
Task Allocation in Industrial Edge Networks with Particle Swarm
Optimization and Deep Reinforcement Learning

Philippe Buschmann
philippe.buschmann@siemens.com

Siemens AG
Munich, Bavaria, Germany

Technical University of Munich
Garching, Bavaria, Germany

Mostafa H. M. Shorim
shorim@net.in.tum.de

Siemens AG
Munich, Bavaria, Germany

Technical University of Munich
Garching, Bavaria, Germany

Max Helm
helm@net.in.tum.de

Technical University of Munich
Garching, Bavaria, Germany

Arne Bröring
arne.broering@siemens.com

Siemens AG
Munich, Bavaria, Germany

Georg Carle
carle@net.in.tum.de

Technical University of Munich
Garching, Bavaria, Germany

ABSTRACT
To avoid the disadvantages of a cloud-centric infrastructure, next-
generation industrial scenarios focus on using distributed edge net-
works. Task allocation in distributed edge networks with regards
to minimizing the energy consumption is NP-hard and requires
considerable computational effort to obtain optimal results with
conventional algorithms like Integer Linear Programming (ILP).
We extend an existing ILP problem including an ILP heuristic for
multi-workflow allocation and propose a Particle Swarm Optimiza-
tion (PSO) and a Deep Reinforcement Learning (DRL) algorithm.
PSO and DRL outperform the ILP heuristic with a median opti-
mality gap of 7.7 % and 35.9 % against 100.4 %. DRL has the lowest
upper bound for the optimality gap. It performs better than PSO
for problem sizes of more than 25 tasks and PSO fails to find a
feasible solution for more than 60 tasks. The execution time of DRL
is significantly faster with a maximum of 1 s in comparison to PSO
with a maximum of 361 s. In conclusion, our experiments indicate
that PSO is more suitable for smaller and DRL for larger sized task
allocation problems.

CCS CONCEPTS
• Theory of computation→ Scheduling algorithms; • Com-
puting methodologies→ Heuristic function construction; Model
verification and validation.

KEYWORDS
Edge Computing, Internet of Things (IoT), Task Allocation, Inte-
ger Linear Programming, Deep Reinforcement Learning, Particle
Swarm Optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoT ’22, November 7–10, 2022, Delft, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9665-3/22/11. . . $15.00
https://doi.org/10.1145/3567445.3571114

ACM Reference Format:
Philippe Buschmann, Mostafa H. M. Shorim, Max Helm, Arne Bröring,
and Georg Carle. 2022. Task Allocation in Industrial Edge Networks with
Particle Swarm Optimization and Deep Reinforcement Learning. In Proceed-
ings of the 12th International Conference on the Internet of Things (IoT ’22),
November 7–10, 2022, Delft, Netherlands. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3567445.3571114

1 INTRODUCTION
Today’s prevailing cloud-centric Internet of Things (IoT) model
has limitations [10], e.g., (i) unreliable cloud connectivity, (ii) lim-
ited bandwidth, and (iii) high round-trip times. Therefore, next-
generation IoT applications, such as autonomous guided vehicles,
AR/VR, or industrial robots/drones, require advanced IoT environ-
ments that comprise heterogeneous devices, which collaboratively
execute these IoT applications [15].

In this work, we focus on the industrial edge computing infras-
tructure as advanced IoT environment. Users of industrial edge
networks can scale resources horizontally on multiple local net-
work nodes. This allows moving workflows and applications from
the cloud to local nodes which can reduce latency and can increase
throughput and reliability [2]. Further, this can enhance the privacy
and security of the workflow [5].

One disadvantage of the industrial edge is the complexity of
placing workflow on a distributed network. A workflow can be
constrained by Quality of Service (QoS) objectives like latency or
energy-consumption and consists of one or multiple tasks that com-
municate with each other. Thus, a random placement of tasks in a
workflow on network nodes might not satisfy the QoS constraints
of the workflow. To optimize the QoS constraints while adhering
to the physical boundaries of the network, it is necessary to de-
sign specific algorithms for solving the task allocation problem.
This problem is known as NP-hard [1] and can be solved by either
optimal or heuristic approaches.

Optimal Approach To allocate tasks optimally on the nodes of
an edge network, we can use well-known optimization techniques
like ILP, and Optimization Modulo Theories (OMT). These meth-
ods achieve an optimal solution [1, 19], but scale poorly in large
networks with many applications [19]. For example, the ILP model
in [19] can take up to a week of computational time to find the

https://orcid.org/0000-0002-0019-8710
https://orcid.org/0000-0002-0344-9212
https://orcid.org/0000-0001-7944-4867
https://orcid.org/0000-0002-1181-3897
https://orcid.org/0000-0002-2347-1839
https://doi.org/10.1145/3567445.3571114
https://doi.org/10.1145/3567445.3571114

IoT ’22, November 7–10, 2022, Delft, Netherlands Buschmann et al.

optimal allocation of 50 tasks on 20 nodes in a network with the
objective of minimizing the total energy-consumption [19].

Heuristic Approach Heuristics and meta-heuristics only ap-
proximate the optimal solution and usually scale better than optimal
approaches [20, 22]. Some well-known heuristics are the Genetic
Algorithm (GA) and PSO [20, 22]. Since these algorithms only ap-
proximate the optimal solution, they may not satisfy the QoS con-
straints perfectly or may perform worse than the optimal solution,
which is generally known as optimality gap [1].

In this work, we investigate both orchestration methods for opti-
mal and approximated workflow allocation. We extend an existing
ILP model to optimize the allocation of multiple workflows with
regards to the capabilities of task and nodes and we implement
and evaluate a PSO and a DRL approach for the approximated al-
location of tasks. Since the energy consumption of networked IoT
devices and its environmental impact gains more awareness [16],
our objective is to minimize the energy consumption of the overall
network. In other words, we focus on the energy consumption of
all allocated and executed tasks on the devices and their energy
consumption for communication in between.

The main contributions are as follows:

• We extend an ILP model (Section 4) which allocates tasks of
multiple workflows optimally on a network with energy
consumption as a cost function. In contrast to previous
work [19], this eliminates the bias towards previously al-
located workflows when placing one workflow at a time.
Furthermore, we implement a constraint which limits the
allocation of tasks on nodes based on their capabilities.

• We define and implement a PSO approach for task alloca-
tion. Then, we evaluate the approach against the ILP. We
show that PSO outperforms the previously proposed heuris-
tic in [19] but with the trade-off of time consumption.

• We implement, train, and evaluate a DRL model using Prox-
imal Policy Optimization (PPO). The trained model has a
lower optimality gap in comparison to PSO and the extended
version of the heuristic in [19].

In Section 2, we define the task allocation problem in edge com-
puting networks and explain some optimization approaches in
detail. Next, we identify similarities and differences in related work
in Section 3. In Section 4, we describe our approaches and tech-
niques in our methodology and evaluate them in Section 5. Last,
we conclude our work in Section 6.

2 BACKGROUND
First, we define the task allocation problem used in this work. To
optimize this problem, we use Integer Linear Programming (ILP),
Particle Swarm Optimization (PSO) and Deep Reinforcement Learn-
ing (DRL). We introduce each method and algorithm and explain
the approaches to find a solution for the optimization problem. We
start with a description of ILP problems and explain the algorithms
which allow to solve ILP problems. Then, we describe the PSO al-
gorithm. Last, we give an overview of DRL and Proximal Policy
Optimization (PPO).

2.1 Problem Definition
In this work, we focus on optimizing the allocation of multiple
workflows on a network. Therefore, we define all parts of this
optimization problem. We visualize the problem in Figure 1. In
the context of this work, a workflow is a connected and directed
acyclic graph with nodes that we call tasks. A task can be e.g., an
application, a docker container or a micro-service. In our model,
tasks cannot be split across multiple nodes in a network, run in-
definitely and do not terminate. They require a static amount re-
sources like Central Processing Unit (CPU) cycles, Random Access
Memory (RAM), and storage, which is visualized as squares. Tasks
communicate with other tasks in the workflow and transmit data
at a specific rate (transmission output) to other tasks. A task can
require a specific capability e.g., a graphical user interface or ac-
cess to sensors and actuators which further limits the allocation
possibilities in a network.

Another component in our model is the network which is a
bidirectional and connected graph. The network consists of one or
more nodes which are connected to other nodes. Each node provides
resources like CPU, RAM and storage which can be zero if no
resources are available anymore. In Figure 1, Node 4 accommodates
Task 3 and has no resources left for other tasks. Other nodes can
still provide all their resources. Each node can offer the capabilities
which can be used by tasks. These can be e.g., a temperature sensor,
a specific machine or API which is required by a task.

Our first objective is to allocate tasks of multiple workflows to
the nodes of the network. Therefore, tasks can only be placed on
nodes with enough resources to accommodate the task. One node
can accommodate multiple tasks if enough resources are available
on that node. Task can only be allocated and executed on nodes
that provide the required capabilities.

Our second objective is to allocate tasks on a network with
regards to a specific cost function. In general, this cost function
can be any QoS constraint. Like [19], we focus on minimizing the
energy consumption of the network. Thus, we define the total
energy consumption as the sum of the utilization of nodes (if they
accommodate tasks) and the utilization of connections between the
nodes (if used to transmit data between tasks). To minimize the
energy consumption, we can place tasks on nodes that use their
resources more efficiently and allocate tasks on nodes close to each
other. We show this possibility in Figure 1, where Task 4 can be
placed on either Node 2 or 3. In this case, Node 3 offers a lower
amount of energy consumption per resource.

As summary, we need to allocate tasks on a network of nodes so
that we use the least amount of energy in sum over all devices and
network connections while finding a feasible solution with regards
to resource consumption and capabilities.

2.2 Integer Linear Programming
In this work, we define the problem of Section 2.1 as ILP problem.
In general, Linear Programming (LP), Integer Linear Programming
(ILP), and Mixed Integer Linear Programming (MILP) are methods
to formulate an optimization problem. If it is possible to formulate
the problem as an (mixed) (integer) linear program, we can apply

Task Allocation in Industrial Edge Networks with PSO and DRL IoT ’22, November 7–10, 2022, Delft, Netherlands

Workflow 1

Task 0 Task 1

Task 2

Task 3
Task 4

...

Workflows
Network

Node 0
Resources

E
n
er

g
y

Node 2
Resources

E
n
er

g
y

Node 1
Resources

E
n
er

g
y

Node 3
Resources

E
n
er

g
y

Node 4
Resources

E
n
er

g
y

Node 5
Resources

E
n
er

g
y

Figure 1: Visualization of the task allocation problem

the respective algorithm for optimization.

max 𝑐𝑥
subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0 integral
(1)

Based on Conforti et al. [3], Equation 1 shows a pure integer
linear program with row vector 𝑐 = (𝑐1, ..., 𝑐𝑛), 𝑚 × 𝑛 matrix
𝐴 = (𝑎𝑖 𝑗), column vector 𝑏 = (𝑏1, ..., 𝑏𝑚)𝑇 and column vector
𝑥 = (𝑥1, ..., 𝑥𝑛)𝑇 where 𝑥 is integral if 𝑥 ∈ Z𝑛 . The goal is to
optimize each element of 𝑥 so that the result 𝑐𝑥 is maximized.

If 𝑥 ∈ R, the problem is called a linear program. If we use vector
𝑦 with 𝑦 ∈ Z𝑛 and vector 𝑥 with 𝑥 ∈ Z as shown in Equation 2, the
problem contains a combined solution in Z and R and is therefore
called amixed integer linear program. Solving a (mixed) (integer)
linear program returns the most optimal solution for the problem.

max 𝑐𝑥 + 𝑑𝑦
subject to 𝐴𝑥 + 𝐵𝑦 ≤ 𝑏

𝑥 ≥ 0 integral
𝑦 ≥ 0

(2)

It is important to specify whether a problem can be formulated
as integer linear program or linear program because solving integer
linear programs is known as generally difficult in comparison to
linear programs [3]. If we remove the integer constraint and allow
𝑥 ∈ R𝑛 , the problem is numerically easier to solve with LP [3]. This
is known as linear relaxation. However, even though linear relax-
ations facilitate solving (mixed) integer linear programs, they only
approximate the (integer-bound) solution because they may find
solutions which are not feasible for the integer-bound problem [3].

The task allocation problem in this work is formulated as ILP
problem. Therefore, we apply solvers that use the branch-and-
bound and/or the cutting plane algorithm. The branch-and-bound
algorithm solves linear programs based on the linear relaxation of a
(mixed) integer linear program. The bound part of the algorithm re-
moves infeasible solutions and solutions with a worse optimal value.
If the solution is feasible and improves the current best optimum,
the algorithm uses the branch part to explore linear programs with
different bounds. The cutting plane algorithm (iteratively) adds cuts
(e.g., upper bounds) to the solutions space to strengthen a linear
program. The strengthened linear program may result in an integer
solution. The cutting plane and branch-and-bound algorithm can be

Symbols Description
𝑣𝑡
𝑖

Velocity of particle 𝑖 at iteration 𝑡

𝑥𝑡
𝑖

Position of particle 𝑖 at iteration 𝑡

𝑤 Decay of velocity
𝑐1, 𝑐2 Time varying coefficient
𝑟1, 𝑟2 Random value ∈ [0, 1]
𝑝𝑏𝑒𝑠𝑡𝑖 Personal best solution for particle 𝑖
𝑔𝑏𝑒𝑠𝑡 Global best solution

Table 1: Description of symbols in the PSO equation.

combined which is known as branch-and-cut algorithm. We refer
to a more detailed explanation to Conforti et al. [3].

2.3 Particle Swarm Optimization
In contrast to finding the optimal solution with ILPs, we can ap-
proach the problem with the help of meta-heuristics like PSO. Even
though the solution may not be optimal, we can reduce the time and
energy consumption as shown in Section 5. The PSO algorithm orig-
inally developed by Kennedy et al. [13] in 1995 is a meta-heuristic
which searches a solution space for local and global optima. It is
population-based and therefore similar to the GA [20], Ant Colony
Optimization (ACO) algorithm [7] and Artificial Bee Colony (ABC)
algorithm [12]. It is a meta-heuristic which does not guarantee that
it finds a feasible or optimal solution (see results in Section 5).

The PSO algorithm uses a number of particles to iteratively
search a solution space. Each particle 𝑖 has a position vector 𝑥𝑖 and
a velocity vector 𝑣𝑖 which are both updated for each iteration. At
the start, all particles are initialized at a random position 𝑥0

𝑖
and

with a random velocity 𝑣0
𝑖
. We show the calculation of the velocity

and the position in Equation 3 and 4 and describe the symbols in
Table 1.

𝑣𝑡+1𝑖 = 𝑤 ∗ 𝑣𝑡𝑖 + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑡𝑖) + 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑡𝑖) (3)

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝑣𝑡+1𝑖 (4)

We separate the velocity calculation in Equation 3 of particle 𝑖
at iteration step 𝑡 + 1 into three segments. The first segment𝑤 ∗ 𝑣𝑡

𝑖

introduces the velocity 𝑣𝑡
𝑖
of the previous iteration 𝑡 and multiplies

it with the decay coefficient𝑤 . Coefficient𝑤 limits the influence
of the velocity of previous iterations. The second segment 𝑐1 ∗ 𝑟1 ∗

IoT ’22, November 7–10, 2022, Delft, Netherlands Buschmann et al.

Agent Environment

Deep Neural Network
(DNN)

Policy

Reward

ActionSelects Influences

Feeds Into Returns

Trains

Observation

Figure 2: Concept of DRL [14]

(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑡
𝑖
) introduces the direction towards the personal best

value of the particle 𝑝𝑏𝑒𝑠𝑡𝑖 multiplied with a random value 𝑟1 and a
time varying coefficient 𝑐1. The third segment 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑡

𝑖
)

introduces the direction towards the global best value of all particles
multiplied with a random value 𝑟2 and a time varying coefficient
𝑐2. The time varying coefficients 𝑐1 and 𝑐2 influence the focus on
the personal best values and on the global best values. We add the
velocity 𝑣𝑡+1

𝑖
to the previous position 𝑥𝑡

𝑖
to get the new position

𝑥𝑡+1
𝑖

. This position can then be used for the velocity in the next
iteration.

The personal and global best value is calculated by the fitness
function 𝐹 (𝑥) = 𝑓 (𝑥) with the position vector 𝑥 as possible solution.
𝑓 (𝑥) is the objective function of the optimization problem which
returns the value for solution 𝑥 . In addition to the objective function,
we can introduce constraints to 𝐹 (𝑥) by using Deb’s approach [6]
which is the most common approach in the literature [11]. We
show this in Equation 5. We define the constraints as inequality
constraints 𝑔 𝑗 (𝑥) ≥ 0 for 𝑗 = 1, ..., 𝑛 with 𝑛 being the maximum
number of all constraints. If the solution 𝑥 does not violate any
constraint (𝑔 𝑗 (𝑥) ≥ 0), PSO returns the objective function 𝑓 (𝑥). If
𝑥 violates at least one constraint, we return the worst objective
value 𝑓worst (e.g., the maximum energy consumed) plus the amount
of how much constraints where violated (𝑔 𝑗 (𝑥)).

𝐹 (𝑥) =
{
𝑓 (𝑥), if 𝑔 𝑗 (𝑥) ≥ 0,∀𝑗 ∈ {0, ..., 𝑛}
𝑓worst +

∑𝑛
𝑗=1 |𝑔 𝑗 (𝑥) |, otherwise

(5)

2.4 Deep Reinforcement Learning
Another more recent approach to solving optimization problem
is DRL. We choose DRL because we can approach it similarly to
PSO, we do not need labeled data as for supervised learning [4] and
the neural network does not have to find a hidden structure as for
unsupervised learning [14].

DRL can be split into agent, environment, action, observation
and reward [14]. Figure 2 shows the dependencies between these
entities. We initialize an environment with a state that can be
observed. This observation is used by the Deep Neural Network
(DNN) to return a probability distribution of actions. The policy
selects one action which is then applied to the environment. Then,
the agent can observe the environment again and use the policy to
select the next action. This is repeated if no termination condition
is met.

From the observation, we can calculate a reward value which
can be used to train the DNN. We can calculate a reward by using
e.g., the objective function of the ILP problem and/or the fitness

function of the PSO algorithm. In general, a DRL agent should aim
to receive the highest reward for its action.

Selecting an action that yields the highest reward depends highly
on the policy [14]. We use the PPO in this work. PPO was proposed
by Schulman et al. [18] as a simpler alternative to Actor-Critic
Experience Replay (ACER) [21] with similar performance which
outperforms the synchronous Advantage Actor Critic (A2C) [17].

In this work, we use the implementation of the MaskablePPO,
which disallows the use of invalid actions [9].

3 RELATEDWORK
Our work builds upon the previous work of Seeger et al. [19]. Seeger
et al. focuses on minimizing the energy consumption of a network
by optimally allocating the tasks of a workflow on the edge. For
that, they extend the framework defined by Cardellini et al. [1] and
propose an ILP model for the optimal allocation and a second ILP
model as a heuristic which approximates the network energy con-
sumption. The heuristic reduces the complexity of the optimization
to a non-quadratic assignment problem but leads to worse results
in terms of network energy consumption. In our work, we extend
both models to allow the optimization of the allocation of multiple
workflows simultaneously. This removes the bias towards already
allocated workflows when allocating them one by one. In addition,
we add capabilities of nodes and tasks to avoid e.g., mapping a
sensor-reading task onto a non-sensor device.

In contrast to our ILP model, designed for an edge infrastructure,
Skarlat et al. [20] define an ILP for a cloud and fog computing in-
frastructure and application deadlines. Their ILP objective function
reduces the cost of running services on the cloud by placing as
many services as possible on the fog network. In addition to the ILP
model, Skarlat et al. use and evaluate an implementation of the GA
as a heuristic. They find that the GA utilizes less fog resources than
the optimal solution, which leads to an increase in cost of about
2.5. This is similar to the findings of You et al. [22] who compare
the GA, simulated annealing and PSO for task offloading in edge
computing networks. Their model focuses on the task execution
delay and computation performance and penalizes higher energy
consumption. They identify that in comparison to the other two
algorithms, PSO converges faster, finds a solution with a lower en-
ergy consumption and has a lower task execution delay especially
for a large number of nodes.

In addition to well-known heuristics, we also focus on machine
learning approaches like DRL. Gao et al. [8] propose aDRL approach
to offload multiple workflows on edge servers and user equipment.
They minimize the energy consumption and completion time of the
workflows with a multi-agents deep deterministic policy gradient
algorithm. This algorithm yields the best values and terminates
as fastest in comparison to random offloading and DQN-based
offloading. Zheng et al. [23] implement a DQN-based task offloading
algorithm which focuses on minimizing the task failure rate by
balancing the offloading between multiple edge servers.

4 METHODOLOGY
In our methodology, we show how we use and implement the
methods described in Section 2. First, we explain the extended ILP
problem. Then, we propose parameters for PSO and use parts of

Task Allocation in Industrial Edge Networks with PSO and DRL IoT ’22, November 7–10, 2022, Delft, Netherlands

Figure 3: Biased / suboptimal workflow allocation when allo-
cating one by one.

the ILP problem definition as fitness function. Last, we describe our
DRL approach with PPO.

4.1 Integer Linear Programming
We base our ILP problem on thework of Seeger et al. [19] and extend
the ILP model to allow the allocation of multiple workflows (set
of workflows𝑊). By allocating workflows one by one, we would
have a bias towards previously allocated workflows or might not
find an existing feasible solution in the worst case. Figure 3 shows
a simplified example of a worst-case. We start with three simple
workflows with one task each in the upper rectangle and a network
of three nodes below. The required and available resources of the
tasks and nodes are shown as the number of squares. Tasks cannot
be split across multiple nodes. We assume that the node with four
available resources has the lowest energy consumption.

If we start allocating the task from left to right (one by one),
the algorithm allocates the task with three required resources to
the node with the lowest energy consumption (in our simplified
example the node with four available resources). If it does so, the al-
location of all tasks is not feasible anymore since the task with four
required resources can only be placed on the node with four avail-
able resources. However, this node would be blocked by the task
with three resources. If we solve the ILP problem for all workflows
simultaneously, we avoid the scenario described in Figure 3.

The following equations describe our ILP model:

min 𝐸total (6)
subject to:

∀𝑤 ∈𝑊 : ∀𝑡1, 𝑡2 ∈ 𝑤 : ∀𝑛1, 𝑛2 ∈ 𝑁 : 𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2] ≤ 𝑋 [𝑡1, 𝑛1]

(7)
∀𝑤 ∈𝑊 : ∀𝑡1, 𝑡2 ∈ 𝑤 : ∀𝑛1, 𝑛2 ∈ 𝑁 : 𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2] ≤ 𝑋 [𝑡2, 𝑛2]

(8)
∀𝑤 ∈𝑊 : ∀𝑡1, 𝑡2 ∈ 𝑤 : ∀𝑛1, 𝑛2 ∈ 𝑁 : 𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2]

≥ 𝑋 [𝑡1, 𝑛1] + 𝑋 [𝑡2, 𝑛2] − 1 (9)

∀𝑤 ∈𝑊 : ∀𝑡 ∈ 𝑤 :
∑︁
𝑛∈𝑁

𝑋 [𝑡, 𝑛] = 1 (10)

∀𝑤 ∈𝑊 : ∀𝑡 ∈ 𝑤 : ∀𝑛 ∈ 𝑁 : 𝑋 [𝑡, 𝑛] ≤ 𝐹 [𝑡, 𝑛]
(11)

∀𝑛 ∈ 𝑁 :
∑︁
𝑤∈𝑊

∑︁
𝑡 ∈𝑤

𝑋 [𝑡, 𝑛] ∗ 𝑅RAM𝑡 ≤ 𝑅RAM𝑛 (12)

∀𝑛 ∈ 𝑁 :
∑︁
𝑤∈𝑊

∑︁
𝑡 ∈𝑤

𝑋 [𝑡, 𝑛] ∗ 𝑅CPU𝑡 ≤ 𝑅CPU𝑛 (13)

∀𝑛 ∈ 𝑁 :
∑︁
𝑤∈𝑊

∑︁
𝑡 ∈𝑤

𝑋 [𝑡, 𝑛] ∗ 𝑅Storage𝑡 ≤ 𝑅
Storage
𝑛 (14)

∑︁
𝑤∈𝑊

∑︁
𝑡 ∈𝑤

∑︁
𝑛∈𝑁

𝐶𝑛 ∗ (𝑆𝑡/𝑃𝑛) ∗ 𝑋 [𝑡, 𝑛] ≤ 𝐸device (15)∑︁
𝑤∈𝑊

∑︁
𝑡1,𝑡2∈𝑤

∑︁
𝑛1,𝑛2∈𝑁

𝑂𝑡1 ∗ 𝐷𝑛1,𝑛2 ∗ 𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2] ≤ 𝐸network

(16)
𝐸device + 𝐸network ≤ 𝐸total (17)

Our extended ILP model starts with the minimization of the
total energy consumption as objective in Equation 6. We use 𝑋
and 𝑌 as binary decision variables as shown in Table 2 whether a
task is allocated on a node and whether two tasks on two nodes
communicate with each other. If task 𝑡1 is allocated to node 𝑛1,
𝑋 [𝑡1, 𝑛1] = 1 otherwise 0. If both 𝑋 [𝑡1, 𝑛1] and 𝑋 [𝑡2, 𝑛2] are equal
to 1, 𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2] = 1(≥ 1 + 1 − 1). Given only 𝑋 [𝑡1, 𝑛1] = 1,
𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2] could be zero or one depending on 𝑋 [𝑡2, 𝑛2]. There-
fore 𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2] is always smaller or equal to both 𝑋 . We use
Equations 7 - 9 to define 𝑌 . We use Equation 10 to allocate a task 𝑡
only once on the network. This can be changed if we need redun-
dancy of tasks as a QoS objective.

Equation 11 limits the placement of tasks to nodes which meet
their required capabilities. If node 𝑛 offers the capability that is
needed by task 𝑡 , 𝐹 [𝑡, 𝑛] = 1 or 0 otherwise. If 𝐹 [𝑡, 𝑛] = 0, the task
cannot be allocated on node 𝑛 and 𝑋 [𝑡, 𝑛] = 0.

The Equations 12 - 14 constrain the sum of the required resources
of all tasks on a node to at maximum the available resources of that
node. We differentiate between CPU cycles, RAM, and storage as
resources for our edge infrastructure.

Equation 15 defines the energy consumption of the device de-
pending on the computation size of the task, the processing power
of the node and the energy consumption by CPU cycle. Equation 16
defines the network energy consumption depending on the task
transmission output between two tasks and the energy cost of the
path in between the nodes to which the tasks are allocated to. Equa-
tion 17 models the total energy consumption used as minimization
objective in this ILP. Table 2 explains the variables used in the ILP
model in more detail.

Since our model is the extended version of the model of Seeger et
al. [19], we use their approach to create an ILP heuristic. The main
difference in this work is the addition that allows us to allocate
multiple workflows for the heuristic. Further, we added the resource
and capability constraint to the ILP heuristic.

To solve the ILP problem, we use the Python library pulp in
combination with the IBM CPLEX solver.

Next, we transfer the ILP model and the constraints to other
approaches.

4.2 Particle Swarm Optimization
As described in Section 2, we use Deb’s approach [6] to implement
the constraints of the ILP problem. As a result, 𝑓 (𝑥) = 𝐸device +
𝐸network from Equation 15 and 17. For 𝑓worst, we calculate the max-
imum total energy consumption for the nodes and the network as
shown in Equation 18-20. In Equation 19 𝑡𝑎𝑠𝑘𝑠 is sum of the number
of tasks over all workflows. In Equation 20 𝑒𝑑𝑔𝑒𝑠 is the sum of all

IoT ’22, November 7–10, 2022, Delft, Netherlands Buschmann et al.

Symbol Description
𝐸{device,network,total} Energy consumption of {all devices, all network links or both}
𝑊 Set of one or more workflows which consists of one or more tasks
𝑁 Set of one or more nodes in a network
𝑋 [𝑡, 𝑛] 1 iff task 𝑡 is allocated on node 𝑛; 0 otherwise
𝑌 [𝑡1, 𝑡2, 𝑛1, 𝑛2] 1 iff communication of tasks 𝑡1, 𝑡2 is over the network link between nodes 𝑛1, 𝑛2; 0 otherwise
𝐹 [𝑡, 𝑛] 1 iff node 𝑛 provides the required capability of task 𝑡 ; 0 otherwise
𝑅
{RAM,CPU,Storage}
𝑡 Required amount of resources of task 𝑡

𝑅
{RAM,CPU,Storage}
𝑛 Available amount of resources on node 𝑛

𝐶𝑛 Energy consumption of node 𝑛 per CPU cycle
𝑆𝑡 Computation size of task 𝑡
𝑃𝑛 Processing power of node 𝑛
𝑂𝑡 Transmission rate / output of task 𝑡
𝐷𝑛1,𝑛2 Energy consumption from node 𝑛1 to node 𝑛2

Table 2: Definitions of the variables used for the ILP.

links between tasks over all workflows.

𝑓max = 𝐸max
device + 𝐸max

network (18)
𝐸max
device = 𝑡𝑎𝑠𝑘𝑠 ∗max

∀𝑛
𝐶𝑛 ∗ (max

∀𝑡
𝑆𝑡/min

∀𝑛
𝑃𝑛) (19)

𝐸max
network = 𝑒𝑑𝑔𝑒𝑠 ∗max

∀𝑡
𝑂𝑡 ∗ max

∀𝑛1,𝑛2
𝐷𝑛1,𝑛2 (20)

We use the same approach as described in Section 2 to calculate
the velocity and position of the particle. We start with 50 particles
and 𝑡𝑎𝑠𝑘𝑠 as the number of dimensions. We stop PSO when there
is no improvement with regards to a relative error of 0.000001 over
𝑡𝑎𝑠𝑘𝑠 ∗ 100 of iterations. We iterate 20000 times to find an optimal
solution. Our out-of-bounds strategy for particles is reflective.

We use a version of the PSO algorithmwhich allows us to change
the decay of velocity𝑤 and influence on personal best values 𝑐1 and
global best values 𝑐2. We start with the values of 𝑐1 = 2.5, 𝑐2 = 0.5
and 𝑤 = 0.9. With each iteration, these values linearly converge
to 𝑐1 = 0.5, 𝑐2 = 2.5 and 𝑤 = 0.4 which they reach in the end. As
a result, we focus on personal best values in the beginning with a
small influence of global best values and focus more and more on
global best values with a small influence of personal best values. In
addition, we use the decay of velocity as tool to slow the particle
down towards the end.

For the implementation, we use the Python library pyswarm
and implement an extended version of the GlobalBestPSO class to
allow the linear change in𝑤, 𝑐1, 𝑐2.

4.3 Deep Reinforcement Learning
For our DRL implementation, we use the Python library
stable_baselines3 with a custom environment of the OpenAI
gym library. We tested multiple models with different observation
spaces and present the best performing DRL model. Our custom
environment allocates tasks one by one. As a result, the action is the
number of the node on which the task should be allocated. We used
the same variables and calculations 𝑆𝑡 , 𝑃𝑛 , 𝐸device and 𝐸network as
defined in the ILP problem. The observation space is a dictionary
which consists of:

• A list of the normalized (between zero and one) computation
size 𝑆𝑡 of each task 𝑡 .

• A list of the processing power 𝑃𝑛 of each node 𝑛. The value
is zero for invalid nodes.

• A list of values that show the increase in network energy con-
sumption depending on the node on which the task is going
to be allocated. If the node is invalid because of constraints,
the value is two times the maximum network energy.

For the reward, we calculate the difference in total energy con-
sumption Δ𝐸𝑖 between the current allocation and previous allo-
cation and multiply it by -1 as shown in Equation 21 - 24. The
multiplication of the energy cost with -1 is necessary because the
DRL agent maximizes the reward. Therefore, the agent now aims
to minimize the energy cost.

Δ𝐸0 = 0 (21)

Δ𝐸𝑖 = 𝐸𝑖total − 𝐸𝑖−1total (22)

𝐸𝑖total = 𝐸𝑖device + 𝐸𝑖network (23)
𝑟𝑒𝑤𝑎𝑟𝑑 = −1 ∗ Δ𝐸𝑖 (24)

To avoid violating constraints, we use MaskablePPO in our im-
plementation to only allow numbers of valid network nodes as
actions.

5 EVALUATION
In this section, we show the results of the optimal and heuristic
approaches in comparison to each other. In addition, we compare
the run-time of each approach.

5.1 Experiment Setup
For our experiments, we use a machine running Debian bullseye,
an Intel(R) Xeon(R) Silver 4116 CPU and 160 GB of RAM. We ex-
ecute all experiments on the same machine. To compare simple
task allocation problems with the optimal solution and the scal-
ability of the heuristic algorithms, we split our experiments into
two datasets. For the first dataset, we use simplified versions of the
ILP, the ILP Heuristic, PSO and DRL where we omit the capability,

Task Allocation in Industrial Edge Networks with PSO and DRL IoT ’22, November 7–10, 2022, Delft, Netherlands

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950
Example ID

0

10

20

30

40

Nu
m

be
r

Tasks
Workflow Length
Workflow Width
Workflows

Figure 4: Metadata of each example for the first dataset.

CPU and storage constraints. For the second dataset, we include
all constraints but omit the optimal results of the ILP due to the
computational complexity and time consumption.

We implemented a Python module which generates an example
with the parameters workflow length, workflow width and work-
flow count. An example consists of one or multiple workflows and
a network. The network is scaled with the number of tasks to allow
a feasible solution. The parameters allow a pseudo-random work-
flow structure with some degrees of freedom e.g., in total number
of tasks. Each example is identified by a number. We increase the
length, width and workflow count for each example as shown in
Figure 4 for both datasets.

We trained the DRL model with one million episodes for the
simplified DRL version (first dataset) and with 80 million episodes
for the full version (second dataset).

We solve the ILP problem once for all examples of the first dataset.
To calculate a mean value and a standard deviation, we execute the
ILP heuristic, PSO and DRL ten times on each example for both
datasets. We sort the results of the examples in the next sections
by the total number of tasks.

5.2 Comparison of Optimal and Heuristic
Algorithms

Figures 5a and 5b show the results of the first dataset. The x-axis
shows the total number of tasks and the ID of the examples. The
y-axis shows the cost which is the total energy consumption of the
devices and the network. The ILP yields the optimal value. Since
the other approaches only approximate these optima, their results
are worse than or equal to the ILP results.

In our experiments, the ILP heuristic and DRL are deterministic.
Thus, we only include the standard deviation of PSO in the figures.
Figure 5 shows in the simplified version, overall, PSO and DRL
outperform the ILP heuristic. The best approach is PSO. However,
the PSO algorithm yields worse results for more than 25 tasks in
comparison to DRL. For a higher number of tasks, the best ap-
proximation is provided by the DRL. In addition, PSO is the only

(2
, 1

)
(3

, 2
)

(4
, 3

)
(4

, 8
)

(4
, 3

6)
(5

, 4
)

(6
, 5

)
(6

, 9
)

(6
, 1

5)
(6

, 3
7)

(7
, 6

)
(8

, 3
9)

(8
, 3

8)
(8

, 7
)

(8
, 1

0)
(8

, 2
2)

(9
, 1

6)
(1

0,
 1

1)
(1

0,
 2

9)
(1

2,
 4

0)
(1

2,
 1

2)
(1

2,
 1

7)
(1

2,
 2

3)
(1

2,
 4

2)

Tasks, Example ID

0

5

10

15

20

25
Co

st
Name
ILP Heuristic
PSO
DRL
ILP

(a) Number of tasks from 2 to 12.

(1
5,

 1
8)

(1
5,

 3
0)

(1
6,

 1
4)

(1
6,

 2
4)

(1
6,

 4
1)

(1
6,

 4
5)

(1
8,

 1
9)

(1
8,

 4
3)

(2
0,

 2
5)

(2
0,

 3
1)

(2
0,

 4
8)

(2
1,

 2
0)

(2
4,

 4
6)

(2
4,

 4
4)

(2
4,

 2
1)

(2
4,

 2
6)

(2
5,

 3
2)

(2
8,

 2
7)

(3
0,

 3
3)

(3
0,

 4
9)

(3
2,

 2
8)

(3
2,

 4
7)

(3
5,

 3
4)

(4
0,

 3
5)

(4
0,

 5
0)

Tasks, Example ID

0

20

40

60

80

100

120

140

Co
st

Name
ILP Heuristic
PSO
DRL
ILP

(b) Number of tasks from 15 to 40.

Figure 5: Energy consumption of ILP, ILP heuristic, PSO and
DRL (first dataset).

algorithm which can terminate with an infeasible solution and does
so for example 34 with 35 tasks.

With increasing problem size, the ILP becomes infeasible. Due to
this, we were not able to include the optimal solution of example 27,
28, 33, 34, 35 and 47 despite running the solver for longer than two
weeks. We show the time usage over all examples in Figure 6a. The
maximum required time to solve an ILP problem is example 21 with

IoT ’22, November 7–10, 2022, Delft, Netherlands Buschmann et al.

ILP Heuristic PSO DRL ILP

10 1

101

103

105
Ti

m
e

(s
)

(a) Execution time in seconds.

ILP Heuristic PSO DRL
0

50

100

150

200

250

300

Op
tim

al
ity

 G
ap

 (%
)

(b) Optimality gap.

Figure 6: Execution time and optimality gap of algorithms
(first dataset).

over thirteen days if we do not consider the examples terminated
after two weeks. In the worst-case scenario, PSO needs 15.9 s to find
a solution while DRL and the ILP heuristic need 188ms and 174ms
respectively. In general, the ILP heuristic has the lowest execution
time for the examples in the first dataset.

We use the optimal value of the ILP to calculate the percent
error 𝛿 = 100% ×

�� (𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛−𝑜𝑝𝑡𝑖𝑚𝑎𝑙)
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

��. This is also known
as optimality gap. Figure 6b depicts the optimality gap of each
algorithm. Since PSO provides the best results for examples with
less than 25 tasks, the median is lower than the optimality gaps.
The ILP heuristic has a median optimality gap of 100.4 %, PSO has
a median optimality gap of 7.7 % and DRL has a median optimality
gap of 35.9%. Furthermore, DRL yields the smallest upper bound
of 115.9% (ILP heuristic: 288.7%; PSO: 172.8%), which indicates
that DRL may be more suitable for problems with a high number
of tasks.

5.3 Scalability Analysis
To check the performance of each algorithm for larger example sizes
and in their extended version, we compare them using the second
dataset. Since the dataset includes 120 examples and larger problem
sizes, we omit the extended version of the ILP. The overall results
are similar to the first dataset. The extended PSO algorithm yields
the best results for less than 34 tasks. For over 34 tasks, DRL results
in the lowest energy consumption. Overall, the ILP heuristic yields
the highest energy consumption for all but two small examples with
4 and 5 tasks. The distribution of the execution time is comparable

20 20 20 22 24 24 25 28 30 30 32 34 36 40 40 42 48 51 55 56 66 70 78 88 10
4

Tasks

0

5

10

Fa
ile

d
At

te
m

pt
s

Name
Extended PSO

Figure 7: Failed attempts of PSO (second dataset).

with the first dataset with a maximum execution time of 2.07 s for
the extended ILP Heuristic, 360.70 s for the extended PSO algorithm
and 0.99 s for the extended DRL model.

For examples with over 20 tasks, we notice an increase in failed
attempts for PSO as shown in Figure 7. A failed attempt is an
execution which terminates without finding a feasible solution.
We ran each example ten times. For over 60 tasks, PSO failed ten
attempts and was not able to find any feasible solution.

6 CONCLUSION
In this work, we extend the existing ILP problem definition of Seeger
et al. [19] to minimize the energy consumption of the task allocation
problem with multiple workflows. We propose a PSO and DRL
approach which achieve median optimality gaps of 7.7 % and 35.9 %.
DRL achieves the lowest upper bound of the optimality gap with
115.9% in comparison to 288.7% for the ILP heuristic and 172.8%
for PSO. Our results show that PSO sometimes fails to allocate tasks
past a size of 25-34 tasks. Furthermore, DRL generally scales better
for larger problem sizes. In addition, our results indicate that the
extended PSO algorithm is unreliable for the allocation of more
than 20 tasks and unusable for the allocation of more than 60 tasks.
Our measurements determine the extended DRL model as fastest
algorithm with an execution time of under 1 s in comparison to 2 s
for the extended ILP heuristic and 360 s for the extended PSO. As a
result, our results show that PSO is more suitable for smaller and
DRL for larger sized task allocation problems.

As future work, we plan to analyze the trade-off between speed
and optimality in ILP problems when adding a bias towards pre-
viously allocated tasks. In addition, we identify possible future
research in the direction of heterogeneous networks e.g., by intro-
ducing a cloud connection or the limitations and opportunities of
5G and TSN.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 957218 (Project IntellIoT).

REFERENCES
[1] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli.

2016. Optimal operator placement for distributed stream processing applications.
In Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems. ACM, Irvine California, 69–80. https://doi.org/10.1145/2933267.
2933312

[2] Baotong Chen, Jiafu Wan, Antonio Celesti, Di Li, Haider Abbas, and Qin Zhang.
2018. Edge Computing in IoT-Based Manufacturing. IEEE Communications Mag-
azine 56, 9 (Sept. 2018), 103–109. https://doi.org/10.1109/MCOM.2018.1701231
Conference Name: IEEE Communications Magazine.

https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1109/MCOM.2018.1701231

Task Allocation in Industrial Edge Networks with PSO and DRL IoT ’22, November 7–10, 2022, Delft, Netherlands

[3] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. 2014. Integer Pro-
gramming. Graduate Texts in Mathematics, Vol. 271. Springer International
Publishing, Cham. https://doi.org/10.1007/978-3-319-11008-0

[4] Matthieu Cord and Sarah Jane Delany. 2008. Chapter 2 Supervised Learning.
[5] Wenbin Dai, Hiroaki Nishi, Valeriy Vyatkin, Victor Huang, Yang Shi, and Xinping

Guan. 2019. Industrial Edge Computing: Enabling Embedded Intelligence. IEEE
Industrial Electronics Magazine 13, 4 (Dec. 2019), 48–56. https://doi.org/10.1109/
MIE.2019.2943283 Conference Name: IEEE Industrial Electronics Magazine.

[6] Kalyanmoy Deb. 2000. An efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and Engineering 186, 2-4
(June 2000), 311–338. https://doi.org/10.1016/S0045-7825(99)00389-8

[7] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony opti-
mization. IEEE Computational Intelligence Magazine 1, 4 (Nov. 2006), 28–39.
https://doi.org/10.1109/MCI.2006.329691 Conference Name: IEEE Computational
Intelligence Magazine.

[8] Yongqiang Gao and Yanping Wang. 2022. Multiple Workflows Offloading Based
on Deep Reinforcement Learning in Mobile Edge Computing. In Algorithms and
Architectures for Parallel Processing (Lecture Notes in Computer Science), Yongxuan
Lai, Tian Wang, Min Jiang, Guangquan Xu, Wei Liang, and Aniello Castiglione
(Eds.). Springer International Publishing, Cham, 476–493. https://doi.org/10.
1007/978-3-030-95384-3_30

[9] Shengyi Huang and Santiago Ontañón. 2022. A Closer Look at Invalid Ac-
tion Masking in Policy Gradient Algorithms. The International FLAIRS Con-
ference Proceedings 35 (May 2022). https://doi.org/10.32473/flairs.v35i.130584
arXiv:2006.14171 [cs, stat].

[10] Mohammad Manzurul Islam, Sarwar Morshed, and Parijat Goswami. 2013. Cloud
Computing: A Survey on its limitations and Potential Solutions. International
Journal of Computer Science Issues 10 (July 2013), 159–163.

[11] A. Rezaee Jordehi. 2015. A review on constraint handling strategies in particle
swarm optimisation. Neural Computing and Applications 26, 6 (Aug. 2015), 1265–
1275. https://doi.org/10.1007/s00521-014-1808-5

[12] Dervis Karaboga and Bahriye Akay. 2009. A comparative study of Artificial
Bee Colony algorithm. Appl. Math. Comput. 214, 1 (Aug. 2009), 108–132. https:
//doi.org/10.1016/j.amc.2009.03.090

[13] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, Vol. 4. 1942–1948 vol.4.
https://doi.org/10.1109/ICNN.1995.488968

[14] Maxim Lapan. 2020. Deep Reinforcement Learning Hands-On - Second Edition (2nd
edition. ed.). Packt Publishing.

[15] Maren Lesche. 2022. Framework. https://intelliot.eu/framework
[16] Chrysi K. Metallidou, Kostas E. Psannis, and Eugenia Alexandropoulou Egypti-

adou. 2020. Energy Efficiency in Smart Buildings: IoT Approaches. IEEE Access 8
(2020), 63679–63699. https://doi.org/10.1109/ACCESS.2020.2984461 Conference
Name: IEEE Access.

[17] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. https://doi.org/10.48550/
arXiv.1602.01783 arXiv:1602.01783 [cs].

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. http://arxiv.org/abs/1707.06347
arXiv:1707.06347 [cs].

[19] Jan Seeger, Arne Bröring, and Georg Carle. 2019. Optimally Self-Healing IoT
Choreographies. http://arxiv.org/abs/1907.04611 arXiv:1907.04611 [cs].

[20] Olena Skarlat and Stefan Schulte. 2021. FogFrame: a framework for IoT application
execution in the fog. PeerJ Computer Science 7 (July 2021), e588. https://doi.org/
10.7717/peerj-cs.588

[21] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. 2017. Sample Efficient Actor-Critic with
Experience Replay. https://doi.org/10.48550/arXiv.1611.01224 arXiv:1611.01224
[cs].

[22] Qian You and Bing Tang. 2021. Efficient task offloading using particle swarm op-
timization algorithm in edge computing for industrial internet of things. Journal
of Cloud Computing 10, 1 (July 2021), 41. https://doi.org/10.1186/s13677-021-
00256-4

[23] Tao Zheng, JianWan, Jilin Zhang, and Congfeng Jiang. 2022. Deep Reinforcement
Learning-Based Workload Scheduling for Edge Computing. Journal of Cloud
Computing 11, 1 (Jan. 2022), 3. https://doi.org/10.1186/s13677-021-00276-0

https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1109/MIE.2019.2943283
https://doi.org/10.1109/MIE.2019.2943283
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1007/978-3-030-95384-3_30
https://doi.org/10.1007/978-3-030-95384-3_30
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.1007/s00521-014-1808-5
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1109/ICNN.1995.488968
https://intelliot.eu/framework
https://doi.org/10.1109/ACCESS.2020.2984461
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.48550/arXiv.1602.01783
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1907.04611
https://doi.org/10.7717/peerj-cs.588
https://doi.org/10.7717/peerj-cs.588
https://doi.org/10.48550/arXiv.1611.01224
https://doi.org/10.1186/s13677-021-00256-4
https://doi.org/10.1186/s13677-021-00256-4
https://doi.org/10.1186/s13677-021-00276-0

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Integer Linear Programming
	2.3 Particle Swarm Optimization
	2.4 Deep Reinforcement Learning

	3 Related Work
	4 Methodology
	4.1 Integer Linear Programming
	4.2 Particle Swarm Optimization
	4.3 Deep Reinforcement Learning

	5 Evaluation
	5.1 Experiment Setup
	5.2 Comparison of Optimal and Heuristic Algorithms
	5.3 Scalability Analysis

	6 Conclusion
	Acknowledgments
	References

