
Peer-to-Peer-based Infrastructure Support for
Massively Multiplayer Online Games

Simon Rieche, Klaus Wehrle
Distributed Systems Group
RWTH Aachen University

{rieche,wehrle}@cs.rwth-aachen.de

Marc Fouquet, Heiko Niedermayer, Leo Petrak, Georg Carle
Computer Networks and Internet

University of Tübingen
{fouquet,niedermayer,petrak,carle}@informatik.uni-tuebingen.de

Abstract— Online games are an interesting challenge and
chance for the future development of the Peer-to-Peer paradigm.
Massively multiplayer online games (MMOGs) are becoming
increasingly popular today. However, even high-budget titles
like World of Warcraft that have gone through extensive beta-
testing suffer from downtimes because of hard- and software
problems. Our approach is to use structured P2P technology for
the server infrastructure of MMOGs to improve their reliability
and scalability. Such P2P networks are also able to adapt to the
current state of the game and handle uneven distributions of the
players in the game world. Another feature of our approach
is being able to add supplementary servers at runtime. Our
system allows using off-the-shelf PCs as infrastructure peers for
participation in different game worlds as needed. Due to the
nature of the Economy of Scale the same number of hosts will
provide a better service than dedicated servers for each game
world.

I. INTRODUCTION

Multiplayer games played over the Internet have become
very popular in the last few years. An interesting subcat-
egory are the so-called massively multiplayer online games
(MMOGs) that allow thousands of player characters to share
a single game world. Such a world is usually run on a high-
performance and high-availability server cluster. However,
even with games that have been extensively beta-tested, down-
times of several hours because of hard- or software failures are
not uncommon. Downtimes, especially in the first few weeks
after the release, can negatively affect the image of the game
and the company that created it.

Traditionally, a cluster of servers contains one virtual world
of a MMOG. Such infrastructure is inflexible and error-
prone. One would rather like to have a system that allows
disconnecting a server at runtime while others take over its
tasks. Server-based MMOGs can have performance problems
if players are concentrated in certain parts of the game world
or some worlds are overpopulated. Thus, there is also a need
for load balancing mechanisms. Peer-to-Peer (P2P) systems
quite naturally support the use of load balancing.

In this paper we use a structured P2P technology for the
organization of the infrastructure and thus for the reduction of
downtimes in MMOGs. By using a CAN-based approach we
split the game world in disjunctive zones and distribute them
on different nodes of the P2P network.

Online games are an interesting challenge and chance for
the future development of the P2P paradigm. A wide variety

of aspects of only theoretically solved and especially yet
completely unsolved problems are covered by this application.
Security and trust problems appear as well as the need to
prevent cheating. The application is not as tolerant to faults as
instant messaging or file sharing. Consistent data storage is a
problem, decisions and transactions have to be performed in
a decentralized way. Moreover, the P2P network is not used
as pure lookup service, but more as a communication and
application-specific social structure.

The rest of this paper is organized as follows: First we dis-
cuss related work in Section II and give a brief introduction to
MMOGs and their challenges in Section III. Section IV shows
our approach to use structured P2P Systems for MMOGs and
section V the evaluation with player traces from a real MMOG.
Finally, Section VI provides conclusions.

II. RELATED WORK

Some efforts have been undertaken to design a MMOG on
a P2P basis, with the server tasks being shared among the
player’s PCs. In [1] and [2] the game world is divided into
zones, some peers become zone owners that take responsi-
bility for computing the server tasks for such a zone. While
this approach is fascinating on one hand, it suffers from a
number of practical problems. Players constantly connect to
and disconnect from the game, often without warning if the
PC crashes or suddenly gets disconnected from the network,
so one always needs backup machines to replace disconnected
zone owners. Allowing player’s computers to calculate parts
of the game mechanics makes it harder to avoid cheating.
Another problem is that persistent player data, for example the
progress of the player’s characters in a role-playing game, need
to be saved in a way that makes sure that no information is
lost, as players may have invested a lot of work into the game.
At the same time one has to prevent players from cheating by
modifying this data—which would be possible if it was stored
on the player’s local hard drives. This suggests that some kind
of infrastructure provided by the game manufacturer would
still be needed, a full P2P approach does not appear practical.
Another challenge is the low upstream bandwidth of most
current Internet connections, probably only peers with a good
connectivity could be considered for becoming zone owners.

Solipsis [3] uses a different approach, as it tries to build
a P2P network-based on the neighborship relations of the



player’s avatars. Each peer has direct connections to all other
peers that are in visible range of the player’s avatar. There is
a real implementation of Solipsis, however currently it is little
more than a distributed chat client. If one wanted to make
it a “real” MMOG, one would be confronted with the same
problems as described above. It is especially difficult to make
such an approach cheat-proof [4].

Many algorithms exist for load balancing in structured P2P
systems [5]–[8]. However, most of these systems are not
applicable for online games. The virtual server approach [5]
is based on the idea of managing multiple partitions of a
Distributed Hash Table’s (DHT) address space in one node.
Thus, one physical node may act as several independent logical
nodes. Each virtual server will be considered by the underlying
DHT as an independent node.

III. MASSIVELY MULTIPLAYER ONLINE GAMES

MMOGs differ from other games mainly in the number of
simultaneous players. They allow thousands of players to share
a single game world. This type of games has its origin in the
text-based Multi User Dungeons (MUDs) that first appeared
in the 1970s. Blizzard launched World of Warcraft [9] in 2004,
which became a worldwide best-seller.

Most of today’s MMOGs titles are role playing games,
the term Massively Multiplayer Online Role Playing Games
(MMORPGs) is well-known in the gaming industry. In this
game type, the player’s character earns experience while
adventuring through the game world. In role playing games,
combat itself is more a matter of luck and strategy than of
quick reflexes. The player has to choose the abilities that
he wants to use. Using skills, magic spells or weapons also
requires luck, because whether an opponent is hit and how
bad he is hit is computed randomly. This is why MMORPGs
are relatively tolerant with respect to delay; it is by far not as
important to have a “low ping” as with an ego-shooter.

A. Server Tasks

The central server cluster in a traditional MMOG has to
perform various different tasks, including:

• Management of player positions in the world: The
server has to know the position of each player and
distribute this information to other nearby players.

• Management of the world: Controlling monsters, non-
player characters, treasures, the weather and all other
dynamic aspects.

• Combat: To avoid cheating, the effects of actions taken
by the players in combat should be calculated on a server.

• Chat: Usually a global in-game-chat is implemented on
the server.

• Accounting for the players: The player’s characters
must be surely saved. This is a task that makes the
creation of a real P2P multiplayer game—with all clients
acting as servers and without a central infrastructure—
very hard.

Infrastructure
hosts

Player characters in 
the game world

Players

Fig. 1. The architecture for the P2P-based infrastructure for MMOGs. Each
infrastructure host is responsible for different virtual zones in the world.

B. Challenges

The first and possibly greatest challenge that the server
infrastructure of a MMOG faces are the first few days after
the game has been launched. An eagerly expected game like
World of Warcraft can have a huge number of players on the
servers after a few days. For such games it is quite common
to have different areas for players with different levels of
experience. Thus, an additionally challenge here is that all
those new players will concentrate in the beginner areas of
the game and the load on the servers will not be balanced
equally. This is a general problem that one also has to face
when the first rush on the game is over. Players do not evenly
distribute over the world, they tend to form large groups to raid
villages of enemy guilds or realms. Sophisticated mechanisms
to balance the load are required here. It would be especially
advantageous if one could simply connect another server to
the cluster in a high-load condition and the load would be
split automatically.

The leading MMORPG in the market—Blizzard’s World of
Warcraft with over 6 Million players worldwide—is constantly
suffering from overloaded servers. Players are complaining
about lag, downtimes of the game worlds and long queues
when trying to connect to the game. As a consequence, players
in China even went on strike in March 2006 [10].

Another challenge that needs to be addressed is the reliabil-
ity of the game. Games occasionally experience server instabil-
ities caused by hard- or software failures. In this situation one
wishes to have the possibility to simply disconnect a machine
that shows a problem, the load should automatically be split
up among the remaining servers. Other challenges that are
out of our scope in this paper are data management, various
hand-overs, ways to guarantee a certain level of consistency,
and may more.

IV. P2P-BASED INFRASTRUCTURE SUPPORT FOR MMOGS

This section shows our approach to use structured P2P tech-
nology for the organization of the infrastructure for MMOGs.
The game world is split in disjunctive zones and distributed
on different nodes of the P2P network.

A. Architecture

As [2] and [1], we use the fact that only a limited region of
the game world is interesting for the player, as his character



can only see a limited area and also has a limited movement
speed. This allows splitting the game world into regions,
whereas the current region and a small number of neighboring
regions are in the player’s visible range.

The game world is defined by a map, which is split into
disjunctive zones in d dimensions (mostly two or three)
and distributed on different nodes of the P2P network. As
CAN is a structured P2P System based on an d-dimensional
coordinate space, it is best-suited for map-based scenarios. Our
approach does not use the DHT functionality of CAN, only the
functionality of a structured P2P system is needed, like adding
nodes or maintenance of the coordinate space. Figure 1 shows
a distribution of servers over the map, which is mapped into a
zone-based structured P2P system. Since the zones at the edge
of the identifier space are connected with the opposite zones
for routing and load balancing, also game worlds simulating a
terrestrial globe are possible. The players are assigned to the
servers according to the position in the game world.

The game world is distributed on a server infrastructure.
This infrastructure is not necessarily located in a single data
center. However in most cases it makes sense to locate the
peers that are responsible for adjacent regions in the same
network to minimize delay and costs for internal traffic. But
our approach could also be used for a super-peer network in
a more distributed setting for more delay-tolerant games.

Besides using the CAN address space as a map to store
location-specific information, one can also still use it as a
traditional DHT to store data that is not directly related to a
location in the game world. For example, to realize the global
chat functionality that is common with MMOGs, one needs to
look up player characters by name and not by their position
in the game world. This can be achieved by simply storing a
key-value-pair in the CAN DHT.

B. Accounting

Accounting can be done via a standard Authentication,
Authorization, and Accounting (AAA) [11], [12] server in-
frastructure. This can be enforced since the game control is
not directed to untrusted peers, but to infrastructure nodes
that organize as P2P network. Also it is possible to store
the player’s characters permanently on the game hosts or a
dedicated machine and to make backups of this data regularly.

C. Availability

Structured P2P systems include mechanisms, that allow
neighboring peers to take over the area of a server that has
disconnected [13]. However the state information that was
stored about this area would be lost, if it has not been repli-
cated somewhere in the network. As the ratio of disconnects
is far lower in our case than with a player P2P network—
the game servers should be more reliable than users peers—
the replication problem is not as serious as in [2] though. A
server that owns area A can simply propagate changes to the
game state to one or more other servers B − E that own a
neighboring area (cf. Figure 2(a)). It would be appropriate to
choose nodes with low load to store the replicas. Note that
parts of this information are also useful in B − E, as some

B

C

A D

E

(a) Replication mechanism:
Nodes propagate their state to
neighbors. If a host suddenly
disconnects, a neighbor can
take over immediately.

(b) View of a player charac-
ter: A node has a view across
zones borders. The messages
are send trough the host, re-
sponsible for each zone.

Fig. 2. Replication mechanism and view of player characters in the structured
P2P infrastructure.

of players in these areas may be close to the borders and
therefore able to see what happens in area A (cf. Figure 2(b)).
Other neighbors receive information that might be interesting
for their players, e.g. information about objects and characters
that are within visible range of the zone border.

If a failure occurs, the host with the lowest load is chosen
among the machines that replicated the information, e.g. the
host that owns area D. Since the game state for area A is
already known at this node, no further copy is needed to
run the game. Then, the load-balancing algorithms presented
below can be used to re-distribute the load on the physical
servers.

D. Pooling

Any P2P approach has to support joins and leaves of
nodes. As a consequence, new hosts can be added to the
P2P infrastructure when needed. Suitable hosts are not only
high-end servers; the game could also run on standard PCs.
On the basis of the virtual server concept hosts may have
virtual servers in different game worlds. This has two major
implications. First, the downtime of one or only few servers
will probably not be able to stop the game. The availability of
the game will be much higher than today. Only when a new
version has to be installed on all servers and clients that can not
interoperate with the old version there will be a definite stop.
Second, since hosts can be pooled and used for the game or
instance that currently needs them most the so-called Economy
of Scale1 comes into play. The consequence is a better service
with the same number of resources or a potential to reduce
costs.

E. Security

The main security functionality can be realized using a
Authentication, Authorization, and Accounting (AAA) [11],

1The Economy of Scale in this context is also called Multiplexing Gain in
the theory of communication networks. It states that an increase in demand
does not necessarily need the same increase in capacity to achieve the same
service quality.



[12] infrastructure. These dedicated AAA servers grant peers
access to the world and registered players access to the game.
Since the infrastructure peers are controlled by the game
company (or a community of trusted peers) all nodes in the
network are trusted. The peers have to be authenticated since
an outside peer could try to enter the network and attack it.
Players have to be authenticated, but this, too, can be solved
by the AAA infrastructure.

F. Load Balancing

Load balancing is an important issue, as one can not expect
the players to distribute uniformly in the game world. Some
places in the game world, cities for example, can be expected
to be more populated than areas in the countryside. This
knowledge could be used to statically configure the servers of
an MMOG in a way that distributes the expected load evenly.
But in many games, it is common to form large groups for
raiding enemy territories for example. In such a case, dynamic
load balancing is required.

The virtual server approach [5] is based on the idea of man-
aging multiple partitions of a structured P2P address space in
one node. Thus, one physical node may act as several indepen-
dent logical nodes. Each virtual server will be considered as
an independent node by the underlying structured P2P System.
Within a CAN system, one virtual server is responsible for a
zone of the address space, whereas the corresponding physical
node may be responsible for several different and independent
zones. The basic advantage of this approach is the simplicity to
place and transfer virtual servers among arbitrary nodes. This
operation is similar to the standard join or leave procedure
in a structured P2P system. Every participating node manages
many virtual servers so load can be moved between nodes by
moving a whole virtual server to another node. Additionally,
zones with too many players inside can be split and one part
can be sent to another server. Also, adjacent zones with low
numbers of players can be merged for a lower number of
internal messages.

When an area has to be split because it is overpopulated,
one of five algorithms is used to decide how the split should
be performed.

• SplitCenter splits areas along the center horizontally or
vertically in exchange. If area A was split into areas B
and B′ horizontally, then area B will be split into C and
C ′ vertically.

• MaxDistToBorders also splits along the center. This al-
gorithm decides whether to split horizontally or vertically
by maximizing the average distance of the players to
the newly created border. The idea behind this is, to
minimize internal traffic as looking and walking over
borders always creates overhead.

• IntelliDistance again splits along the center and decides
whether to split horizontally or vertically, such that as
few players as possible can see the other side of the
new border. The rationale behind this is the same as with
MaxDistToBorders.

• EqualNumbers splits along the center and decides

whether to split horizontally or vertically in a way that
makes the number of players in the new regions is as
equal as possible. The expectation is that this algorithm
will perform better than SplitCenter in terms of load-
balancing.

• VarAreas splits horizontally or vertically as SplitCenter
does. However it places the border not along the center
but at the centroid of the players. As with EqualNumbers
the expected result is better load-balancing.

V. EVALUATION

In this section we evaluate our approach with respect to the
load balancing issues. First, we briefly introduce the simulation
methodology. Secondly, we discuss how players move in the
game world and finally present our simulation results.

The two major criteria for the evaluation are:
• The variance of the physical server load is the variance

of “computational” load we determined for the various
physical servers. Ideal would be 0, i.e. same load for all.

• The number of internal messages is a way to measure
the overhead introduced by distributing the game world
on multiple servers. Internal messages are exchanged
between physical servers, they are caused by players
looking or walking over area borders and when players
are assigned to another server because a virtual server
has been moved.

A. Player Behavior

We evaluated our approach with a simulation using artifi-
cially generated as well real traces of user-movement:

• Random walk trace data is a collection of generic data
represents movement of users according to the Random
Walk Mobility Model. It covers ut to 300 users with four
hours of movement time.

• Random waypoint trace data has the same properties
by using the Random Waypoint Mobility Model.

• Freewar trace data consists of real player-movements
traced in Freewar [14] over a period of up to five hours.
Approximately 400 players were online in this period of
time, the number of concurrent players varies over time
since users join or leave the game. So there is a dynamic
number of players over time. Also the Freewar traces
show an extremely uneven distribution of the players over
the world with hot spots in cities.

B. Results

Figure 3 shows the coefficient of variation (CV) of the phys-
ical server load, with all five algorithms and with real player-
traces from Freewar. One can see that IntelliDistance performs
best, SplitCenter is the second-best algorithm. EqualNumbers
and VarAreas have a very high CV. The reason for this is
that those algorithms already achieve a relatively good load-
balancing with few split operations, so the game-world is not
split into as many areas as with the other algorithms. Figure 3
shows also the CV for artificial “Random Walk” and “Random
Waypoint” traces. One can see that the CV is generally much
lower here, as the players are distributed more evenly. Again



0%

2%

4%

6%

8%

10%

12%

14%

16%

SplitCenter MaxDistToBorder EqualNumbers IntelliDistance VarAreas

Algorithm

C
oe

ffi
ci

en
t o

f V
ar

ia
nc

e 

Random Walk
Random Waypoint
Real Trace Data

Fig. 3. The effectiveness of the load-balancing algorithms with real trace
data of the MMOG Freewar and artificial trace data.

EqualNumbers and VarAreas have the highest CV, this time
SplitCenter was the best algorithm.

In Figure 4 one can see the number of internal messages
caused by distributing the game world on multiple peers.
Internal messages are triggered by players that are close to an
area-border so they can see the other side, by players crossing
an area border (handover) and by virtual servers that are moved
from one physical server to the next.

The algorithms MaxDistToBorder and IntelliDistance per-
form approximately as good as SplitCenter with the real
player-traces from Freewar. Splitting areas in a way that
minimizes the number of players who can see beyond the
border in the moment of the split is ineffective. The algorithms
EqualNumbers and VarAreas perform especially well here. At
the first glance it appears strange that the algorithms designed
for good load-balancing are good with regard to the number
of internal messages while they appeared bad regarding the
coefficient of variation above. The explanation is that these
algorithms split the world more effectively, so fewer splits are
required to prevent servers from being overloaded. Therefore
the game world is split into fewer areas which reduces the
number of internal messages.

Figure 4 also shows the number of internal messages with
artificial “Random Walk” and “Random Waypoint” traces.
Surprisingly EqualNumbers and VarAreas, the algorithms with
the best results with real player data, perform specially bad
here. In the artificial traces, the players are distributed on
the map evenly, therefore those two algorithms gain little
advantage from their power to split areas. However they
have disadvantages when merging regions as - specially with
variable areas - the chances of having a common border with
the neighboring area are reduced.

This shows also that artificial trace data is of little use for
evaluation of MMOGs. Real players concentrate at certain hot
spots on the map, they move in groups and sometimes even
show a “flash crowd”-like behavior. Therefore “Random Walk”
and “Random Waypoint” do not generate results that would be
applicable to real games. In a real MMOG, one may want to
start splitting the world using the SplitCenter algorithm, as it
produces good results and appears to be robust against changes
of the player distribution. VarAreas is even more effective and
may be the algorithm of choice if the player distribution is
rather uneven and shows hot-spots. But switching between
algorithms is also possible at run-time.

0

20000

40000

60000

80000

100000

120000

140000

SplitCenter MaxDistToBorder EqualNumbers IntelliDistance VarAreas

Algorithm

In
te

rn
al

 M
es

sa
ge

s

Random Walk
Random Waypoint
Real Trace Data

Fig. 4. The number of internal messages with real trace data of the MMOG
Freewar and artificial trace data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we use a structured P2P technology for the
organization of the infrastructure and thus for the reduction
of downtimes in MMOGs. By using a CAN-based approach
we split the game world in disjunctive zones and distribute
them on different nodes of the P2P network. Thus, we get the
possibility to dynamically connect and disconnect machines
to and from the peer-cluster and to load-balance the game
accordingly to the actions of the players.

The P2P technology makes it possible to run multiple game
worlds on a pool of servers. The physical location of these
servers is of minor importance, they do not have to run in
the same data center. Placing the servers of a single game
world at different locations introduces additional overhead;
however this may be justified by enhanced reliability or maybe
by an improved locality. Even if one whole location should be
disconnected from the network, the servers at other locations
could take over seamlessly and without loss of data.

We will continue working on P2P support for MMOGs. Fu-
ture work includes more a detailed investigation of handovers
and state consistency between the servers and even better load-
balancing algorithms.

REFERENCES

[1] T. Iimura, H. Hazeyama, et al., “Zoned federation of game servers: a
Peer-to-Peer approach to scalable multi-player online games,” in Proc.
of NETGAMES, Portland, OR, 2004.

[2] H. Lu, “Peer-to-Peer Support for Massively Multiplayer Games,” in
Proc. of IEEE INFOCOM, Hong Kong, China, 2004.

[3] J. Keller and G. Simon, “Solipsis: A Massively Multi-Participant Virtual
World,” in Proc. of PDPTA, Las Vegas, NV, 2003.

[4] C. GauthierDickey, D. Zappala, et al., “Low Latency and Cheat-Proof
Event Ordering for P2P Games,” in Proc. of NOSSDAV, Ireland, 2004.

[5] A. Rao, K. Lakshminarayanan, et al., “Load Balancing in Structured
P2P Systems,” in Proc. of IPTPS, Berkeley, CA, 2003.

[6] S. Rieche, K. Wehrle, et al., “A Thermal-Dissipation-based Approach
for Balancing Data Load in DHTs,” in Proc. of LCN, Tampa, FL, 2004.

[7] D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms
for Peer-to-Peer Systems,” in Proc. of IPTPS, San Diego, CA, 2004.

[8] J. Byers, J. Considine, et al., “Simple Load Balancing for DHTs,” in
Proc. of IPTPS, Berkeley, CA, 2003.

[9] Blizzard Entertainment, www.worldofwarcraft.com.
[10] Interfax China, “Gamers threaten mass protest against The9’s operation

of WoW in China,” 2006.
[11] C. de Laat, G. Gross, et al., “Generic AAA Architecture,” IETF, RFC

2903, 2000.
[12] S. Farrell, J. Vollbrecht, et al., “AAA Authorization Requirements,”

IETF, RFC 2906, 2000.
[13] S. Ratnasamy, P. Francis, et al., “A Scalable Content-Addressable

Network,” in Proc. of the ACM SIGCOMM, San Diego, CA, 2001.
[14] J. Cernik, “Freewar - MMORPG Browsergame,” www.freewar.de.


