

Feasibility of Compound Chained Network

Functions for Flexible Packet Processing

Wolfgang Hahn¹, Borislava Gajic¹, Florian Wohlfart², Daniel Raumer², Paul Emmerich²,

 Sebastian Gallenmüller², Georg Carle²

¹ Nokia Bell Labs

St. Martin-Straße 76, 81541 Munich, Germany

{wolfgang.hahn; borislava.gajic}@nokia-bell-labs.com

² Technical University of Munich, Chair of Network Architectures and Services

 Boltzmannstr. 3, 85748 Garching b. München, Germany

{wohlfart; raumer; emmericp; gallenmu; carle}@net.in.tum.de

Abstract - The paper discusses and evaluates different

implementation options of Service Function Chaining (SFC) in

virtual computing environments. Classical SFC relies on dedicated

virtual machines for each chained network function. The

motivation is to increase the efficiency of the classical SFC

approach with respect to latency and throughput. Therefore,

compound SFC that are implemented in single virtual machines

are proposed. The focus is on the evaluation of the latency of

communication between network functions and on the impact of

limited computing resources on the maximal executable workload.

To evaluate the presented SFC concepts, the performance

measurements in a hardware testbed using different network

functions have been carried out. A prototype of compound SFC

was implemented based on the networking toolkit Snabb [1].

Furthermore, a configurable synthetic network function was

implemented and tested. The results show the sensitivity of

different parameters with respect to the efficiency of SFC

implementation options.

Keywords— Service Function Chaining; Packet Processing;

Virtualization; Latency; Resource Contention

I. INTRODUCTION AND MOTIVATION

Network Functions Virtualization (NFV) has been applied
to telecommunication networks to reduce costs of operators and
to increase the flexibility and agility in introducing new
services. The concept of Service Function Chaining (SFC)
allows to flexibly route data streams through network functions
(such as NAT, TCP optimizers, firewalls, video optimizers), by
exploiting the modularity of network functions. Applying NFV
to SFC improves the flexibility in building network functions.
New standards [2, 3] allow to increase chaining efficiency e.g.
for managing traffic profiles by reprogramming the data path
like with SDN technologies [4].

 In the context of 5G, those technologies are envisaged as
promising tools to increase the flexibility and programmability
when implementing 5G RAN and core functions from modular
micro services. The EU Horizon 2020 funded project 5G
NORMA [5] aims to develop a network that is able to adapt its
functions to multiple services in a context-aware way.
However, applying SFC and NFV approaches can imply
drawbacks especially in terms of latency [6].

 Since the requirements and expectations in 5G networks for
data throughput and latency are very high it needs to be
investigated if the overhead introduced by virtualization and
modularization is acceptable for the performance in 5G
networks. Another question that rises in this context is if
negative impacts of SFC and NFV on the performance can be
reduced by applying novel approaches as proposed in this
paper.

 Service Functions (SFs) were former realized as physical
“boxes”. These physical devices shall now become Virtual
Network Functions (VNFs) that rely on the data center to
connect the different virtual machines (VMs). This
implementation option is referred to as classical SFC design.
Fig.1 a) displays two SFs (also referred to as Network Function
NF in this paper). One of the drawbacks of such approach is that
it introduces additional latency due to communication between
VNFs (even if accelerated). The novel approach that is
evaluated in this paper combines a SFC inside one virtualized
environment, this is termed compound SFC; see Fig.1 b).

Compound SFCs are implemented within a single VM.
However, this concept is applicable to different virtualization
technologies such as containers or cgroups. By this means, there
is the potential of reducing the latency introduced due to
communication between VNFs. On the drawback side,

Fig. 1. Classical SFC a) and. compound SFC b) implementation option

compound SFC provides less isolation of individual SFs as
isolation only exists for the compound element as a whole.
However, this is less important for functions that are provided
by one vendor. This is the case when network functions are
decomposed into micro services. Development of micro
services is more agile and improves the programmability of the
data path in the network. Furthermore, requirements of the
individual SFs need to be taken into account when composing
the compound SFC. These requirements have to be translated
into resource restrictions of the VMs.

Under the assumption that each box in Fig.1 (implemented

as VM or container) consumes the same amount of computing

resources, the assumption that connections of two boxes do not

consume any resources and with perfect load distribution of the

traffic flows to parallel SFCs both arrangements can handle the

same throughput. The following sections investigate the

differences and corresponding tradeoffs of the approaches. The

investigation addresses two questions

offs

ons:

- Can the chaining overhead (expressed by latency when

routing from one SF to another SF) be reduced by the

compound SFC design and to what extend?

- Does the combined implementation of SF introduce

limitations for the performance by different SF

competing for same resources (like CPU cache)?

The first question aims at evaluating a potential reduction of

the virtualization overhead of the classical SFC design by using
the novel approach of compound SFC. The second question
focusses on investigating the restrictions of the compound SFC
approach in terms of resource contention by different SFs that
are chained together.

The remainder of the paper is organized as follows. Section
II gives an overview of the related work. Section III describes
the implementation of the new concept of compound SFC and
the chosen experimental test setup. Section IV investigates the
chaining performance of both approaches especially with
respect to latency and discusses the main findings. Section VI
presents results of investigations related to resource limitations
of the compound implementation. Finally, Section VI draws
conclusions.

II. RELATED WORK

The basic concept of the compound SFC aims at mitigating
the communication latency between VMs. It was introduced in
the previous work by Hahn et al. [7] and is further evaluated in
this paper. In the previous work [7] the focus was on resource
scaling of the different approaches for SFC. The overall number
of computing resources were shown to be similar for both, the
classical SFCs and the compound SFCs (see Fig.1). For
adapting to varying traffic demands, a mechanism was
introduced for reconfiguration of the compound SFC inside a
VM (called “inner loop” control). As a result the alternative
operation of increasing or decreasing the overall number of
VMs for SFC by involving entities such as the Orchestrator
(scaling in and out of SF (VMs), referred to as “outer loop”)
needs to be done less frequently. An advantage of the inner loop
management is that it can scale more dynamically. In this paper,

a quantitative evaluation of compound SFC in terms of potential
reduction of latency compared to classical SFC is provided.

NFV [8] and Software Defined Networking (SDN) [4] are
key enablers for constantly delivering innovative network
functions at lower costs. Whereas NFV enables deploying of
NFs as a software on standardized hardware, SDN decouples
the control plane and the data plane, thus allowing the
programmability on the flow level. Often, NFV and SDN are
seen as technologies to implement SFC. However, deploying
the SFC as a composition of VMs running the individual SFs
has a latency issue due to the communication between VMs [9,
6]. This has led to research activities to ensure fast packet
processing in DC with general-purpose hardware [10, 11, 11]
.

Recent software switches reduce the chaining overhead that
is caused by connectivity between VMs compared to state of
the art virtual switches like Open vSwitch or Hyper-V-Switch.
Examples of accelerated switches are DPDK vSwitch [12]
based on DPDK or VALE [13] based on netmap. Other work
directly focused on accelerations for chaining of NFs [14, 15,
16] or used programmable NICs for this purpose [17].
Another option is to utilize the DirectPath I/O [18] acceleration
technique or SR-IOV [19] for acceleration. Recent work [20]
analyzed the benefits of using the Data Plane Development Kits
(DPDKs) for running VNFs. Although performance overhead
through virtualization can be reduced by these techniques, the
latency introduced by the classical SFC deployment remains an
issue [6].

III. IMPLEMENTATION OF THE COMPOUND SFC AND

EVALUATION SETUP

In order to evaluate and compare the classical and the
compound SFC approaches, both scenarios are implemented in
a measurement lab setup. Both scenarios are tested with
different chain lengths of up to 16 NFs. The resulting numbers
are based on tests lasting 100 seconds each. All results are
repeatable so confidence intervals in the graphs are not
provided.

The classical SFC scenario is used as a reference for VM-
based SFC with one VM per NF. The implementation relies on
Kernel-based Virtual Machines (KVM) and interconnects VMs
using Open vSwitch (OVS) in the hypervisor. Both OVS and
KVM are considered as de-facto standard solutions. The NFs
implement the standard OS socket interface for communication
with neighboring elements in the SFC. Fig.2a illustrates the
setup.

Evaluating the compound SFC approach is the main objective
of this work. This scenario can be realized using modular packet
processing frameworks such as Click [21], FastClick [22], or
Snabb [1]. These frameworks can be used to establish a
forwarding path across multiple modules using proprietary
interfaces not compatible with the OS socket interface. This
makes the packet processing modules independent from VMs
or containers and allows the chaining of multiple NFs inside a
virtual machine. The measurement setup is based on Snabb [1]
which focuses on efficient interfaces and fast packet processing.
Several NFs run within a single VM. These VMs are chained
together via Snabb, as illustrated in Fig.2b. Like netmap Snabb

circumvents performance limitations of classic packet reception
and transmission. Details on these limitations are described in
[10] [23].

The preferred metric for the required processing time is the
number of CPU cycles consumed per packet (cycles/pkt).
Compared to reporting the maximum throughput a given device
is able to process (e.g. packets per second) this measure is more
generic and allows comparability with other hardware
configurations, e.g. the same CPUs at different frequencies.
Nevertheless, the throughput metric can be easily derived as:
throughput[B/s] = [CPU_freq[#cyc/s] / [#cyc]/packet[#pkt]] *
packet_size[B].

The latency (measured in microseconds) introduced during
packet processing is another important metric in the tests.
Compared to the mere processing time it also includes time
packets spend waiting in buffers. The latency metric is
applicable to the measurement system as a whole. It depends on
the processing time (measured in cycles/packet) and on factors,
such as buffer size and batch size and strategies.

The machine hosting the device under test was equipped
with the following hardware: Intel(R) Xeon(R) CPU E31230
(3.20GHz clock speed), 16 GB RAM, Intel 10 Gbit X540-T2
NIC. The device under test runs Debian Linux (Kernel 3.16)
and OVS version 2.3.0 (classical SFC) or Snabb 2016.11
(compound SFC). The traffic generator runs MoonGen [24], a
software-based load generator that achieves high accuracy by

relying on NIC hardware features. The traffic generator applies
constant bitrate traffic at a fixed frame length of 64Bytes. As
the compound SFC implementation based on Snabb implies
running the entire chain on a single CPU core, for comparison
reasons the classical SFC was implemented in both ways by
pinning the entire chain to a single CPU core as well as having
the NFs distributed over multiple CPU cores. Furthermore, the
experiments include a variety of NFs ranging from simple
forwarding functions, real NFs (e.g. IwAFTR Carrier-Grade
NAT), to synthetic NFs that mimic the resource consumption
of real NFs while having the advantage of tunable parameters
(e.g. L3 cache memory consumption).

The focus of the experiments is on classical vs. compound
SFC performance in terms of latency and resource contention
in order to get an insight of their suitability to the 5G network
use case. The following sections give answers to the two
research questions posed in the introduction section discussing
the measurement results on the chaining overhead and resource
consumption of NF.

IV. DISCUSSION OF THE CHAINING PERFORMANCE

This section is concerned with the overhead introduced by
the communication between NFs and not the performance of
NFs themselves. If we assume that the chained NFs do not
consume any resources, the overhead introduced by a single
chain element can be measured by extending the measured SFC
by one additional element. In practice, a NF at least needs to
forward traffic, which means that only an upper bound for the
chaining overhead can be measured and not its exact value. The
measurements presented in this section were carried out using
NFs that only provide minimal forwarding.

The first set of measurements was conducted to compare the
chaining overhead present in the classical SFC and compound
SFC. All measurements were run on a single CPU core to

ensure that the test results are comparable. In the case of
classical SFC, the different VMs each implementing a single
NF are all running on the same CPU core. The compound SFC

Fig. 3. Performance comparison between classical SFC and compound
SFC in terms of cycles per packet with respect to the number of NFs in the
chain. (chain length 1 equals 2 NFs – 1 per direction).

Fig. 2b. Test setup of compound SFC

Fig. 2a. Test setup of classical SFC

is implemented in a single VM, on a single CPU core and
contains multiple NFs. Fig. 3. shows the results of the
performance comparison of compound and classical SFC
measured in CPU cycles per packet as a function of the chain
length.

In both, the classical and compound SFC cases, for one NF
already a considerable number of cycles is necessary for a
packet to enter and leave the NF. This includes the processing
of the NIC driver and the virtual switch performance that is
involved in both cases. At chain length one there is no
difference between the classical and compound scenarios. This
allows the performance comparison of OVS and Snabb, where
Snabb achieves two times the performance of OVS.

In the compound implementation, a linear correlation of
performance and chain length can be observed. The calculation
shows that the communication overhead between two Snabb
NFs requires only 35 cycles per packet. In other words, each
additional NF in a compound SFC solution adds a constant
overhead of 35 cycles per packet. The cycles can be converted
into time by applying the 3.20 GHz CPU clock: 35 cycles
equals 0,01 µsec. In the classical SFC implementation, an
exponential growth of the consumed processing time can be
observed with increasing chain length.

As performance of the classical SFC might be related to the
particular distribution of NFs over available CPU cores
additional measurements of the classical SFC setup were
performed. For optimal performance, OVS was allocated to a
dedicated core and the chained VMs are distributed among

other cores of the processor (up to three NFs in a four core
CPU). The results of this evaluation of the classical SFC are

presented in Fig.4. For comparison reasons the results for
classical SFC performance when implemented on a single core
and when NFs are distributed over multiple cores are provided.
Although the performance of the classical SFC approach has
improved in the multicore implementation the compound SFC
approach still shows significantly better performance as shown
in Table 1. Table 1 shows the cycles per packet on the
bottleneck CPU core for the classical SFC when the NFs are
located on different cores compared to compound SFC.

For both, the classical SFC with OVS and the compound

SFC with Snabb, the cycles required to get the packet in and out

of the VM dominated the required cycles. IO of the VM requires

~4k cycles per packet for OVS+KVM and ~2.3k cycles per

packet for more efficient compound SFC with Snabb and KVM.

In addition to the measurement of processing time, the

overall latency was also measured based on precise hardware

time stamping. Apart from the processing overhead for chaining

NFCs, the latency is more significantly impacted by buffering.

Packets face waiting times in buffers on the NIC, within the

batches that are used to transfer packets between the chain

elements, and at VM interfaces.

Table 2 shows the results of experiments measuring the
latency of the whole system where different numbers of NFs
have been chained together in a classical (single and multicore
implementation) and compound SFC. OVS comes with a
dynamic batch size algorithm that allows for lower latency for

Table 2 Latency measurements with different chain lengths

a small number of NFs. In Snabb the batch size is fixed, which

results in an unchanged latency for 1 – 4 NFs.

Latency can be reduced in Snabb on the cost of energy

efficiency: In busy mode, Snabb consumes the computing

resources completely by busy waiting for new packets (polling)

for shortest latency. This is an extreme case as the simple

forwarder app provides the baseline of maximum achievable

performance. Higher workload in the NF will increase the

Snabb efficiency as the batch size will increase and Snabb will

fetch more packets per polling cycle.

Due to highly efficient Snabb chaining forwarding

(0.01µsec) the latency of the overall Snabb chain is nearly

independent of the number of NFs. The latency mainly depends

on the workload of the NF, the batch size and the use of power

saving modes.

In contrast, in an OVS-based chaining the latency depends

also on the number of NFs significantly. The forwarding

Table 1 Comparison between classical SFC and compound in terms
of cycles per packet on the bottleneck CPU core and the number of

NFs in the chain

Fig. 4 Performance evaluation of single and multicore

implementations of classical SFC approach.

overhead increases exponentially in particular when NFs are

hosted on the same core. Also in case of dedicated cores for the

OVS and NFs the overhead for the first additional chain

element is already 1186 cycles = 0.37 µsec and for the second

additional chain element 5148 cycles = 1.6 µsec, see Table 1.

 As investigated by Emmerich et al. [25] the performance of
OVS can be increased up to the factor of 6 by DPDK. Taking
this finding from Emmerich et al. [25] and the results illustrated
in Fig.4 it can be concluded that the Snabb overhead in
processing is still around 8 times smaller even compared to a
DPDK accelerated OVS. Therefore, although this paper does
not contain measurements for a comparison with DPDK
accelerated OVS it can be assumed that Snabb still performs
better than DPDK accelerated OVS for more than 3 NFs in a
chain.

V. EVALUATION OF IMPACTS OF RESOURCE LIMITATIONS

In case several NFs run in a Snabb environment to constitute

a compound SFC they need to share the resources of a single

CPU core they are running on. As mentioned in the introduction

the CPU computing can be reduced by a modified load

balancing or parallel computing schema compared to the

classical SFC. More critical for the SFC performance in the

compound SFC implementation is the available cache size on

the single CPU core where the SF chain is running.

Computing and memory resources differ among the NFs. Table

3 shows two typical examples of NFs with IPsec more

demanding in terms of both computing and cache resources

than IP routing, see [26, 27].

 Table 3. Resource consumption of NFs

To evaluate the concepts of compound SFCs, a synthetic NF
was constructed based on Snabb that is configurable with
respect to the resources it consumes. It emulates in this way the
performance characteristic of real NF, similarly to the examples
in Table 3. Configurable parameters are the number of CPU
cycles per packet (CPU load), the size of a data set and the
number of accesses on the data per packet (Cache load). The
NF accesses the working set randomly to accommodate for
worst-case behavior.

Fig. 5 shows the cycles per packet from the measurements
of forwarding performance by a native Snabb with the synthetic
NF (simple forwarder) with a synthetic cache load (100, 200,
and 400 accesses per packet) and a varying working set size
(ranging from 4KB up to 8GB). When the working set size
exceeds the cache size of the L1, L2 and L3 cache this results
in a significant decrease of performance (by increasing the
number of CPU cycles needed for packet processing). While in
the classical SFC approach the NFs on different cores share the
same L3 cache but have own L1 and L2 cache (Intel processor)
in a compound SFC approach implemented by Snabb also the
L1 and L2 cache is shared among NFs. In this experiment, the
L1 cache size is 32KB, L2 cache size is 256KB and L3 cache
size is 8MB. As illustrated in Fig. 5 L1 and L2 cache misses
result in about each time doubling the number of cycles per
packet when data on the next level cache are accessed.

Nevertheless, the biggest decrease in performance is caused
by L3 cache misses. The risk of performance degradation due
to L3 cache misses is present also in classical SFC as the NFs
share L3 cache.

VI. CONCLUSIONS

In this work, different implementation options for SF
Chaining have been evaluated: the classical SFC approach
where all SFs are implemented in separate VMs and the
compound SFC approach where SFs are implemented in a
single VM. The compound solution based on Snabb shows
significant benefits for chaining performance in terms of
communication overhead and latency especially for chains with
more than two NFs. On the other hand the cache miss rate and
its impact to overall performance needs to be considered. The
measurements indicate the main impact factors as well as the
extent to which they might influence the chaining performance.
It can be envisioned that for microservices that process different
tasks on the same work load the compound function chaining
approach can be well suited. A higher number of NFs might not
increase the cache misses dramatically.

Thus, compound SFCs provides a framework for services
that can be reconfigured or re-programmed flexibly to adapt to
varying traffic patterns in telecommunication networks. As
such flexibility is one of the imperatives of 5G networks, the
compound SFC approach might be suitable for implementing
agile 5G services. Furthermore, due to its good performance in
terms of communication overhead and latency the compound
SFC framework can be applicable to low latency 5G services as
well. As a next step, more detailed measurements and
quantitative evaluations of the possible approaches and the
impact of co-locating NFs on common hardware will be carried

Fig. 5. Impact of cache size to NF performance

out taking into consideration the performance characteristic of
the NFs.

VII. ACKNOWLEDGEMENTS

This work has been performed in the framework of the H2020-

ICT-2014-2 project 5G NORMA. This information reflects the

consortium’s view, but the consortium is not liable for any use

that may be made of any of the information contained therein.

VIII. REFERENCES

[1] SnabbCo, "Snabb: Simple and fast packet networking,“ [Online].

Available: https://github.com/snabbco/snabb.

[2] 3GPP, "TR23.718: Architecture Enhancement for Flexible Mobile
Service Steering (Release 13),“ 2014.

[3] J. Halpern und C. Pignataro, RFC7665: Service Function Chaining

(SFC) Architecture, IETF, 2015.

[4] ONF Open Networking Foundation, „Software Defined Networking:

The New Form for Networks,“ White paper, April 2013.

[5] „EU H2020-ICT-2014-2, 5G NORMA,“ 2015. [Online]. Available:
https://5gnorma.5g-ppp.eu.

[6] B. Han, V. Gopalakrishnan, L. Ji und s. Lee, "Network function

virtualization: Challenges and opportunities for innovations,“ IEEE
Communications Magazine , February 2015.

[7] W. Hahn und B. Gajic, "Compound implementation of chained network
functions and virtual resource management performance evaluation,“

IEEE/IFIP Network Operations and Management Symposium

(5GMAN workshop), 2016.

[8] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W.

Khan, M. Faragano, C. Cui, H. Deng, J. Benitez, U. Michel, H.

Damker, K. Ogaki, T. Matsuzaki, M. Fukui, K. Shimano, D. Delisle, Q.

Loudier, C. Kolias, I. Guardini, E. Demaria, R. Minerva, A. Manzalini,

D. López, F. Salguero, F. Ruhl und P. Sen, „Network Functions

Virtualization: An Introduction, Benefits, Enablers, Challenges & Call
for Action,“ Whitepaper at the SDN and OpenFlow World, 2012.

[9] J. Whiteaker, F. Schneider und R. Teixeira, "Explaining Packet Delays

under Virtualization,“ ACM SIGCOMM Computer Communication
Review, January 2011.

[10] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer und G. Carle,

"Comparison of Frameworks for High-Performance Packet IO,“
Proceedings of the 11th ACM/IEEE symposium on Architectures for

networking and communications systems (ANCS), 2015.

[11] J. García-Dorado, F. Mata, J. d. Santiago, P. d. Río, V. Moreno und J.
Aracil, "High-Performance Network Traffic Processing Systems Using

Commodity Hardware,“ Data Traffic Monitoring and Analysis, 2013.

[12] Intel, "GitHub DPDK vSwitch,“ [Online]. Available:
https://github.com/01org/dpdk-ovs.

[13] L. Rizzo und G. Lettieri, "VALE, a switched ethernet for virtual

machines,“ ACM International Conference on emerging Networking
EXperiments and Technologies, CoNEXT, 2012.

[14] I. Cerrato, G. Marchetto, F. Risso, R. Sisto und M. Virgilio, „An

Efficient Data Exchange Algorithm for Chained Network Functions,“
IEEE 15th International Conference on High Performance Switching

and Routing (HPSR), 2014.

[15] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda und R. Bi,
"ClickOS and the art of network function virtualization", Proceedings

of the 11th USENIX Conference on Networked Systems Design and

Implementation, NSDI, 2014.

[16] M. Paolino, N. Nikolaev, J. Fanguede und D. Raho, „SnabbSwitch user

space virtual switch benchmark and performance optimization for

NFV,“ Proceedings of the IEEE Conference on Network Function
Virtualization and Software Defined Network (NFV-SDN), 2015.

[17] Y. Luo, E. Murray und . T. L. Ficarra, "Accelerated Virtual Switching
with Programmable NICs for Scalable Data Center Networking,“

Proceedings of the second ACM SIGCOMM workshop on Virtualized

infrastructure systems and architectures, 2010.

[18] VM Ware, "Network I/O Latency on VMware vSphere 5 –

Performance Study", Technical White Paper, 2012.

[19] Intel, „PCI-SIG SR-IOV Primer: An Introduction to SR-IOV

Technology,“ White Paper, 2011.

[20] Intel Corporation and Wind River, "High Performance, Open
StandardVirtualization with NFV and SDN", Joint Technical White

Paper, 2015.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti und M. F. Kaashoek, "The
Click modular router,“ ACM Transactions on Computer System, 2000.

[22] T. Barbette, C. Soldani und L. Mathy, "Fast userspace packet

processing,“ Proceedings of the Eleventh ACM/IEEE Symposium on
Architectures for networking and communications systems, 2015.

[23] L. Rizzo, "netmap: a novel framework for fast packet I/O,“ in USENIX,

Boston, 2012.

[24] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart und G. Carle,

"MoonGen: A Scriptable High-Speed Packet Generator. In Proceedings

of the 15th", ACM SIGCOMM Conference on Internet Measurement
(IMC), October 2015.

[25] P. Emmerich, D. Raumer, F. Wohlfart und G. Carle, "Performance

Characteristics of Virtual Switching,“ In 3rd IEEE International
Conference on Cloud Networking, CloudNet, October 2014.

[26] D. Raumer, S. Gallenmüller, P. Emmerich, L. Märdian und G. Carle,

"Efficient serving of VPN endpoints on COTS server hardware,“ In 5th
IEEE International Conference on Cloud Networking, CloudNet, 2016.

[27] S. Govind und R. Govindarajan, "Performance Modelling and

Archieture Exploration of Network Processors,“ International
Conference on Quantitative Evaluation of SysTems, 2015.

