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Abstract - The paper discusses and evaluates different 

implementation options of Service Function Chaining (SFC) in 

virtual computing environments. Classical SFC relies on dedicated 

virtual machines for each chained network function. The 

motivation is to increase the efficiency of the classical SFC 

approach with respect to latency and throughput. Therefore, 

compound SFC that are implemented in single virtual machines 

are proposed. The focus is on the evaluation of the latency of 

communication between network functions and on the impact of 

limited computing resources on the maximal executable workload. 

To evaluate the presented SFC concepts, the performance 

measurements in a hardware testbed using different network 

functions have been carried out. A prototype of compound SFC 

was implemented based on the networking toolkit Snabb [1]. 

Furthermore, a configurable synthetic network function was 

implemented and tested. The results show the sensitivity of 

different parameters with respect to the efficiency of SFC 

implementation options. 

Keywords— Service Function Chaining; Packet Processing; 

Virtualization; Latency; Resource Contention 

I. INTRODUCTION AND MOTIVATION 

Network Functions Virtualization (NFV) has been applied 
to telecommunication networks to reduce costs of operators and 
to increase the flexibility and agility in introducing new 
services. The concept of Service Function Chaining (SFC) 
allows to flexibly route data streams through network functions 
(such as NAT, TCP optimizers, firewalls, video optimizers), by 
exploiting the modularity of network functions. Applying NFV 
to SFC improves the flexibility in building network functions. 
New standards [2, 3] allow to increase chaining efficiency e.g. 
for managing traffic profiles by reprogramming the data path 
like with SDN technologies [4].  

 In the context of 5G, those technologies are envisaged as 
promising tools to increase the flexibility and programmability 
when implementing 5G RAN and core functions from modular 
micro services. The EU Horizon 2020 funded project 5G 
NORMA [5] aims to develop a network that is able to adapt its 
functions to multiple services in a context-aware way. 
However, applying SFC and NFV approaches can imply 
drawbacks especially in terms of latency [6].  

 Since the requirements and expectations in 5G networks for 
data throughput and latency are very high it needs to be 
investigated if the overhead introduced by virtualization and 
modularization is acceptable for the performance in 5G 
networks. Another question that rises in this context is if 
negative impacts of SFC and NFV on the performance can be 
reduced by applying novel approaches as proposed in this 
paper.  

 Service Functions (SFs) were former realized as physical 
“boxes”. These physical devices shall now become Virtual 
Network Functions (VNFs) that rely on the data center to 
connect the different virtual machines (VMs). This 
implementation option is referred to as classical SFC design. 
Fig.1 a) displays two SFs (also referred to as Network Function 
NF in this paper). One of the drawbacks of such approach is that 
it introduces additional latency due to communication between 
VNFs (even if accelerated).  The novel approach that is 
evaluated in this paper combines a SFC inside one virtualized 
environment, this is termed compound SFC; see Fig.1 b). 

Compound SFCs are implemented within a single VM. 
However, this concept is applicable to different virtualization 
technologies such as containers or cgroups. By this means, there 
is the potential of reducing the latency introduced due to 
communication between VNFs. On the drawback side, 

Fig. 1. Classical SFC a) and. compound SFC b) implementation option 



 

compound SFC provides less isolation of individual SFs as 
isolation only exists for the compound element as a whole. 
However, this is less important for functions that are provided 
by one vendor. This is the case when network functions are 
decomposed into micro services. Development of micro 
services is more agile and improves the programmability of the 
data path in the network. Furthermore, requirements of the 
individual SFs need to be taken into account when composing 
the compound SFC. These requirements have to be translated 
into resource restrictions of the VMs. 

Under the assumption that each box in Fig.1  (implemented 

as VM or container) consumes the same amount of computing 

resources, the assumption that connections of two boxes do not 

consume any resources and with perfect load distribution of the 

traffic flows to parallel SFCs both arrangements can handle the 

same throughput. The following sections investigate the 

differences and corresponding tradeoffs of the approaches. The 

investigation addresses two questions

offs

ons: 

- Can the chaining overhead (expressed by latency when 

routing from one SF to another SF) be reduced by the 

compound SFC design and to what extend? 

- Does the combined implementation of SF introduce 

limitations for the performance by different SF 

competing for same resources (like CPU cache)? 

 
The first question aims at evaluating a potential reduction of 

the virtualization overhead of the classical SFC design by using 
the novel approach of compound SFC. The second question 
focusses on investigating the restrictions of the compound SFC 
approach in terms of resource contention by different SFs that 
are chained together. 

The remainder of the paper is organized as follows. Section 
II gives an overview of the related work. Section III describes 
the implementation of the new concept of compound SFC and 
the chosen experimental test setup. Section IV investigates the 
chaining performance of both approaches especially with 
respect to latency and discusses the main findings. Section VI 
presents results of investigations related to resource limitations 
of the compound implementation. Finally, Section VI draws 
conclusions. 

II. RELATED WORK 

The basic concept of the compound SFC aims at mitigating 
the communication latency between VMs. It was introduced in 
the previous work by Hahn et al. [7] and is further evaluated in 
this paper. In the previous work [7] the focus was on resource 
scaling of the different approaches for SFC. The overall number 
of computing resources were shown to be similar for both, the 
classical SFCs and the compound SFCs (see Fig.1).  For 
adapting to varying traffic demands, a mechanism was 
introduced for reconfiguration of the compound SFC inside a 
VM (called “inner loop” control). As a result the alternative 
operation of increasing or decreasing the overall number of 
VMs for SFC by involving entities such as the Orchestrator 
(scaling in and out of SF (VMs), referred to as “outer loop”)  
needs to be done less frequently. An advantage of the inner loop 
management is that it can scale more dynamically. In this paper, 

a quantitative evaluation of compound SFC in terms of potential 
reduction of latency compared to classical SFC is provided.  

NFV [8] and Software Defined Networking (SDN) [4] are 
key enablers for constantly delivering innovative network 
functions at lower costs. Whereas NFV enables deploying of 
NFs as a software on standardized hardware, SDN decouples 
the control plane and the data plane, thus allowing the 
programmability on the flow level. Often, NFV and SDN are 
seen as technologies to implement SFC. However, deploying 
the SFC as a composition of VMs running the individual SFs 
has a latency issue due to the communication between VMs [9, 
6].      This has led to research activities to ensure fast packet 
processing in DC with general-purpose hardware [10, 11, 11]     
.  

Recent software switches reduce the chaining overhead that 
is caused by connectivity between VMs compared to state of 
the art virtual switches like Open vSwitch or Hyper-V-Switch. 
Examples of accelerated switches are DPDK vSwitch [12] 
based on DPDK or VALE [13] based on netmap. Other work 
directly focused on accelerations for chaining of NFs [14, 15, 
16]      or used programmable NICs for this purpose [17]. 
Another option is to utilize the DirectPath I/O [18] acceleration 
technique or SR-IOV [19] for acceleration. Recent work [20] 
analyzed the benefits of using the Data Plane Development Kits 
(DPDKs) for running VNFs. Although performance overhead 
through virtualization can be reduced by these techniques, the 
latency introduced by the classical SFC deployment remains an 
issue [6].  

III. IMPLEMENTATION OF THE COMPOUND SFC AND 

EVALUATION SETUP 

In order to evaluate and compare the classical and the 
compound SFC approaches, both scenarios are implemented in 
a measurement lab setup. Both scenarios are tested with 
different chain lengths of up to 16 NFs. The resulting numbers 
are based on tests lasting 100 seconds each. All results are 
repeatable so confidence intervals in the graphs are not 
provided. 

The classical SFC scenario is used as a reference for VM-
based SFC with one VM per NF. The implementation relies on 
Kernel-based Virtual Machines (KVM) and interconnects VMs 
using Open vSwitch (OVS) in the hypervisor. Both OVS and 
KVM are considered as de-facto standard solutions. The NFs 
implement the standard OS socket interface for communication 
with neighboring elements in the SFC. Fig.2a illustrates the 
setup. 

Evaluating the compound SFC approach is the main objective 
of this work. This scenario can be realized using modular packet 
processing frameworks such as Click [21], FastClick [22], or 
Snabb [1]. These frameworks can be used to establish a 
forwarding path across multiple modules using proprietary 
interfaces not compatible with the OS socket interface. This 
makes the packet processing modules independent from VMs 
or containers and allows the chaining of multiple NFs inside a 
virtual machine. The measurement setup is based on Snabb [1] 
which focuses on efficient interfaces and fast packet processing. 
Several NFs run within a single VM. These VMs are chained 
together via Snabb, as illustrated in Fig.2b. Like netmap Snabb 



 

 

circumvents performance limitations of classic packet reception 
and transmission. Details on these limitations are described in 
[10] [23]. 

The preferred metric for the required processing time is the 
number of CPU cycles consumed per packet (cycles/pkt). 
Compared to reporting the maximum throughput a given device 
is able to process (e.g. packets per second) this measure is more 
generic and allows comparability with other hardware 
configurations, e.g. the same CPUs at different frequencies. 
Nevertheless, the throughput metric can be easily derived as:  
throughput[B/s] = [CPU_freq[#cyc/s] / [#cyc]/packet[#pkt]] * 
packet_size[B]. 

The latency (measured in microseconds) introduced during 
packet processing is another important metric in the tests. 
Compared to the mere processing time it also includes time 
packets spend waiting in buffers. The latency metric is 
applicable to the measurement system as a whole. It depends on 
the processing time (measured in cycles/packet) and on factors, 
such as buffer size and batch size and strategies.  

The machine hosting the device under test was equipped 
with the following hardware:   Intel(R) Xeon(R) CPU E31230 
(3.20GHz clock speed), 16 GB RAM, Intel 10 Gbit X540-T2 
NIC. The device under test runs Debian Linux (Kernel 3.16) 
and OVS version 2.3.0 (classical SFC) or Snabb 2016.11  
(compound SFC). The traffic generator runs MoonGen [24], a 
software-based load generator that achieves high accuracy by 

relying on NIC hardware features. The traffic generator applies 
constant bitrate traffic at a fixed frame length of 64Bytes. As 
the compound SFC implementation based on Snabb implies 
running the entire chain on a single CPU core, for comparison 
reasons the classical SFC was implemented in both ways by 
pinning the entire chain to a single CPU core as well as having 
the NFs distributed over multiple CPU cores. Furthermore, the 
experiments include a variety of NFs ranging from simple 
forwarding functions, real NFs (e.g. IwAFTR Carrier-Grade 
NAT), to synthetic NFs that mimic the resource consumption 
of real NFs while having the advantage of  tunable parameters 
(e.g. L3 cache memory consumption).  

The focus of the experiments is on classical vs. compound 
SFC performance in terms of latency and resource contention 
in order to get an insight of their suitability to the 5G network 
use case. The following sections give answers to the two 
research questions posed in the introduction section discussing 
the measurement results on the chaining overhead and resource 
consumption of NF. 

IV. DISCUSSION OF THE  CHAINING PERFORMANCE 

This section is concerned with the overhead introduced by 
the communication between NFs and not the performance of 
NFs themselves. If we assume that the chained NFs do not 
consume any resources, the overhead introduced by a single 
chain element can be measured by extending the measured SFC 
by one additional element. In practice, a NF at least needs to 
forward traffic, which means that only an upper bound for the 
chaining overhead can be measured and not its exact value. The 
measurements presented in this section were carried out using 
NFs that only provide minimal forwarding. 

The first set of measurements was conducted to compare the 
chaining overhead present in the classical SFC and compound 
SFC. All measurements were run on a single CPU core to 

ensure that the test results are comparable. In the case of 
classical SFC, the different VMs each implementing a single 
NF are all running on the same CPU core. The compound SFC 

Fig. 3.  Performance comparison between classical SFC and compound 
SFC in terms of cycles per packet with respect to the number of NFs in the 
chain. (chain length 1 equals 2 NFs – 1 per direction).   

Fig. 2b.  Test setup of compound SFC  

Fig. 2a.  Test setup of classical SFC  



 

is implemented in a single VM, on a single CPU core and 
contains multiple NFs. Fig. 3. shows the results of the 
performance comparison of compound and classical SFC 
measured in CPU cycles per packet as a function of the chain 
length. 

In both, the classical and compound SFC cases, for one NF 
already a considerable number of cycles is necessary for a 
packet to enter and leave the NF. This includes the processing 
of the NIC driver and the virtual switch performance that is 
involved in both cases. At chain length one there is no 
difference between the classical and compound scenarios. This 
allows the performance comparison of OVS and Snabb, where 
Snabb achieves two times the performance of OVS. 

In the compound implementation, a linear correlation of 
performance and chain length can be observed.  The calculation 
shows that the communication overhead between two Snabb 
NFs requires only 35 cycles per packet. In other words, each 
additional NF in a compound SFC solution adds a constant 
overhead of 35 cycles per packet. The cycles can be converted 
into time by applying the 3.20 GHz CPU clock: 35 cycles 
equals 0,01 µsec. In the classical SFC implementation, an 
exponential growth of the consumed processing time can be 
observed with increasing chain length. 

As performance of the classical SFC might be related to the 
particular distribution of NFs over available CPU cores 
additional measurements of the classical SFC setup were 
performed. For optimal performance, OVS was allocated to a 
dedicated core and the chained VMs are distributed among 

other cores of the processor (up to three NFs in a four core 
CPU). The results of this evaluation of the classical SFC are  

 

presented in Fig.4. For comparison reasons the results for 
classical SFC performance when implemented on a single core 
and when NFs are distributed over multiple cores are provided. 
Although the performance of the classical SFC approach has 
improved in the multicore implementation the compound SFC 
approach still shows significantly better performance as shown 
in Table 1. Table 1 shows the cycles per packet on the 
bottleneck CPU core for the classical SFC when the NFs are 
located on different cores compared to compound SFC. 

For both, the classical SFC with OVS and the compound 

SFC with Snabb, the cycles required to get the packet in and out 

of the VM dominated the required cycles. IO of the VM requires 

~4k cycles per packet for OVS+KVM and ~2.3k cycles per 

packet for more efficient compound SFC with Snabb and KVM. 

In addition to the measurement of processing time, the 

overall latency was also measured based on precise hardware 

time stamping. Apart from the processing overhead for chaining 

NFCs, the latency is  more significantly impacted by buffering. 

Packets face waiting times in buffers on the NIC, within the 

batches that are used to transfer packets between the chain 

elements, and at VM interfaces. 

Table 2 shows the results of experiments measuring the 
latency of the whole system where different numbers of NFs 
have been chained together in a classical (single and multicore 
implementation) and compound SFC. OVS comes with a 
dynamic batch size algorithm that allows for lower latency for  

Table 2 Latency measurements with different chain lengths 

a small number of NFs. In Snabb the batch size is fixed, which 

results in an unchanged latency for 1 – 4 NFs. 

Latency can be reduced in Snabb on the cost of energy 

efficiency: In busy mode, Snabb consumes the computing 

resources completely by busy waiting for new packets (polling) 

for shortest latency. This is an extreme case as the simple 

forwarder app provides the baseline of maximum achievable 

performance. Higher workload in the NF will increase the 

Snabb efficiency as the batch size will increase and Snabb will 

fetch more packets per polling cycle. 

Due to highly efficient Snabb chaining forwarding 

(0.01µsec) the latency of the overall Snabb chain is nearly 

independent of the number of NFs. The latency mainly depends 

on the workload of the NF, the batch size and the use of power 

saving modes. 

In contrast, in an OVS-based chaining the latency depends 

also on the number of NFs significantly. The forwarding 

Table 1 Comparison between classical SFC and compound in terms 
of cycles per packet on the bottleneck CPU core and the number of 

NFs in the chain 

Fig. 4 Performance evaluation of single and multicore 

implementations of classical SFC approach. 



 

 

overhead increases exponentially in particular when NFs are 

hosted on the same core. Also in case of dedicated cores for the 

OVS and NFs the overhead for the first additional chain 

element is already 1186 cycles = 0.37 µsec and for the second 

additional chain element 5148 cycles = 1.6 µsec, see Table 1. 

 As investigated by Emmerich et al. [25] the performance of 
OVS can be increased up to the factor of 6 by DPDK. Taking 
this finding from Emmerich et al. [25] and the results illustrated 
in Fig.4  it can be  concluded that the Snabb overhead in 
processing is still around 8 times smaller even compared to a 
DPDK accelerated OVS. Therefore, although this paper does 
not contain measurements for a comparison with DPDK 
accelerated OVS it can be assumed that Snabb still performs 
better than DPDK accelerated OVS for more than 3 NFs in a 
chain. 

V. EVALUATION OF IMPACTS OF RESOURCE LIMITATIONS 

In case several NFs run in a Snabb environment to constitute 

a compound SFC they need to share the resources of a single 

CPU core they are running on. As mentioned in the introduction 

the CPU computing can be reduced by a modified load 

balancing or parallel computing schema compared to the 

classical SFC. More critical for the SFC performance in the 

compound SFC implementation is the available cache size on 

the single CPU core where the SF chain is running.  

Computing and memory resources differ among the NFs. Table 

3 shows two typical examples of NFs with IPsec more 

demanding in terms of both computing and cache resources 

than IP routing, see [26, 27].  

 

 Table 3.  Resource consumption of NFs 

 

  

To evaluate the concepts of compound SFCs, a synthetic NF 
was constructed based on Snabb that is configurable with 
respect to the resources it consumes. It emulates in this way the 
performance characteristic of real NF, similarly to the examples 
in Table 3. Configurable parameters are the number of CPU 
cycles per packet (CPU load), the size of a data set and the 
number of accesses on the data per packet (Cache load). The 
NF accesses the working set randomly to accommodate for 
worst-case behavior.  

Fig. 5 shows the cycles per packet from the measurements 
of forwarding performance by a native Snabb with the synthetic 
NF (simple forwarder) with a synthetic cache load (100, 200, 
and 400 accesses per packet) and a varying working set size 
(ranging from 4KB up to 8GB). When the working set size 
exceeds the cache size of the L1, L2 and L3 cache this results 
in a significant decrease of performance (by increasing the 
number of CPU cycles needed for packet processing). While in 
the classical SFC approach the NFs on different cores share the 
same L3 cache but have own L1 and L2 cache (Intel processor) 
in a compound SFC approach implemented by Snabb also the 
L1 and L2 cache is shared among NFs. In this experiment, the 
L1 cache size is 32KB, L2 cache size is 256KB and L3 cache 
size is 8MB. As illustrated in Fig. 5 L1 and L2 cache misses 
result in about each time doubling the number of cycles per 
packet when data on the next level cache are accessed. 

Nevertheless, the biggest decrease in performance is caused 
by L3 cache misses. The risk of performance degradation due 
to L3 cache misses is present also in classical SFC as the NFs 
share L3 cache.   

VI. CONCLUSIONS 

In this work, different implementation options for SF 
Chaining have been evaluated: the classical SFC approach 
where all SFs are implemented in separate VMs and the 
compound SFC approach where SFs are implemented in a 
single VM. The compound solution based on Snabb shows 
significant benefits for chaining performance in terms of 
communication overhead and latency especially for chains with 
more than two NFs. On the other hand the cache miss rate and 
its impact to overall performance needs to be considered. The 
measurements indicate the main impact factors as well as the 
extent to which they might influence the chaining performance. 
It can be envisioned that for microservices that process different 
tasks on the same work load the compound function chaining 
approach can be well suited. A higher number of NFs might not 
increase the cache misses dramatically. 

Thus, compound SFCs provides a framework for services 
that can be reconfigured or re-programmed flexibly to adapt to 
varying traffic patterns in telecommunication networks. As 
such flexibility is one of the imperatives of 5G networks, the 
compound SFC approach might be suitable for implementing 
agile 5G services. Furthermore, due to its good performance in 
terms of communication overhead and latency the compound 
SFC framework can be applicable to low latency 5G services as 
well. As a next step, more detailed measurements and 
quantitative evaluations of the possible approaches and the 
impact of co-locating NFs on common hardware will be carried 

Fig. 5. Impact of cache size to NF performance 



 

 

out taking into consideration the performance characteristic of 
the NFs. 
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