µ, the number of malicious adver-
saries which drop requests. This kind of attack is already quite
detrimental to overall operation for deterministic algorithms:
any request that traverses any of the malicious peers fails. R-
Kademlia’s redundancy (r-replication) is a typical mitigation
strategy. Figure 3 shows the impact of a dropping adversary on
the performance of R5N and R-Kademlia in terms of success
rates for GET operations (initiated at peers selected uniformly
at random in each round) for a small-world topology generated
to have 2025 nodes and 30k edges. The GET operations were
performed after a number of rounds of PUT operations which
are initiated at the same peer in each round.

Later GET rounds in R5N have higher success rates be-
cause additional PUT rounds increase availability for R5N
as more replicas are created. The benefit of R5N over R-
Kademlia is clearly seen in the small-world topology where
R5N achieves significantly better performance under this type
of attacker. Results for other topologies can be found in [4].

We now consider an attacker trying to prevent access to
a particular key using an Eclipse attack. The attacker again

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

N
u

m
b

e
r

o
f

S
u

c
c
e

s
s
fu

l
G

E
T

 R
e

q
u

e
s
ts

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

Fig. 4: Number of malicious peers present at sybil locations in
a network with 2025 peers vs. percentage of successful GET
requests.

simply drops all GET and PUT requests; however, this time the
µ malicious nodes are not placed into the network at random
but at the µ peers that are closest to the key. This represents
an attacker performing a Sybil attack with free choice of
identifier and node placement in a restricted-route topology
— the strongest type of Sybil attacker we can imagine. This
attack has a serious impact on Kademlia-based DHTs [16].

While additional traditional protections against Sybil attacks
could be deployed to further mitigate this attack [4], Figure 4
shows that such measures may be unnecessary for R5N .
Again, as rounds of PUT requests increase the number of
replicas in the network, R5N ’s success rate increases. Again,
R5N outperforms R-Kademlia and is especially strong in the
case of a Sybil attack on the small-world underlay topology,
where even the first round of GET requests succeeds with a
much higher rate than R-Kademlia.

V. PERFORMANCE ANALYSIS

To achieve high success rates, R5N needs to create a
sufficient number of replicas. A network with n nodes of
degree c is expected to have n

c−1 nearest peers. Assuming
that T is chosen large enough to achieve perfect mixing,√

n
c−1 replicas would need to be created in order for a

GET request to succeed with about 50% probability according
to the birthday paradox. Once individual requests succeed
with this probability, a small constant number of repetitions
can be used to get high overall success rates. As we have
shown experimentally, the relationship between the number
of replicas in the network and the number of hops required
for the respective PUT operations is almost linear (Figure 2).
Since individual PUT and GET requests have complexity
O(log n), routing in small-world networks using R5N scales
with O(

√
n · log n). Note that this does not hold in sparse

graphs with large diameter or graphs that are not expander
graphs (such as a circle) because the routing tables could not
be sufficiently populated.

VI. CONCLUSION

We have presented a robust routing algorithm for restricted-
route networks. Our R5N algorithm combines a random walk
with a recursive variation of Kademlia and uses forwarding to
multiple targets along the path for replication and redundancy.
R5N has good performance and is robust against a range
of some well-known attacks on DHTs, including poisoning
attacks, Sybil attacks and Eclipse attacks.

Acknowledgments
This work was funded by nlnet and the Deutsche

Forschungsgemeinschaft (DFG) under ENP GR 3688/1-1.

REFERENCES

[1] C. Avin and G. Ercal, “On the cover time and mixing time of random
geometric graphs,” Theor. Comput. Sci, 2007.

[2] M. Dell amico and Y. Roudier, “A measurement of mixing time in
social networks,” in 5th International Workshop on Security and Trust
Management, Saint Malo, France, September 2009.

[3] N. Evans and C. Grothoff, “Beyond simulation: Large-scale distributed
emulation of p2p protocols,” in 4th Workshop on Cyber Security Exper-
imentation and Test (CSET 2011). USENIX Association, 2011.

[4] N. S. Evans, “Methods for secure decentralized routing in open net-
works,” Ph.D. dissertation, Technische Universität München, 2011.

[5] N. S. Evans, C. GauthierDickey, and C. Grothoff, “Routing in the
dark: Pitch black,” in 23rd Annual Computer Security Applications
Conference. IEEE Computer Society, 2007, pp. 305–314.

[6] J. Hautakorpi and G. Camarillo, “Evaluation of dhts from the viewpoint
of interpersonal communications,” in Proceedings of the 6th interna-
tional conference on Mobile and ubiquitous multimedia. ACM, 2007,
pp. 74–83.

[7] J. M. Kleinberg, “Navigation in a small world,” Nature, vol. 406, no.
6798, pp. 845–845, 2000.

[8] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing
times. American Mathematical Society, 2006.

[9] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, “Comparing
the performance of distributed hash tables under churn,” in Proc. of the
3rd IPTPS, 2004.

[10] T. Locher, D. Mysicka, S. Schmid, and R. Wattenhofer, “Poisoning
the Kad Network,” in 11th International Conference on Distributed
Computing and Networking (ICDCN), Kolkata, India. Springer, January
2010, pp. 195–206.

[11] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in 1st International Workshop
on Peer-to Peer Systems, Cambridge, March 2002, pp. 53–65.

[12] Z. Ou, E. Harjula, O. Kassinen, and M. Ylianttila, “Performance eval-
uation of a kademlia-based communication-oriented p2p system under
churn,” Comput. Netw., vol. 54, pp. 689–705, April 2010.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” SIGCOMM Comput. Commun.
Rev., vol. 31, no. 4, pp. 161–172, August 2001.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a dht,” in Proceedings of the annual conference on USENIX Annual
Technical Conference, ser. ATEC ’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[15] O. Sandberg, “Distributed routing in small-world networks,” in Proceed-
ings of the Eighth Workshop on Algorithm Engineering and Experiments,
2006, pp. 144–155.

[16] M. Steiner, T. En-najjary, and E. W. Biersack, “Exploiting kad: possible
uses and misuses.” Computer Communication Review, vol. 37, no. 5, pp.
65–70, October 2007.

[17] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of kad,”
in Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement. New York, NY, USA: ACM, 2007, pp. 117–122.

[18] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM on Internet
measurement. New York, NY, USA: ACM Press, 2006, pp. 189–202.

[19] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
Defending against sybil attacks via social networks,” in The ACM
SIGCOMM’06 Conference. ACM Press, 2006, pp. 267–278.

