
Intra-node Resource Isolation for SFC with SR-IOV
Simon Bauer, Daniel Raumer, Paul Emmerich, and Georg Carle

Technical University of Munich (TUM), Department of Informatics
Chair for Network Architectures and Services, Garching b. München, Germany

{bauersi|raumer|emmericp|carle}@net.in.tum.de

Abstract—Single Root I/O Virtualization (SR-IOV) is intended
to provide simultaneous native access to network interface cards
(NIC) from multiple virtual machines or applications. For this,
SR-IOV offloads packet switching from software to hardware. We
use SR-IOV outside its original purpose and establish a chaining
infrastructure between virtual Service Functions. Thus, resources
to provide chaining are isolated by the NIC.

We compare Service Function Chains based on SR-IOV to
fully software-based Service Function Chains and survey how
shifting workload from the CPU to the NIC affects performance.
Furthermore, we analyze the impact of virtual PCIe functions,
which are required for the use of SR-IOV, on performance.
Our study provides a detailed performance evaluation of Service
Function Chains implemented with Open vSwitch and DPDK.
The performance evaluation is based on comparative measure-
ments on commodity hardware including profiling of the CPU
and PCIe bus. We model the resource constraints of both
implementation approaches to specify performance bottlenecks
and to determine a scenario’s maximum throughput.

Keywords—SFC, SR-IOV, packet I/O, virtual PCIe function,
performance guarantees, resource isolation

I. INTRODUCTION

Service Function Chaining (SFC) is proposed to provide
flow-specific packet processing by interconnecting different
Service Functions (SF), while complying high-performance
processing requirements. For example, these requirements
apply to data centers, mobile networks, or, cloud infrastruc-
tures. The establishment of an efficient chaining infrastructure
between several SFs is one challenge of Service Function
Chaining.

In this paper, we examine intra-node Service Function
Chaining provided via the NIC, i.e., with Single Root I/O
Virtualization. We contribute performance measurements of
Service Function Chains implemented with Open vSwitch
(OvS) and the Data Plane Development Kit (DPDK). We
survey how SR-IOV-based Service Function Chains can be
implemented, which performance characteristics they pro-
vide, and, how they differ from fully software-based Service
Function Chains. We consider metrics like throughput and
end-to-end latency. In addition, we profile the Device-under-
Test’s (DUT) CPU usage, memory accesses, and PCIe bus
utilization. Our methodology parameterizes packet size, packet
rate, and the number of chained SFs. We discuss the impact of
offloading chaining from the CPU to the NIC and the impact
of isolating chaining resources. To survey the performance of
Service Function Chains from a theoretical point of view, we
contribute a model of the load on performance bottlenecks of

virtual packet I/O for both implementation approaches. Scripts
to reproduce our results are available online [1].

The remainder of this paper is structured as follows: First,
we dive into the paper’s background regarding SFC and SR-
IOV in Section II. Then, we introduce the concept of SR-
IOV-based Service Function Chains in Section III. We evaluate
the performance of virtual PCIe functions and SR-IOV-based
Service Function Chains in Section IV. Section V presents
a model to determine the maximum throughput of Service
Function Chains. We discuss observed trade-offs in Section VI
and introduce related work in Section VII. To conclude this
paper, we summarize our results in Section VIII.

II. BACKGROUND

This section provides background information regarding the
performance of Service Function Chains and Single-Root I/O
Virtualization.

A. Performance of Service Function Chains

SFC is an approach to provide flow-specific packet process-
ing across several SFs in virtual or para-virtual environments.
A Service Function Chain consists of several interconnected
SFs. Typically chained entities are middleboxes like switches,
routers, or firewalls. RFC 7665 [2] describes architectural con-
cepts and requirements to provide Service Function Chaining.

In previous research, we survey the performance charac-
teristics of Service Function Chains [3] based on software-
links (SWlink-based) and determine the CPU as performance
limitation. This limitation results in decreasing achievable
throughput with increasing chain length n, while chain length
refers to the number of chained SFs. Furthermore, we deter-
mine software (SW) drops by the operating system in SWlink-
based chains to be a significant impact on performance. In
contrast to traffic discarded by the NIC, SW drops require
additional computational resources from the CPU. Therefore,
SW drops intensify the shortage of computational resources
with increasing packet rate, as more packets get dropped by
the OS. This decreases throughput as soon as the DuT is
overloaded.

B. SR-IOV and Virtual PCIe Functions

Single Root I/O Virtualization is motivated by offloading
packet switching from software to hardware, i.e., the NIC.
SR-IOV enables a physical PCIe device to share resources
between multiple virtual PCIe functions (VFs) [4]. In case
of network packet I/O, SR-IOV enables to address virtual978-1-5386-6831-3/18/$31.00 ©2018 IEEE

(a) based on vEth interfaces (b) based on SR-IOV

Fig. 1. Exemplary Service Function Chains of length n = 3

PCIe functions via a virtual Layer-2 switch. This switch is
added to the receive path , respectively transmit path, of the
NIC. With SR-IOV enabled, received packets are categorized
by the NIC and steered towards the appropriate VF.Available
filters for the categorization depend on the NIC model, ranging
from simple basic switch functionality like matching VLAN
tags and destination MAC addresses to complex filters (e.g.,
Intel Flow Director). The receiving VF transfers packets via
DMA to main memory or CPU cache where it is handled
by the driver. A prerequisite of SR-IOV are virtual PCIe
functions. Each VF is related to a physical PCIe function (PF),
respectively to a physical PCIe device. This implies trade-offs
between overhead and functionality. While VFs support data
movement operations like receiving or sending network traffic,
configuration possibilities are limited compared to physical
PCIe functions. Possible limitations are fixed buffer sizes, a
limited number of RX and TX queues, or a limited set of
filters that can be configured by the VF driver.

III. SR-IOV-BASED SFC

The approach to implement a chaining infrastructure be-
tween SFs with SR-IOV significantly differs from providing
chaining with SW links or SW queues. In case of SR-IOV-
based chains, packet forwarding between SFs is done by one
virtual switch provided by the NIC instead of multiple direct
connections between the SFs.

To implement SR-IOV-based Service Function Chains, SFs
have to be configured to modify packet headers. This is re-
quired to address the next SF in the chain. The implementation
of SWlink-based chains does not require packet modification
in general. However, the most significant difference between
both implementation approaches is the chaining medium.
SWlink-based chains require several independent links to
interconnect exactly two SFs at a time. I.e., a link is required
for each connection between any pair of SFs. In case of
SR-IOV-based chains, one medium, the virtual switch in the
NIC, is shared to interconnect all SFs. This approach requires
2 × n connections between the SFs and the NIC. Figure
1(a) and Figure 1(b) show the packet processing path of an
exemplary Service Function Chain for both implementation
approaches, as used for our evaluation. SWlink-based chains
keep received packets in software until all processing steps
are done. In contrast, SR-IOV-based chains require to transmit
packets between software and the NIC after each SF.

IV. PERFORMANCE EVALUATION

A. Hardware and Software Setup

All measurements are performed on two physical hosts:
a DuT and a host dedicated to load generation and mea-
surement. The DuT is equipped with a Xeon E5-2640 v2
8-core processor, clocked at 2.0 GHz, and one 10 GbE Intel
X520-T2 dual-port NIC [5]. The NIC is connected to the
CPU via 8 PCIe v2.0 lanes. This implies a bidirectional PCIe
bandwidth of 32 Gbit/s between the NIC and the CPU [6].
The CPU’s cache line size is 64 B. Our DuT runs Debian
Linux with kernel version 4.9. Setups are implemented with
Open vSwitch [7] (v2.8.1), DPDK [8] (commit 45d3635),
and the DPDK wrapper libmoon [9] (commit aba8e12). Next
to named processing frameworks, virtual Ethernet (vEth) inter-
faces, included in the kernel, are used to implement SWlink-
based Service Function Chains. Profiling of the DuT is done
with the Linux kernel profiling tool perf. We use the Intel
PCM tool [10] to measure utilization of the the PCIe bus
between NIC and CPU. Load is generated with the packet
generator MoonGen [11] (commit 5388192). In addition, we
use MoonGen to measure throughput and latency. The used
drivers are as follows: For the kernel-based framework OvS
we used the 10 GbE NIC driver ixgbe [12] and its pendant
for virtual PCIe functions ixgbevf [13]. Measurements of
DPDK and libmoon are based on DPDK’s userspace drivers
net_ixgbe and net_ixgbevf. Drivers are used in default
configurations.

B. Performance of Virtual PCIe Functions

The usage of SR-IOV requires the usage of VFs. Therefore,
we analyze how the performance of PFs and VFs differ to
determine whether the SR-IOV-based approach suffers under
the impact of less efficient PCIe functions. We evaluate a
single forwarding SF in interplay with PFs and with VFs.
As these setups only differ in the used PCIe function and
driver, performance deltas can be traced back to the used PCIe
function and driver. We consider three different SFs: (1) an
Open vSwitch bridge, (2) a libmoon Layer-2 forwarder, (3) the
DPDK L2FWD example. The tested OvS bridge and libmoon
forwarder are configured to modify packets’ destination MAC
address, as required to provide SR-IOV-based chains.

First, we are interested whether VFs and VF drivers influ-
ence maximum achievable throughput of Service Functions.
Throughput is measured with minimum packet size, i.e., 64 B,
as small packet sizes imply the heaviest load for virtual packet

200 400 600 800 1,000 1,200

103

105

107

Load [Mbit/s]

La
te

nc
y

[µ
s]

PF w. ixgbe: Q25/75 Q50
VF w. ixgbevf: Q25/75 Q50

(a) Latency

200 400 600 800 1,000 1,200

102

104

106

Load [Mbit/s]

In
te

rr
up

ts
[H

z]

PF w. ixgbe
VF w. ixgbevf

(b) Interrupts

200 400 600 800 1,000 1,200

106

108

Load [Mbit/s]

C
ac

he
R

ef
er

en
ce

s
[H

z]

PF w. ixgbe: L1 LLC
VF w. ixgbevf: L1 LLC

(c) Cache accesses

Fig. 2. Performance of physical and virtual PCIe functions

TABLE I
MAXIMUM THROUGHPUT IN MPPS

Service Function 1.2 GHz 1.6 GHz 2.0 GHz

OvS bridge w. PF∗ 0.68 0.74 1.07
OvS bridge w. VF∗ 0.59 0.63 0.98

libmoon forwarder PF∗† 11.16 12.06 14.88
libmoon forwarder VF∗† 11.35 12.31 14.88

DPDK L2FWD w. PF 14.88 14.88 14.88
DPDK L2FWD w. VF 14.88 14.88 14.88

∗ SF modifies Layer 2 destination address
† Driver uses offloading-enabled data-path

I/O [14]. We consider different CPU clock frequencies to
determine dependencies between computational power and
throughput. The tested DPDK L2FWD example is capable to
process 14.88 Mpps with both kinds of PCIe functions and all
tested clock frequencies. The tested libmoon forwarder only
achieved line rate for measurements with 2.0 GHz CPU clock
frequency. Measurements with 1.6 GHz, respectively 1.2 GHz,
show that the setup with VFs is slightly more efficient.
This can be explained by the used driver configuration. By
default, libmoon optimizes the used driver to use all offloading
features. This results in more complex RX and TX paths in
case of the PF driver as the VF driver supports less features.
Our measurements with OvS and the kernel-based drivers
show that a VF with ixgbevf implies an CPU cycle overhead
between 10-25% per packet compared to a PF with ixgbe.
Table I shows the maximum throughput of all tested SFs and
drivers.

Next, we analyze quartiles of latency to survey the impact
of VFs on latency. Our measurements shows that the VF driver
ixgbevf causes significant higher latency as ixgbe, short
of overloading loads. Figure 2(a) shows measured latency
of an OvS bridge for both drivers. We profile the DuT
for interrupts and cache operations and find that ixgbevf
lacks the dynamic interrupt-throttle rate (ITR) adaption feature
which is supported by ixgbe [15]. Hence, ixgbevf stays
at a high interrupt rate even under full load. In addition, our
measurements reveals that VFs can only use a partition of
available NIC buffer, as they result in lower latency under
overload. As expected, cache accesses correlate to the number
of processed packets per second, independent of the used
driver. Figure 2(b) and Figure 2(c) show results of our profiling
analysis of interrupts and cache access. Regarding the DPDK
poll mode drivers net_ixgbe and net_ixgbevf, the

latency of PFs and VFs does not differ significantly. The
libmoon forwarder in interplay with VFs is slightly more
efficient and results in lower latency as its physical function
pendant. Higher latency of the PF based setup can be traced
back on the active offloading features of libmoon’s PF driver,
again.

C. Performance Characteristics of SR-IOV-based Chains
In previous work [3], we study the performance character-

istics of Service Function Chains based on software links. We
implement SW links with pairs of vEth interfaces provided
by the Linux kernel. A chain is established by assigning each
interface of a vEth pair to a different SF. A service Function
Chain of length n requires n−1 vEth pairs. For the comparison
of SWlink- and SR-IOV-based chains we implement Service
Function Chains by interconnecting OvS bridges.

For our SR-IOV-based chains, we connect two VFs to
each SF. To modify the destination MAC address of each
forwarded packet, we use OpenFlow’s action feature. For our
measurements all OvS bridges are pinned to the same CPU
core.

We measure maximum throughput of OvS chains with
different chain lengths, i.e., length n = 1 up to length n = 5.
The measured maximum throughput for all measured lengths
is shown in Figure 3(a). The figure shows that SWlink-based
chains result in higher maximum throughput. We observe that
the CPU is the limit for all measured lengths. The determined
lower maximum throughput of SR-IOV-based chains can be
explained with a) the less efficient driver for VFs and b) the
additionally required I/O operations. The impact of additional
I/O operations depends on the chain length. In previous
research [3], we found that SWlink-based implementations
suffer under performance loss due to software drops, as soon
as the DuT is overloaded. SW drops result in decreasing
throughput, as packets are dropped by computational resources
of the CPU. In case of SR-IOV-based chains, we do not
observe packet drops by software and found stable maximum
throughput for all offered loads. This confirms that resource
isolation between SFs and chaining infrastructure provides
guaranteed maximum throughput independent of the offered
load. Therefore, SR-IOV-based chains process significantly
more packets per second regarding overload. Figure 3(b)
presents measured throughput for chain lengths n = 1, n = 2,
and n = 4 for varying offered load. The shaded areas show
throughput deltas of both implementation approaches.

1 2 3 4 50

0.5

1

1.5

Chain Length

T
hr

ou
gh

pu
t

[M
pp

s] OvS vEth Chain: 2.0GHz 1.2GHz
OvS VF Chain: 2.0GHz 1.2GHz

(a) Maximum throughput

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.5

1

1.5

Load [Mpps]

T
hr

ou
gh

pu
t

[M
pp

s] OvS vEth Chain: n = 1 n = 2 n = 4
OvS VF Chain: n = 1 n = 2 n = 4

(b) Throughput to increasing load

Fig. 3. Performance comparison between chains implemented with SR-IOV and vEth interfaces

However, our evaluation shows that SR-IOV-based chaining
implicates an interesting advantage: the isolation of resources.
Each VF has a certain set of resources for its disposal.Isolating
resources antagonizes performance loss in case of overloading
rates, as no chaining element is able to claim more resources
as others and there is no competition for resources between
SFs and the chaining infrastructure. This does not apply on
SWlink-based chains, where all links share the resources of
the same CPU core.

D. Bottlenecks of SR-IOV-based Chains

The per packet processing costs of user space packet
processing frameworks are significantly lower compared to
kernel-based frameworks [16]. This higher number of pro-
cessed packets implies higher load for other components, i.e.,
for the NIC and PCIe bus. For SR-IOV-based chains the load
on the NIC and PCIe bus intensifies with increasing chain
length, as each packet requires two transmissions between
NIC and CPU per chained SF. In addition, each SF implies
a switching decision by the NIC to forward packets to the
next SF. To survey the mentioned impact we chain several
libmoon forwarder via SR-IOV. Each forwarder modifies the
destination MAC address of each processed packets.

We measure libmoon chains of lengths n = 2 and n = 4
and profile the PCIe utilization, i.e., the DMA writes and
DMA reads sent via the PCIe bus. To stress the DuT we
offer a load of 10 Gbit/s and increase packet size s from
minimum (64 B) up to maximum (1518 B) in steps of 1 B. We
observe that small packet sizes imply throughput fluctuations.
These fluctuations are neither caused by the NIC’s line rate
nor the PCIe bus’ bandwidth. Therefore, we argue that small
packets result in more operations per second than the NIC is
capable of. For example, a libmoon chain of length n = 4
confronted with 10 Gbit/s of 64 B packets, i.e., 14.88 Mpps,
requires 14.88 × 106 × 4 = 59.52 × 106 switching decisions
per second. Figure 4(a) shows the throughput of a libmoon
chain of length n = 4 as data rate and packet rate. Mentioned
fluctuations can be found for packet sizes s < x0. For packet
sizes s > x0, throughput gets reliable. Profiling the PCIe
bus utilization shows, that both the DMA writes and DMA
reads correlate to the processed data rate. A single PCIe DMA
transaction can transfer up to 512 B of data, but the NIC also
needs to transfer a so-called DMA descriptor (16 B for the
NIC used here) containing meta-data and a pointer to the
packet data. These descriptors are usually fetched and written

back in batched transactions of at least four descriptors. The
resulting overhead is especially important for small packets.
However, DMA transactions are transfered as full cache lines
(64 B). The effect of cache line padding results in a saw-
toothed course of PCIe utilization under increasing packet
sizes as shown in Figure 4(b). Measurements with a reduced
CPU clock frequency (1.2 GHz instead of 2.0 GHz) show that
throughput is not limited by computational resources of the
CPU, as the same throughput is achieved.

V. RESOURCE CONSTRAINTS

In the following we demonstrate how to apply results of our
analysis to performance modeling. We use a simple approach
called resource constraints (RC) modeling. A RC model is a
directed graph which represents the flow of traffic through a
system. Each node has a limited capacity that is gained from a
systematic system analysis; cf. [17]. The graph represents the
order in which the components are processing packets. The
actual maximum throughput of the system is then defined by
the maximum flow from the start to the end node.

To model maximum throughput of service function chains
we determine potential performance limitations. From pre-
vious research [3], we know that the CPU can limit a
chain’s maximum throughput. During our evaluation of SR-
IOV-based libmoon chains, we found that the NIC reaches
its computational limit for high packet rates.In addition, a
chains throughput is limited by the bandwidth of all involved
components. We consider chain length, average packet size
and packet processing costs (in CPU cycles) for our model.
Table II lists all parameters and variables involved in our
model.

SWlink-based chains keep a received packet in software,
respectively in the CPU, as long as all processing steps
are done. Therefore, each packet has to be received and
transmitted by the NIC only once. The CPU has to provide
resources to process each packet by all n SFs and to process
each packet via (n− 1) SW links. These considerations result
in the following per packet processing costs:

CNIC,SW = CNIC,RX + CNIC,TX

CCPU,SW = CCPU,RX + n×CSF + (n− 1)×CSW +CCPU,TX

For SR-IOV-based chains, chaining is offloaded to the NIC.
This unburdens the CPU from providing SW links, but
makes it necessary to receive and transmit a packet several
times.Load on the NIC increases compared to the SWlink-
based approach.Consider that CNIC,switch comprises the tasks
of receiving a packet, switching it, and transmitting it back to

64 12
8

25
6

51
2

76
8

1,
02

4

1,
28

0

1,
51

40

1

2

x0

Packet Size [B]

T
hr

ou
gh

pu
t

[M
pp

s]

0

2

4

T
hr

ou
gh

pu
t

[G
bi

t/
s][Mpps] [Gbit/s]

(a) Throughput

64 12
8

25
6

51
2

76
8

1,
02

4

1,
28

0

1,
51

40

1 · 107

2 · 107

3 · 107

4 · 107
x0

Packet Size [B]

PC
Ie

Tr
affi

c
[T
ra
ns
ac
tio

ns
/s
]

DMA Write DMA Read

(b) PCIe traffic

Fig. 4. Evaluation of a SR-IOV-based chain consisting of four libmoon forwarders

TABLE II
EXPLANATION OF MODEL PARAMETERS

Parameter Symbol Unit

chain length n SFs
average packet size s bit
overhead implied by X δX bit
CPU’s computational resources fCPU cps∗

NIC’s computational resources fNIC cps∗

NIC line rate lrNIC bit/s
PCIe bandwidth bwPCIe bit/s
max. throughput of X tpX bit/s

∗cps = cycles per second

the CPU. Finally, SR-IOV-based implementations result in the
following per packet costs:

CNIC,SR−IOV = CNIC,RX + (n+ 1)× CNIC,switch + CNIC,TX

CCPU,SR−IOV = n× (CCPU,RX + CSF + CCPU,TX)

With the introduced formulas, maximum throughput for each
component can be determined. The NIC’s throughput is limited
by its line rate and by computational resources of the NIC.
Line rate limits maximum packet rate to lrNIC

s for both
implementations. The NIC’s computational resources limit the
number of processed packets per second to fNIC

CNIC,total
. For our

RC model, it is sufficient to consider the minimum of both
limitations. The PCIe bus limits throughput by bandwidth.
Next to transmitted network packets, the bus has to transmit
meta-data, like DMA descriptors and acknowledgments. This
implies an overhead δPCIe per packet. The limitation by the
PCIe bus differs for considered implementations:

tpPCIe,SW =
bwPCIe

s+ δPCIe

tpPCIe,SR−IOV =
bwPCIe

n ∗ (s+ δPCIe)

The CPU limits throughput by the number of available CPU
cycles per second. With the compositions of per packet costs
introduced above, maximum throughput of the CPU is limited
to fCPU

CCPU,total
. The maximum throughput of an implementation

approach is defined as the minimum of the throughputs of all
components, i.e., the NIC, PCIe bus, and the CPU.

VI. DISCUSSION

Our performance evaluation shows that SR-IOV-based ser-
vice function chains are not able to achieve better performance
compared to SWlink-based implementations. This can be
explained by increased I/O costs in case of SR-IOV-based
chains. Due to increased I/O costs, the CPU is not unburdened
by offloading the chaining infrastructure.

However, our evaluation shows another interesting char-
acteristic of SR-IOV-based chains: reliable throughput inde-
pendent of the offered load. In contrast to SWlink-based
chains, implementations with SR-IOV provide stable through-
put independent of the load. This can be explained by the
isolation of chaining resources by the NIC, i.e., by different
virtual PCIe functions. This characteristic is interesting for
network operators that provide services to several customers
on the same hardware. Resource isolation prevents that a
resource demand of a customer impairs another customer’s
performance. As network operators and service providers try
to give performance guarantees to customers, it might be
reasonable to renounce maximum performance in order to
ensure reliable network performance. In case of SFC, this
reliability can be achieved with SR-IOV.Such a use case is
network slicing in mobile networks, e.g., regarding 5G as
described by Foukas et. al. [18].

VII. RELATED WORK

The problem of managing resources of virtual network
functions (VNF) and Service Function Chains is seen as a re-
lated topic. Efficient placement of SFs (referred to as network
functions) is surveyed by Mehraghdam et al. [19]. Authors
introduce an approach to model and specify chains of VNFs
and propose a program to place network functions as efficient
as possible. Furthermore, the efficient placement of VNFs is
surveyed by Moens and Turck [20], who considered a hybrid
scenario, including physical and virtual network functions. The
prevention of performance loss by backpressure is examined
by Kulkarni et al. [21]. The problem of wasted resources in
Service Function Chains results in NFVnice, a user space
framework to schedule and manage service chains. NFVnice
monitors load and improves performance by preventing the
waste of resources in case of a congestion in the service chain.

SR-IOV has been related to the topic of high-performance
packet I/O in the past.Musleh et al. surveyed the tuning of
interrupt moderation in InfiniBand scenarios virtualized with

SR-IOV [22], while Jose et al. [23] surveyed performance
benefits of SR-IOV in InfiniBand networks in general. A
performance evaluation of SR-IOV and NetVM was published
by Hwang et al. [24]. The results of the presented performance
analysis show that NetVM has been more efficient for consid-
ered measurements. The use of SR-IOV for SFC was consid-
ered by Intel before. Intel presented practical considerations
and performance measurements regarding SR-IOV in 2017
[25]. Among others, the technical brief surveys an east-west
traffic pattern, similar to our SR-IOV-based Service Function
Chains. However, Intel does not provide a detailed perfor-
mance analysis nor a comparison to other SFC approaches.

In this paper we apply SR-IOV to SFC to face performance
loss by software drops and guarantee performance of Service
Function Chains. Our study is motivated by SR-IOVs applica-
tion to high-performance packet I/O, the currentness of SFC,
and the trend to offload functionality from the CPU.

VIII. CONCLUSION

We presented an extensive study of SR-IOV in the field
of SFC. With SR-IOV, chaining between different SFs is
offloaded to L2 switching functionality in the NIC. Therefore,
services have to be connected to virtual PCIe functions offered
by the NIC via a virtual function driver. We show that SR-IOV-
based chains provide isolation and mitigate software drops
inside chains, which are a critical characteristic of SW-linked
SFs in regard to overload. Nevertheless, this isolation comes at
cost of new potential bottlenecks, i.e., the PCIe bus bandwidth
and the NIC’s computational capabilities. We addressed these
with a resource constraints model. The model is purposed as
a guide to implement efficient Service Function Chains and
to illustrate dependencies between chain length and work-
load for potential performance bottlenecks. We showed that
NICs become bottlenecks of SR-IOV-based Service Function
Chains, if packet processing by the SFs is efficient enough,
e.g., due to efficiency provided by DPDK. This is furthered
by increased switching demands with an increasing chain
length. In result, our SR-IOV-based chains were not able to
exceed the throughput of SW-link-based chains. With time,
PCIe bandwidth and limits by the NIC will increase while
offloading efforts to the NIC continue. However, our demon-
strated methodology regarding measurement, modeling, and
evaluation is compatible with the analysis of updated setups.

We provide a repository [1] with all sources to reproduce
our performance measurements.

Acknowledgments.: This work has been supported by
the German Federal Ministry of Education and Research,
project SENDATE-Planets (KIS2ITS001) and the German-
French Academy for the Industry of the Future.

REFERENCES

[1] “SFC-with-SRIOV-performance-measurements.” https://github.com/
bauersi/SFC-with-SRIOV-performance-measurements.git. Last visited
2018-03-23.

[2] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture.” RFC 7665, Oct. 2015.

[3] D. Raumer, S. Bauer, P. Emmerich, and G. Carle, “Performance Impli-
cations for Intra-node Placement of Network Function Chains,” in IEEE
6th Int. Conf. on Cloud Networking (CloudNet’17), 2017.

[4] “Using PCIe SR-IOV Virtual Functions.” https://docs.oracle.com/cd/
E35434 01/html/E23807/usingsriov.html. Last visited 2018-03-23.

[5] “Intel Ethernet Server Adapter X520-T2.” https://www.intel.com/
content/dam/doc/product-brief/ethernet-server-adapter-x520-t2-brief.
pdf. Last visited 2018-03-23.

[6] “PCIe - Express base specification revision 2.0,” 2006.
[7] “Open vSwitch - Production Quality, Multilayer Open Virtual Switch.”

http://openvswitch.org/. Last visited 2018-03-23.
[8] “DPDK (github).” https://github.com/emmericp/dpdk/tree/

45d3635fbc1cdf868d9f58608f157cec3198def8. Last visited 2018-
03-23.

[9] “Github/libmoon.” https://github.com/libmoon/libmoon. Last visited
2018-03-23.

[10] “Processor Counter Monitor.” https://github.com/opcm/pcm. Last visited
2018-03-23.

[11] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in 15th ACM
SIGCOMM Conference on Internet Measurement (IMC’15), 2015.

[12] “Intel Network Adapter Driver for PCIe* Intel 10
Gigabit Ethernet Network Connections Under Linux*.”
https://downloadcenter.intel.com/download/14687/Intel-Network-
Adapter-Driver-for-PCIe-Intel-10-Gigabit-Ethernet-Network-
Connections-Under-Linux-. Last visited 2018-03-23.

[13] “Intel Network Adapter Virtual Function Driver for
Intel 10 Gigabit Ethernet Network Connections.”
https://downloadcenter.intel.com/download/18700/Intel-Network-
Adapter-Virtual-Function-Driver-for-Intel-10-Gigabit-Ethernet-
Network-Connections. Last visited 2018-03-23.

[14] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in USENIX
Annual Technical Conference, 2012.

[15] P. Emmerich, D. Raumer, A. Beifuß, L. Erlacher, F. Wohlfart, T. M.
Runge, S. Gallenmüller, and G. Carle, “Optimizing latency and cpu load
in packet processing systems,” in Proceedings of the International Sym-
posium on Performance Evaluation of Computer and Telecommunication
Systems, Spects ’15, Society for Computer Simulation International,
2015.

[16] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of Frameworks for High-Performance Packet IO,” in
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS), 2015.

[17] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Assessing Soft-
and Hardware Bottlenecks in PC-based Packet Forwarding Systems,” in
Fourteenth International Conference on Networks (ICN 2015), 2015.

[18] X. Foukas, A. Elmokashfi, G. Patounas, and M. Marina, “Network
slicing in 5g: Survey and challenges,” 5 2017.

[19] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), Oct 2014.

[20] H. Moens and F. De Turck, “Vnf-p: a model for efficient placement of
virtualized network functions,” in 2014 10th International Conference
on Network and Service Management (CNSM), 2014.

[21] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrish-
nan, T. Wood, M. Arumaithurai, and X. Fu, “Nfvnice: Dynamic back-
pressure and scheduling for nfv service chains,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, ACM, 2017.

[22] M. Musleh, V. Pai, J. P. Walters, A. Younge, and S. Crago, “Bridging the
virtualization performance gap for HPC using SR-IOV for InfiniBand,”
in Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on, IEEE, 2014.

[23] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K.
Panda, “SR-IOV Support for Virtualization on InfiniBand Clusters:
Early Experience,” in 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 05 2013.

[24] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High Per-
formance and Flexible Networking Using Virtualization on Commod-
ity Platforms,” in Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation(NSDI’14), USENIX
Association, 2014.

[25] Intel Network Division, “SR-IOV for NFV Solutions - Practical Consid-
erations and Thoughts,” Tech. Rep. Revision 1.0 335625-001, 12 2017.

