
Trust-Rated Authentication for
Domain-Structured Distributed Systems

Ralph Holz, Heiko Niedermayer, Peter Hauck, Georg Carle
lastname@informatik.uni-tuebingen.de

Wilhelm-Schickard-Institut für Informatik
University of Tübingen, Germany

Abstract. We present an authentication scheme and new protocol for
domain-based scenarios with inter-domain authentication. Our protocol
is primarily intended for domain-structured Peer-to-Peer systems but is
applicable for any domain scenario where clients from different domains
wish to authenticate to each other. To this end, we make use of Trusted
Third Parties in the form of Domain Authentication Servers in each do-
main. These act on behalf of their clients, resulting in a four-party pro-
tocol. If there is a secure channel between the Domain Authentication
Servers, our protocol can provide secure authentication. To address the
case where domains do not have a secure channel between them, we ex-
tend our scheme with the concept of trust-rating. Domain Authentication
Servers signal security-relevant information to their clients (pre-existing
secure channel or not, trust, . . . ). The clients evaluate this information
to decide if it fits the security requirements of their application.

Key words: Authentication, Protocols, PKI, Trust-Rating, Multi-Domain,
Distributed Systems, Peer-to-Peer

Acknowledgments This work was in part funded by Landesstiftung Baden-
Württemberg in the scope of the Spontaneous Virtual Networks (SpoVNet)
project.

1 Motivation

Emerging technologies like Peer-to-Peer networks or Identity Federation have
revived interest in concepts for distributed authentication. Identity Federation is
a use case where authentication has to be conducted across domain boundaries,
i.e. members of one domain wishing to authenticate to members of another
domain. Peer-to-Peer networks are often formed in an ad-hoc manner and are
decentral by definition. Thus, these networks exhibit the need for distributed
authentication even more as no a priori context between peers may exist.

? The original source of this publication is www.springerlink.com:
http://www.springerlink.com/content/k6786282r5378k42/



According to the work of Boyd [1], however, authentication protocols need
at least one secure channel in order to be safe against a Dolev-Yao intruder [2].
Boyd proved that where ‘a principal has, at some state of the system, estab-
lished a secure channel with another principal, such a channel must already have
existed at all previous states’ [1]. This means that principals cannot establish
an authenticated session without having established keys previously in a secure
manner. This can only be circumvented by introducing a Trusted Third Party
(TTP) which can mediate between the principals (e.g. by certifying their keys)
– which effectively introduces secure channels by other means.

Where security is a requirement, Peer-to-Peer networks typically rely on
a central entity that acts as a TTP, often as a Certification Authority (CA).
Skype [3] uses such an approach. However, such a central component (‘server’)
conflicts with the Peer-to-Peer paradigm. While practical for a single network
with one administrative domain, it would probably be utopian to assume a sin-
gle global entity for all Peer-to-Peer networks and, if the networks are to inter-
operate, their peers. Moreover, Ellison and Schneier point out that CAs might
imply more security than they actually achieve [4], in particular if a single CA is
responsible for identity verification on a global scale. Given its limited resources,
it may not verify identities carefully enough as a consequence.

Another option that Peer-to-Peer networks may rely on are Web of Trust-like
certification chains. However, these are susceptible to the Sybil Attack [5]. The
concept can be strengthened by reputation mechanisms such as those for PGP
[6] or as described in [7]. While arguably suitable for low-risk use cases, this
remains unsatisfactory in general.

It is an interesting observation that most of these solutions may fit well for
small Peer-to-Peer networks but become unrealistic for large scenarios (do not
scale, cannot verify all identities, etc.). We consider a domain-based Peer-to-Peer
network to be a good compromise - a large network consisting of easier-to-secure
small networks (each being one domain). Note that such domains may also reflect
social and trust relations. This is similar to so-called darknets where peers only
connect to their human friends, thus avoiding direct contact with attackers.

Yet, similar to Identity Federation, domain-based solutions still need inter-
domain authentication. Of course, Boyd’s theorem applies to inter-domain com-
munication as well. Most protocols for inter-domain authentication thus assume
the existence of a secure channel to provide their service. The drawback is that
they do not cover the use case of domains without previous knowledge of each
other. This dilemma can only be mediated, but never resolved completely.

Our contribution is an authentication scheme that explicitly addresses this
situation. We present a 4-party authentication protocol for domain scenarios,
and extend it with a Trust-Rating Mechanism for the Peer-to-Peer use case. The
novelty in our scheme is that it covers the case of non-secure channels or un-
trusted systems by supplying the authenticating principals with means to assess
the situation and make a well-founded authentication decision. Terminology-
wise, our scheme can also be viewed as a PKI for domain-structured systems



without a priori knowledge of each other. We have implemented a prototype,
but put the focus on the concepts in this paper.

This paper is organized as follows. We describe the scheme and the underlying
ideas in Section 2. Section 3 contains the formal description of protocol and
protocol goals for the scheme. We verify that the goals are achieved in Section
4 and discuss protocol security in Section 5. Section 6 discusses further aspects.
Related work is presented in Section 7.

2 Authentication Scheme With Trust-Rating

In the following, we use the term ‘domain’ generically to indicate a group of prin-
cipals that share a common context and desire communication with principals
in other domains to be authenticated.

We introduce TTPs in each domain, which we call Domain Authentication
Servers (DAS). We structure communication in our scheme by distinguishing
between intra-domain and inter-domain communication. The latter takes place
on one of two channels: either between two DAS or between two clients. An
authentication process between two principals B and A includes activity on the
part of their DAS, SB and SA. If the channel between SA and SB is secure,
our protocol (see Section 3) will provide secure authentication, with part of the
process delegated to the DAS.

This scheme is now extended with the Trust-Rating mechanism, which is
somewhat orthogonal to the authentication. The idea is that the DAS, at one
point of the protocol, also communicate their knowledge about the inter-domain
channel and about the other domain to their clients. This takes the form of a
Trust Token that the DAS sends to its client.

We explain this by example. Let us assume an authentication process between
B in domain DB and A in DA. Let SB be the DAS for B and SA the DAS for
A. The information that SB can pass to B can be described with the following
two categories. First, whether there exists a secure channel with SA. Second,
collected ‘knowledge’ about SA, DA and A itself.

The first is a simple yes/no statement. Where the DAS of two domains have
exchanged their keys in a secure manner, the Trust Token will signal to the client
that there is a secure channel. The protocol flow ensures that secure authenti-
cation is possible in this case. Where the Trust Token signals no such secure
channel (and the DAS have to exchange their keys on an insecure channel), the
decision whether to proceed remains with the client principals1. For this case,
we have information of the second category.

Knowledge about SA is delivered in the form of a set of properties, for exam-
ple information about the channel on which the key exchange between SB and
SA has taken place, or recent information from observations, e.g. whether SA has
acted faithfully so far or whether there are negative reports from other client
principals (feedback). The only requirement is that there is a domain-specific

1 The DAS could theoretically also stop the authentication process, of course.



configuration that defines the set of properties which both B and SB must be
able to interpret. The software may evaluate the Trust Tokens automatically or
delegate it to a human user (which makes sense in interactive settings). Informa-
tion about DA may take a similar form, e.g. whether members of DA have been
known to have conducted fraud etc. The evaluation is again a domain-specific
process. If SA has not been acting faithfully, this will usually mean that the
description of DA will change, too. Information about the responder peer, A, is
given in the same style.

An example of a Trust Token may thus look like this:

SecureChannel no
KeyExchange SinglePathLookup
OtherDomain SelfCertifyingID: no
OtherDomain PriorContacts: yes(10)
OtherDomain KnownFrauds: no(0)
OtherDomain HumanFeedback: yes(3)/no(0)
OtherPeer NoInformation

Upon receiving it, a client will know that the DAS have looked up each
other via a standard look-up without further hardening and exchanged their
keys during this process. The other DAS can also not prove its identity as it
is not bound to a public/private key pair. However, there have been 10 prior
contacts with that domain before, and no frauds reported yet by other clients.
The DAS received feedback for the other domain from 3 clients, all positive and
based on human interaction, e.g. from voice sessions like in Zfone [8] (see Section
7). There is no information about the other peer.

A final remark: Note that even in the case of a secure channel and successful
authentication of some entity A, this does not imply that A will necessarily
be honest and act faithfully – merely that its identity has been ascertained.
Information of the second category can thus also be useful in the case where the
Trust Token indicates a secure channel between SA and SB .

2.1 Strengthening the Insecure Channel

Although not the primary focus of this paper, it is worthwhile to observe that
there are measures to address the situation where DAS have no secure channel.
The methods we propose are the following.

First, in the Peer-to-Peer case, we propose to strengthen the Peer-to-Peer
system against network-related attacks. The other domain is given as an identi-
fier within the system (a name, a number, etc.). The purpose of the Peer-to-Peer
system is to look-up the other domain and its DAS. An attacker could set up a
man-in-the-middle attack. To strengthen the communication, the DAS may at-
tempt to communicate over multiple paths in the hope that a man-in-the-middle
cannot control all of the paths. The multiple path aspects can be divided into
two mechanisms: a) storage of location information at multiple places, b) mul-
tiple independent paths towards a target. Furthermore, we need to ensure that
the paths and the corresponding peers are diverse.



Second, where possible, we suggest self-certifying IDs for the DAS to avoid
man-in-the-middle attacks and impersonation. A self-certifying identifier is e.g.
ID = hash(PublicKey). With the knowledge of the private key a peer can prove
ownership of the ID. This is quite useful and does not need a central authority,
but it does not solve all problems. We can bind an ID to an entity with a key,
but we cannot bind a name to an ID. If we need to resolve a human-readable or
application-specific name, we still have no guarantee to reach the correct domain.

Third, where possible, we suggest to use user feedback to the DAS to report
errors in authentication and misbehavior (although this can also be a flaw if
users purposefully inject false information). Only user and application are able
to judge if the authentication decision of an insecure session was correct or not.
Furthermore, this is also true for the behavior of other entities.

None of these methods can solve the underlying dilemma, but the DAS can
include information about which methods were used in the Trust Token to aid
the client to some degree. This does not provide us with a secure channel, but
rather acts as means of a risk assessment.

2.2 PKI Aspects

From the perspective of key distribution, our scheme represents a PKI with
the following properties. It is distributed over several domains, yet can operate
without a single global authority. This makes it more flexible and eliminates
the need for manual interaction, yet allows manual setup of secure channels
between domains and leverages trust evaluation. We argue that our concept
offers better scalability as only domains that need to communicate are involved
in the authentication scheme.

3 Authentication Protocol with Trust-Rating

In the following, we give a formal description of the protocol for our authentica-
tion scheme. We begin with the notion of authentication and state the protocol
goals against this background.

3.1 Defining Authentication

There are several definitions for authentication in academic literature. We use
the relatively strong definition by Lowe [9], ‘Injective Agreement’, against which
we have defined our protocol. The Model Checker that we used to verify and
check our protocol with also operates on this definition. We cite it here in the
form of Fresh Injective Agreement:

Definition 1. We say that a protocol guarantees to an initiator A Agreement
with a responder B on a set of data items ds if, whenever A (acting as initia-
tor) completes a run of the protocol, apparently with responder B, then B has
previously been running the protocol, apparently with A, and B was acting as



responder in his run, and the two agents agreed on the data values correspond-
ing to all the variables in ds, and each such run of A corresponds to a unique
run of B. Fresh Agreement means that if any initiator A completes a run of the
protocol, apparently with B, using particular values for the nonces, then A can
be sure that at some time in the past, B believed that he was acting as responder
in a run of the protocol with A, using the same values for the nonces.

3.2 Protocol Goals

We now state the goals that our protocol must achieve. There are several goals
in addition to Agreement.

Goal 1: Authentication as Agreement We specify this as Fresh Injective Agree-
ment. The principals which authenticate each other are A and B. Authentication
must be mutual.

Goal 2: Key Establishment As an outcome of the protocol, the principals A and
B establish a session key. We insist that the DAS must not be able to obtain or
derive this key.

Goal 3: Freshness of the Session Key A and B must be able to verify that the
session key is a new one, and not the result of an earlier protocol run.

Goal 4: Mutual Belief in Session Key In the style of Boyd [10], we call a session
key K that is only known to A and B (Goal 2) and is fresh (Goal 3) a good key.
Mutual Belief in K is achieved if and only if B believes K is a good key for use
with A and A also believes K to be a good key for use with B.

Optional Goal: Perfect Forward Secrecy We include Perfect Forward Secrecy as
an optional goal.

3.3 Notation

We use the same notation as in [10]. The identity of a principal is denoted by a
capital letter. An arrow indicates the process of one principal sending a message
to another. A symmetric key is denoted by the letter K with an index indicating
between which principals the key is shared. We denote a public key as PKX ,
where X indicates the principal to which the key belongs. Encryption with a
symmetric key is written as {m}K . Encryption with a public key is denoted by
EX(m). A signature with a private key is denoted by SigX(t): token t, signed
with the private key of agent X. Nonces are denoted by a capital N with an
index.

We assume that all messages are integrity-protected without explicitly adding
this to our notation.



3.4 Assumptions

We require clients and DAS to execute certain actions when a client becomes
a member of a domain. A client principal X and its DAS SX must agree on
a secret symmetric key KXSX

when X joins. X and SX also exchange their
public keys. Both is assumed to happen securely. SX uses the cryptographically
secure hash function h to calculate h(X.PKX) and signs this with its private
key. SigSX

(h(X,PKX)) will be referred to as a Public Key Token.

Two client principals B and A can later exchange their public keys through
the following message exchange:

B → A : (B,A, PKB , SigSB
(h(B,PKB))) (Key Exchange Query)

A → B : (A,B, PKA, SigSA
(h(A,PKA))) (Key Exchange Response)

Note that this does not achieve key authentication. If DAS exchange their
keys, this corresponds to exchanging self-certified keys.

3.5 Protocol Specification

We describe our protocol and motivate each message field.

In general, we take care to follow the guidelines by Abadi and Needham [11]
wherever possible. Note that we encrypt every message, which adds to security.

Step 1: Requesting a Credential We let B from domain DB initiate the au-
thentication run. The first step is to acquire a Credential from B’s Domain
Authentication Server, SB , to use for authentication with A in domain DA.

B → SB : {B,SB , A, PKA, SigSA
(h(A,PKA)), NB}KBSB

(Message 1)

It is our protocol convention to indicate sender and receiver in the first two
message fields. The message then states the responder (A), her public key (PKA)
and the Public Key Token from a previous key exchange. B refers to this authen-
tication run by the nonce NB , used for freshness and to avoid that principals
mistake a message from one run for a message from a different run.

Step 2: Granting the Credential If SA’s public key is known, SB can verify
the Public Key Token and thus ensure that B uses the correct public key to
communicate with A. In addition, as described in Section 2, SB ’s answer depends
on its knowledge about the channel to SA, SA itself, the domain DA and A itself.
SB creates a Trust Token containing at least the following information:

1. Whether SB is in possession of the correct public key for SA (secure channel).
If the key is not known: through which operation SB can acquire SA’s public
key.



2. Information about SA, DA and A that is supposed to help B in estimating
whether SA and A will be ‘honest’ and act faithfully. These are not numerical
values but string descriptions that SB and B can interpret. Such knowledge
may also be derived from previous encounters.

SB creates a Credential for B to use with A. It sends the Credential together
with the Trust Token:

SB → B : {SB , B, SigSB
(h(B,A, PKB , NSB

)), NB , NSB
, trustDA

}KBSB

(Message 2)

The Credential in the third field binds and signs B’s identity, A’s identity,
B’s public key and a nonce that SB has freshly generated for this run, NSB

.
This is crucial to ensure that principals cannot mistake a message from one run
for a message from another. Also note that the Trust Token is not part of the
Credential. From this point on, B and SB can identify this conversation by the
tuple (NB , NSB

).

Step 3: Forwarding the Credential to A If B is satisfied with the information he
obtains from the Trust Token, he may initiate the conversation with A. B sends:

B → A : EA(B,A, SB , SigSB
(h(B,A, PKB , NSB

)), NB , NSB
) (Message 3)

Note that this is a mere forwarding action. B indicates its responsible DAS;
the nonces serve to counter replays.

Step 4: Forwarding the Credential to SA A cannot verify the Credential (because
she does not have SB ’s public key), thus she forwards it with necessary additional
information to SA.

A → SA : {A,SA, B, SB , PKB , SigSB
(h(B,A, PKB , NSB

)), NSB
, NA}KASA

(Message 4)

B, SB , PKB and NSB
are forwarded in order for SA to be able to verify the

Credential. From this point on, A refers to her conversation with SA by nonce
NA.

Step 5: Verifying Freshness If SA is in possession of SB ’s public key, it can
immediately verify the Credential. Else it must acquire the public key by other,
possibly insecure, means. Either will be indicated in the Trust Token for A later.

With the Credential verified, two issues remain. The first is the freshness of
the Credential. This can only be verified with another message exchange. The
second issue is that A needs a token that enables her to authenticate to B. Thus,
SA sends



SA → SB : ESB
(SA, SB , B,A,NSB

, NSA
) (Message 5)

SA indicates the initiator B (field 3) and the responder (field 4). It uses
information from the Credential to verify that SB has indeed participated in
this authentication run. Note that the triplet (B,A,NSB

) is enough for this
purpose. SA also adds a nonce NSA

by which it will refer to this conversation
from now on.

Step 6: Freshness and Credential for A SB can identify the authentication run
through the triplet (B,A,NSB

). In order to answer the freshness query, it re-
sponds with nonce NSA

plus an Authentication Token for A to use with B:
SigSB

(h(A,NSB
)). This binds A’s identity to nonce NSB

, which is known to B.

SB → SA : ESA
(SB , SA, SigSB

(h(A,NSB
)), NSA

) (Message 6)

Step 7: Authentication Decision SA can verify the Authentication Token, and it
has now verified that the nonce NSB

refers to a fresh authentication run. SA can
now create a Trust Token for A, just as SB did for B in the other domain.

SA → A : {SA, A, SigSB
(h(A,NSB

)), NA, trustDB
}KASA

(Message 7)

Step 8: Authentication Response A can evaluate the Trust Token to decide
whether to continue.

If A decides to proceed, she generates a new session key KBA and sends:

A → B : EB(A,B, SigSB
(h(A,NSB

)), NB ,KBA) (Message 8)

Note that A can safely use B’s public key which it now knows to be the
correct one. This establishes a secure channel between A and B.

B is in possession of SB ’s public key and can thus verify A’s Authentication
Token. This completes the authentication.

3.6 Perfect Forward Secrecy

It is straight-forward to enable Perfect Forward Secrecy with a Diffie-Hellman
Key Exchange. We replace KAB with Diffie-Hellman values:

A → B : EB(A,B, SigSB
(h(A,NSB

)), NB , gA, p,DHA) (Message 8)

B → A : EA(B,A,NB , DHB) (Message 9)

4 Verification of Protocol Goals

In the following, we verify that each of the protocol goals is achieved by our
protocol.



Goal 1: Trust-rated Fresh Injective Agreement There are secure channels between
the DAS and their clients because we may assume that the respective shared keys
are not compromised.

We must distinguish between the communication between SA and SB and
the communication between A and B. The communication between A and B
is clearly a Dolev-Yao channel and it is not secure until both principals have
verified the authenticity of the public keys. The channel between SA and SB ,
however, is a secure channel if the DAS have been able to verify the authenticity
of each other’s public keys. Otherwise it is also a normal Dolev-Yao channel,
and insecure. We can therefore simplify the discussion: either the channel is
secure or it is not. There is no need to discuss the latter case as there is no way
to achieve secure authentication. Thus it is sufficient to examine the case of a
secure channel between SA and SB .

We examine the case of B wishing to authenticate to A. In Step 2 of the proto-
col, SB generates a Credential for B by creating and signing h(B,A, PKB , NSB

).
The hash function binds these four values together. The signature SigSB

can only
be created by SB (because only SB is in possession of the necessary private key).
When SA receives this token in Step 4 and verifies the signature, it can be sure
of the fact that B wishes to authenticate to A, that B is a member of DB , that
B has public key PKB and that SB refers to this authentication run by the
nonce NSB

. Note that all values that SA needs to calculate and check the hash
value are included in the message. The only thing that SA still has to check is
the freshness of the nonce NSB

.

This happens in Steps 5 and 6. SA queries SB by referring to the tuple
(B,A,NSB). SA shows that it knows the value of NSB

and is referring to the
correct authentication run. It also sends the identity of A, thus assuring SB that
A is a member of DA. In Step 6, SB answers SA’s request by replying with the
Authentication Token SigSB

(h(A,NSB
)). This token binds the identity of A to

NSB , and SA knows that NSB is fresh. After Step 6, SA can be sure of B’s
identity and authenticity. It forwards this authentication information to A in
Step 7, and A can accept (forward the Authentication Token) or refuse (stop
there).

We examine the authentication of A to B. SB creates the Authentication
Token SigSB

(h(A,NSB
)) for A to authenticate to B. When A receives the Au-

thentication Token in Step 7 and forwards it to B in Step 8, B can be assured of
A’s identity. B can verify SB ’s signature and knows that SB must have created
the Authentication Token – and thus that SB believes the information about A
to be correct.

We compare this with the definition of Agreement. The set ds of values that
the principals need to agree on are exactly the Credential and the Authentica-
tion Token: SigSB

(h(B,A, PKB , NSB
)) and SigSB

(h(A,NSB
)). The principals

obviously agree on these values if and only if the protocol has been completed
successfully. The condition of injectivity holds as well. When B completes his
run as initiator, apparently with A, then A was acting as responder in her run,
apparently with B. All principals refer to each authentication run with a nonce



of their own, plus their peering principal’s nonces in their replies. Thus it cannot
happen that a principal mistakes a message to be from a different run, or vice
versa. Thus each run of B corresponds to a unique run of A. This is Agreement.
It is trust-rated due to the Trust Tokens.

For the Freshness property, we observe that all principals create and maintain
their own nonces by which they refer to a combination of channel and run. Thus
all entities can be sure that the messages they receive are fresh ones and contain
fresh values.

Goal 2: Key Establishment In message 8, A creates and sends a session key KAB

to B.

Goal 3: Freshness of the Session Key In message 8, A replies with nonce NB

and a new session key.

Goal 4: Mutual Belief A generates KAB for the purpose of communicating with
B. A knows that it is a good key. It is obviously fresh, and it can only be
known to A and B because A encrypts it with PKB , which A knows to be B’s
public key (thanks to SA checking SB ’s signature). If the authentication run was
successful, B can also be sure that the session key is valid and fresh. Since A has
sent the session key, B can deduce that the session key must be valid for this
communication. Thus it must be a good key. In other words, B believes KAB to
be a good key for communication with A, and A believes KAB to be a good key
for communication with B. This is Mutual Belief.

Goal 6: Perfect Forward Secrecy Perfect Forward Secrecy can be achieved with
the Diffie-Hellman Key Exchange described above. The channel between A and
B is secure because A’s and B’s public keys have been verified by their respective
DAS.

5 Discussion of Security

Our security model is the Dolev-Yao model ([2]), generally considered to rep-
resent the strongest possible attacker (only limited by the cryptographic primi-
tives). We evaluated the security of our protocol with the AVISPA Model Checker
[12] (OFMC backend).

We will now describe how the specification was modeled in AVISPA, which
also uses the Dolev-Yao model. Information can be passed in two ways in AVISPA.
The first is as a constant (environment parameter). This value cannot be inter-
fered with, in contrast to the second method, which is to pass information to a
principal during a run (a ‘variable’).

The (symmetric and asymmetric) keys between the clients and their DAS
plus the Public Key Tokens are thus passed as environment parameters. To
model the secure channel between SA and SB , the respective public keys are
also passed as environment parameters. A and B learn each other’s Public Key



Tokens during a message exchange, thus such a principal’s Public Key Token is
always a variable. The same applies to Trust Tokens.

The intruder I may try to impersonate any principal but he does not know
their secret or private keys. I is allowed to be a member of both DA and DB ,
i.e. I has established KISA

and KISB
with the DAS and has received Public Key

Tokens. The intruder is allowed to participate in protocol runs (under his own
identity) or be a non-participant, or both, at the same time.

The protocol goals are modelled as follows:

1. Authentication as Injective Agreement can be modelled directly in AVISPA.
This is applied to Credential, Authentication Token, Trust Tokens and KAB .

2. We model Freshness by having each principal create a fresh nonce for each
conversation with another principal and checking the value of this nonce
when the reply arrives. We require Agreement on the value of the nonce
between the principals using it.

3. We define the goal ‘secrecy’ for KASA
, KBSB

, KAB , the private keys and the
Trust Tokens – i.e. these values must remain unknown to the intruder.

We evaluated all possible combinations of A, B and I interacting. However,
due to the ‘explosion of the state space’, our evaluation was limited to three
concurrent sessions. The evaluation showed our protocol to be secure for these
scenarios. We also found during our verification that runs with three parallel
sessions did not find any new attacks compared to just two parallel sessions.

A formal proof for arbitrarily-sized systems is difficult to provide and remains
future work (just as for many other cryptographic protocols). One possibility to
extend the model checking results could be Lowe’s ‘Completeness Checking’
[13], which provides a proof that under certain constraints a protocol, which is
secure for a small system, is also secure for arbitrarily-sized systems. However,
this theory only covers secrecy and not Agreement. A different approach would
be to employ other model checkers like Scyther [14], which can also deal with
unbounded scenarios. However, Scyther in its current form is geared towards
checking authentication as Non-Injective Synchronization and does not cover
Injective Agreement. The definition of Synchronization is subtly different from
Agreement.

6 Further Considerations

Our scheme exhibits a few properties that are worthy of some consideration.
For example, we expect our scheme to scale reasonably well: it effectively

‘decouples’ domain activities. The DAS only need to know the keys of their
client principals and those DAS that they have already communicated with.
There is no need for a priori key verification, and there are no certification
chains to follow. It is thus easy to introduce new domains. Where this results in
an insecure channel between domains, our scheme remains flexible: clients can
make an informed decision in such situations.



Key revocation can be easily added, without the need to distribute Key
Revocation Lists. When a client revokes a key after Public Key Tokens have
been exchanged, the DAS will refuse to create Authentication Tokens. Keys can
also be updated easily: peers send a new key to their DAS (via a domain-internal
protocol) and the DAS responds with a new Public Key Token.

One can also observe that the scheme provides a rudimentary defense against
Denial-of-Service attacks. The DAS in the responder’s domain DA, for example,
only becomes active if it receives a valid message from A. There is no way that
other principals can trigger a computationally expensive answer, especially if
they’re from outside DA. The protection for the initiator’s SB , meanwhile, lies
in the fact that it can drop messages from outside its domain that do not include
one of the nonces that SB has recently created for an authentication run.

Our scheme could be extended to enable DAS load distribution within a
domain: several DAS could share their (symmetric and asymmetric) keys. An
anycast mechanism, possibly with proximity property, would enable clients to
address their DAS.

7 Related Work

X.509 and the PGP/GPG Web of Trust are probably the best-known PKIs.
X.509 uses CAs, and some argue that this concept offers the highest degree of
security that is possible today. Proponents of Webs of Trust counter that a CA is
not per se trustworthy and that the user can determine better whom to trust. A
problem of PKIs is key revocation. This is usually handled with Key Servers and
Key Revocation Lists, requiring great diligence. We do not intend to take sides
here but rather point out that our concept establishes itself between hierarchical
PKIs with CAs and ‘flat’ Webs of Trust.

The Kerberos protocol [15] can be used for authentication between domains.
The foreign Ticket Granting Server must be registered with the local Key Au-
thentication Server. The concept is transitive but requires manual configuration,
resulting in higher maintenance.

Protocols for Identity Federation (IF) (e.g. [16]) extend this with the no-
tion of ‘Circles of Trust’. They enable the portability of an identity between
domains. Keys must be exchanged a priori and out-of-band. Many IF proto-
cols additionally use TLS in the underlay, thus establishing secure channels over
which the actual authentication protocols are defined. Our scheme is different in
both regards.

Other approaches try to eliminate the CA by distributing its functionality,
e.g. by using Multiparty Computation (MPC) as presented by Narasimha and
Saxena et al. in [17], [18]. They describe a decentral method for group member-
ship control. The scheme requires all principals to execute the protocol faithfully
and does not aim to counter the Sybil Attack. If intruders gain access to the
group, the scheme is compromised. Defenses can be established with Verifiable
Secret Sharing Schemes, e.g. as in [19], but this requires either a high number of
broadcast operations or needs to introduce a CA.



If there is no secure channel yet, authentication cannot be secure. The Res-
urrecting Duckling [20] model assumes that the first contact is not compromised
by an intruder and establishes a context for future contacts. The Voice-over-IP
system Zfone [8] extends this approach by taking measures against a man-in-
the-middle attack on first contact: it requires the (human) users to initiate their
conversation by reading a ‘Short Authentication String’ (SAS) to each other that
is derived from the exchanged Diffie-Hellman values.

Concerning trust, Maurer presented a model for reasoning about trustworthi-
ness in a PKI context in [21]. Similar methods could be developed for a client’s
evaluation of a Trust Token.

8 Conclusion

We have presented a four-party authentication scheme and a new protocol for
domain-based scenarios. The protocol is an attempt to design an authentication
process that is largely decentralized yet remains efficient. We have evaluated its
security with model checking. A rigorous proof remains future work.

Since the applications we have in mind include use cases where no prior
knowledge exists, we have introduced the concept of trust-rated authentication.
Trust-rated authentication uses a Trust Token to signal important information
(pre-existing secure channel or not, trust in other server, trust in its peers, . . . )
from the authentication server to its client. The client can then decide depending
on its current security requirements.

Our overall scheme positions itself somewhere between hierarchical PKIs and
Webs of Trust: principals trust distinguished principals in their domain.

References

1. Boyd, C.: Security architecture using formal methods. IEEE Journal on Selected
Topics in Communications 11 (1993) 694–701

2. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983) 198–208

3. Skype Ltd.: Skype (homepage). http://www.skype.com (February 2008)
4. Ellison, C., Schneier, B.: Ten risks of PKI: What you’re not being told about public

key infrastructure. Computer Security Journal 16(1) (2000) 1–7
5. Douceur, J.R.: The Sybil Attack. In: Peer-to-Peer Systems: 1st International

Workshop, Cambridge, MA, USA (IPTPS 2002). Revised Papers. (2002) 251–260
6. Zimmermann, P.R.: The official PGP user’s guide. MIT Press Cambridge, MA,

USA (1995)
7. Jøsang, A.: An algebra for assessing trust in certification chains. In: Proceedings of

the Network and Distributed Systems Security Symposium (NDSS 1999), Internet
Society (1999)

8. The Zfone Project: Zfone (homepage). http://zfoneproject.com (2007)
9. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings of

the 10th IEEE Computer Security Foundations Workshop, Rockport, MA, USA
(CSFW ’97). (1997)



10. Boyd, C., Mathuria, A.: Protocols for authentication and key establishment. In-
formation Security and Cryptography. Springer (2003)

11. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering 22(1) (1996) 6–15

12. The AVISPA Project: Automated Validation of Internet Security Protocols and
Applications (homepage). http://www.avispa-project.org/ (January 2008)

13. Lowe, G.: Towards a completeness result for model checking of security protocols.
Journal of Computer Security 7(2) (1999) 89–146

14. Cremers, C.: Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology (2006)

15. Neuman, B.C., Ts’o, T.: Kerberos: an authentication service for computer net-
works. IEEE Communications Magazine 32(9) (1994) 33–38

16. Goodner, M., Nadalin, A.: Web Services Federation Language (WS-Federation).
OASIS Specification (work-in-progress). http://www.oasis-open.org (January
2008)

17. Narasimha, M., Tsudik, G., Yi, J.H.: On the utility of distributed cryptography in
P2P and MANETs: the case of membership control. In: Proceedings of the 11th
IEEE International Conference on Network Protocols 2003. (2003) 336–345

18. Saxena, N., Tsudik, G., Yi, J.H.: Admission control in Peer-to-Peer: design and
performance evaluation. In: Proceedings of the 1st ACM Workshop on Security of
Ad Hoc and Sensor Networks. (2003) 104–113

19. Pedersen, T.: A threshold cryptosystem without a trusted party. In: Advances in
Cryptology - EUROCRYPT ’91. Volume 547. (1991) 522–526

20. Stajano, F., Anderson, R.: The Resurrecting Duckling: security issues for ad-hoc
wireless networks. In: Proceedings of the 7th International Workshop on Security
Protocols, Cambridge, UK. (1999)

21. Maurer, U.: Modelling a Public-Key Infrastructure. In: Proceedings of the 1996
European Symposium on Research in Computer Security (ESORICS ’96), Rome,
Italy. (1996)


