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Abstract—Many current traffic monitoring systems employ
deep packet inspection (DPI) in order to analyze network traffic.
These systems include intrusion detection systems, software for
network traffic accounting, traffic classification, or systems for
monitoring service-level agreements. Traffic volumes and link
speeds of current enterprise and ISP networks transform the
process of inspecting traffic payload into a challenging task. In
this paper we propose a novel adaptive sampling algorithm that
selects the maximum number of packets from the network that
the DPI system is able to consume. Our algorithm adapts its
sampling rate according to the network traffic currently observed,
and the number of packets that a monitoring application is able
to process. It can be used in conjunction with current multicore-
aware network traffic analysis setups, which allow for exploiting
current multi-core hardware. We show the applicability of our
algorithm with live-tests on a heavily used 10G link with real
network monitoring tools.

I. INTRODUCTION

Deep Packet Inspection (DPI) is a core component in
numerous state-of-the-art approaches for network monitoring.
Well-known intrusion detection systems such as Snort [1] or
Bro [2] rely on inspecting packet payload for detecting attack
traffic or policy violations. Recent developments that focus on
detecting botnets employ payload inspection as well: Gu et
al., for example, use Snort to generate botnet-specific alerts
and propose a correlation engine that tries to find botnet-
like behavior in the detected events [3]. Other techniques
scan for specific botnet command and control channels [4],
or implement generic payload inspection algorithms to find
groups of similar behaving hosts which are part of the same
botnet [5]. Scientific research also relies on DPI for vari-
ous others applications, such as collecting information about
the use of a certain protocol or technology such as video
streaming [6], estimating caching benefits [7], or assessing the
currently deployed security infrastructure [8].

All these approaches have to deal with the ever-increasing
amount of traffic that needs to be processed in current high-
speed ISP and enterprise networks. Current traffic volumes
and link speeds are especially challenging for sophisticated
DPI-based algorithms which perform computationally complex
analyses. A number of researchers therefore proposed different
approaches for improving the speed of analysis systems [9],
[10], distributing the analysis work-load onto multiple cores [9]
or machines in a cluster [11], proposed special-purpose hard-
ware [12], or evaluated specific sampling techniques that are
targeted at security monitoring processes [13], [14]. While all
these approaches show promising results, they force the user
to make some trade-offs.

Special purpose hardware yields very high performance,
but limits the user to the special type of analysis provided
by the hardware. Approaches that parallelize the analysis onto
multiple cores or machines require the user to provide the
resources (CPU, RAM, bus speed) necessary to analyze all
the traffic. In case of a lack of resources, e.g., due to limited
budget or due to unforeseen extensive resource consumption
by the analysis process, packet loss is inevitable.

Sampling algorithms, on the other hand, can help in sce-
narios where the available processing power is not sufficient
by reducing the amount of traffic that needs to be analyzed.
However, many available sampling algorithms need to be
configured to select a fixed share of the traffic using a static
sampling limit. This sampling limit might be difficult assess,
which easily leads to situations where traffic is being discarded,
even though the hardware would be able to process a larger
share of the traffic. Obviously, this increases the risk that
important packets cannot be seen by the monitoring process.
A network traffic analysis environment should therefore focus
on providing means for fully utilizing the available hardware
resources whenever possible, and selecting the appropriate
amount of traffic that the hardware setup can handle.

In our work, we present an adaptive load-aware sampling
algorithm that is suitable for security monitoring in single-core
and multi-core monitoring environments. Our algorithm adapts
the number of packets to be sampled according to the currently
observed network traffic and the workload patterns of the
analysis processes by adapting the sampling limit dynamically.
It aims at fully utilizing the available hardware resources,
while at the same time trying to sample those packets that
are most likely to contain “interesting” content. Fully utilizing
the available hardware requires the exploitation of current
multi-core hardware. We therefore also focus on an integrated
approach that combines our proposed sampling algorithm with
current multi-core aware capturing setups, and discuss how
to integrate our work into the systems presented in previous
work. This work furthermore presents an implementation of
the proposed algorithm and evaluates our approach in a real
monitoring setup on the 10GE link of a large-scale university
network provider.

The remainder of this document is structured as follows.
In Section II, we present related work and discuss findings of
previous work upon which we build our sampling algorithm.
Section III introduces the algorithm and describes the capturing
architecture that is used to drive the sampling and the analysis
process. It covers the problems of capturing and distributing
traffic from the network interfaces onto several application
instances. Section IV presents the evaluation of our monitoring



setup using real-world online traffic from a 10Gbit/s Internet
uplink. We conclude the paper in Section V.

II. RELATED WORK

The importance of properly configuring capturing systems
in order to get the best performance from the available hard-
ware has been stated and evaluated in previous work [9], [10],
[15]. A capturing system consists of several components which
all need to perform as fast as possible to avoid packet loss.
However, even the best configured and tuned traffic analysis
system can still struggle to perform DPI analysis on high-
speed links if it is short in computational resources. In this
case, packet sampling needs to be employed in order to avoid
random packet loss due to resource exhaustion. Our work
presents an adaptive load-aware sampling algorithm that helps
with fully utilizing the available hardware resources by picking
the maximum share of the traffic that the system is able to
consume. Therefore, we want to make sure our algorithm can
be included into such modern well-configured capturing setups.

In previous work, we analyzed capturing stacks of the
FreeBSD and Linux operating systems, including several im-
provements proposed by researchers, with respect to their
capturing performance [10]. Our results concluded that a
Linux-based setup that employs the techniques presented by
PF_RING [16] and TNAPI [9] provides best capturing per-
formance. Furthermore, these technologies allow for using
multiple cores on a single machine with single-threaded ap-
plications. Such setups allow to exploit multi-core hardware
without requiring a transformation of a monitoring application
into a multi-threaded system. Our goal is to develop a sampling
algorithm that can be easily included in such kinds of high-
performance capturing systems.

The process of picking a subset of the overall traffic for the
analysis has been an active research topic in the community
Sampling a good subset of packets from the available traffic
can be a difficult task. For example in the field of security
monitoring: Whenever malicious packets are dropped by the
sampling algorithm, an attack or system compromise may go
unnoticed as the intrusion detection system does not analyze
the non-sampled traffic. Furthermore, previous research shows
that sampling can distort anomaly detection metrics [17]. Oth-
ers found that random packet sampling can have severe impact
on the on the detection rates of some analysis algorithms [18].

Different research groups therefore focused on identify-
ing potentially important packets, and aimed at sampling
algorithms that select these packets from the overall packet
population observed on a link. A general approach to sample
traffic for DPI-based inspection systems has been presented
and evaluated by different researchers: Several papers have
found sampling algorithms that select the first N packets or
payload bytes of a flow to result in good detection results
when analyzing attack traffic [14], [19], searching for botnet
activity [20], or doing computer forensics [21]. Analyzing
those first few kilobytes of traffic has also been employed in
non-security related work, such as traffic classification [22],
analysis of video traffic [23] or SSL traffic [8].

Although research has shown this to be a very promising
sampling approach, selecting an appropriate value for the per-
flow sampling limit N is difficult: If N is set too low, many

interesting packets will be filtered out by the sampling process;
whereas if N is too high, system resources will be insufficient
to handle all the sampled packets, and packet loss is inevitable.
Either way, interesting packets can go undetected which could
have been found with a better value for N. For attack detection,
a major drawback of the approaches is the fact that a malicious
attacker can try to send N bytes of legitimate traffic before
sending attack packets, thus evading detection [14].

The problem of determining an optimal flow sampling limit
N is challenging due to the fact that network traffic tends to
undergo dramatic fluctuations, in volume as well as in traffic
mixture, on comparably short timescales. These traffic proper-
ties result in different traffic features, which in turn change the
maximum number of bytes per flow that an intrusion detection
or protocol parsing system can handle. In our work, we aim at
extending the promising ideas presented in previous work and
propose a sampling algorithm that selects the first N bytes, but
with N being continuously and dynamically adjusted to reflect
the current network and analysis workloads.

Adaptive algorithms have also been studied in previous
work. Zhang et al. [13] presented a sampling algorithm that is
botnet-aware and tries to sample traffic that likely belongs to a
botnet, such as Command and Control traffic. Their approach
is application-specific and does not adapt depending on packet
consumption rates.

Estan et al. [24] and Barlet-Ros et al. [25] propose sampling
algorithms that pick traffic based on available device resources
(packet or flow sampling). The goals of both approaches differ
from our goals: Their algorithms aim at improving sampling
algorithms that generate aggregated statistical information
about a link’s traffic mix, while we focus on analysing parts
of all connections. Our work also differs in the employed
techniques: Estan et al. [24] focuses on adapting the sampling
rate depending on the used memory resources in fixed pre-
configured time bins. A certain pre-defined sampling rate is
adopted at the start of each time bin and is lowered throughout
the rest of the time interval depending on the consumed
memory resources. Barlet-Ros et al. [25] propose a system
that adapts the sampling rate based on the needs of the
monitoring application. Their system observes traffic features
and tries to determine their impact on monitoring application
by monitoring its CPU usage. A prediction model is fed with
these information and tries to adapts the sampling rate based
on the incoming traffic characteristics.

Our approach does not account resource exhaustion, but
only monitors the packet consumption rates in order to deter-
mine how much traffic the application is able to consume.

III. SAMPLING ARCHITECTURE AND ALGORITHM

In order to build a sampling algorithm that allows selecting
the maximum number of packets the analyzing application(s)
is capable to analyze, one has to consider the overall mon-
itoring environment. We introduce our sampling algorithm
in Section III-A and discuss in Section III-B the capturing
environment this algorithm can be used in.

A. Adaptive Load-Aware Sampling

In order to determine a good value for the per-flow sam-
pling limit N, we need a notion of how many packets the
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Fig. 1: Buffer fill level feedback mechanism.

application(s) can handle. Because we do not want to tailor
our sampling algorithm to a specific monitoring application,
we cannot make any assumptions about the number of packets
that an application can consume. Furthermore, even for specific
systems such as Snort, these numbers depend on the system
configuration, e.g., detection signatures, and the observed
traffic features. We therefore need a feedback system that
infers the throughput of the analysis system. The fill-level
of the buffer between the capturing and the analysis system
can serve as an appropriate performance feedback: Whenever
the capturing thread inserts packets at a higher rate than the
application can consume, the buffer fill-level will rise. This
means that the sampling rate must be decreased by reducing
N appropriately. On the contrary, if the application is able
to consume packets faster than the incoming rate, the buffer
will become nearly empty, and the sampling rate can thus be
increased.

When a target buffer fill level F is defined (e.g., on fourth
of the overall buffer size), we can measure the deviation F −B
of the current fill level B from the target fill level, and use
this difference as an indicator for assessing the quality of
our current sampling limit. This architecture is illustrated in
Figure 1. To decide how to adapt the sampling limit N, our
algorithm can make use of three indicators:

• Current deviation from the target fill level
• Past deviation from the target fill level
• Estimate for the future development of the fill level

We can use a so-called proportional–integral–derivative
(PID) controller as a generic feedback controller to model these
indicators. In control theory, PID controllers are very popular
and have been shown to be the best form of controller if the
system to be regulated cannot be modelled more precisely [26].
This allows us to use this system in a setup where we have to
cope with unpredictable input patterns, as well as diverse and
unknown application behavior.

A PID controller adjusts a variable according to dynamic
development of an input variable, which is in our case the
deviation F−B. To this end, it does not only consider the input
variable, but actually obtains the three correcting input terms
P, I, and D. These three terms can be mapped to our three
indicators. In our setup, the sampling limit N is the variable
that is to be manipulated by the PID controller. It is updated
at times t0, t1, ..., which refer to packet arrivals. The sampling
limit at time ti is calculated as

nti = const +(kP ·Pti−1 + kI · Iti−1 + kD ·Dti−1) (1)

The proportional term P reflects the current deviation of the

buffer fill level B at time ti from the desired fill level F :

Pti = F −Bti (2)

The integral term I encodes the past deviation from the target
fill level:

Iti =
i

∑
j=1

Pt j · (t j − t j−1) (3)

We assume network traffic to be bursty, i.e., quick bursts
of packets tend to arrive within very short time intervals. This
way, we use D to model extreme changes to the buffer fill
level:

Dti =
Pti −Pti−1

ti − ti−1
(4)

Each of the P, I and D terms is weighted by parameters
kP,kI, and kD, which are used to control the influence of
the term. Choosing proper weights k(·) for the individual
parameters is an important task for tuning the algorithm.

Networking environments can have substantial short-lived
events, such as event-driven packet bursts or the occurrence of
large jumbo frames. Such events, though short-lived, can lead
to the buffer temporarily filling up very quickly. Such extreme
changes in a very short time period bear the potential of
sampling limit oscillation and hence unnecessary dropping of
packets. In order to mitigate the results of such unforeseeable
short-term events, we introduce an additional inertia to the
controlling system by applying an exponential moving average
(EMA) mechanism. Our new sampling limit does not only
depend on the current and past buffer fill level (and its
integral and derivatives), but is also influenced by the past
sampling limit. We define the final sampling limit N to be
constituted from the current PID controller value and the
previous sampling limit through

Nt = α ·nt +(1−α) ·Nt−1 (5)

for a user-defined parameter α ∈ [0,1] ⊂ R, which weights
the current controller-calculated sampling limit against the
previous sampling limit.

Finding good parameter sets for the algorithm can have
heavy influence on the performance of the algorithm. However,
as we show in Section IV, a generic parameter set can be
found that suits for different monitoring applications under
various circumstances. The following heuristics describe the
influence of the individual parameters and give hints on how
to further tune the parameter sets: The const parameter should
be set to the desired sampling limit. The kP parameter should
approximately be set such that a full buffer reduces the sam-
pling limit to zero. Increasing the kP parameter strengthens the
impact of current fill level deviations from the desired fill level.
A too large kP parameter can be identified by medium-term
oscillations. The kI parameter can be used to adapt the long-
time sampling limit. Increasing its value gives the controller
a larger action scope to automatically find a suitable average
sampling limit and to cancel out oscillations induced by the
kP parameter. However, it decreases the controller’s response
time which can be observed by packet loss and may lead
to long-term oscillations. Finally, the kD term increases the
controller’s response time and acts as counterbalance to the
kI parameter. A too large kD parameter can be identified by
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short-time oscillations. The parameter α influences the inertia
of the system, with a higher value leading to slower changes
to the sampling limit.

B. Capturing Environment and Sampling Implementation

A capturing setup that optimally utilizes the available
processing power must be multi-core aware in order to fully
exploit the capabilities of modern commodity hardware. It
implies the need for parallelism in capturing and analyzing
software. Since one of our algorithm’s goals is to adapt
the sampling limit in a way that fully utilizes the available
processing power, we discuss how to integrate our algorithm
in a multi-core-aware capturing and traffic analysis setup.

Based on our previous work where we compared and
assessed different capturing systems [10], we decided to build
our setup on PF_RING [16] and TNAPI [9]. However, the
algorithm itself is not limited to TNAPI but could also be im-
plemented for other approaches such as PFQ [27] or DNA [28].
PF_RING provides an optimized capturing module for Linux,
which substitutes the standard AF_PACKET capturing module.
TNAPI is a driver improvement that creates a kernel thread for
the network interface driver. The threads’ only responsibility
is to move the captured packets into a buffer that is shared
between the kernel and the user space.

In combination with Receive Side Scaling (RSS) tech-
niques, where the network card is able to distribute the
incoming traffic across multiple CPU cores, multiple TNAPI
threads can be used to perform the capturing [9]. [9] highlights
the importance of proper thread scheduling for the involved
capturing and analysis threads. Their recommendation is to
create one TNAPI thread and one analysis thread for each
available core, and to use the same core for the capturing and
the analysis thread in order to allow proper use of CPU caches.
This recommendation substantially involves the network cards
capability to load-balance traffic to the RSS queues. Most
cards implement per-flow load-balancing which can result in
both directions of a connection to be mapped on different
cores. However, many network monitoring applications want to
observe both sides of the communication. Software-based load-
balancing, which is also supported by PF_RING, is therefore
required to achieve a proper biflow-aware load-balancing. This
bi-flow mapping can result in several flows being re-mapped
onto another core, destroying the cache coherency. In previous
work [10], we found that the mapping proposed in [9] is
good for light-weight analysis processes, but results in higher
packet loss for computational expensive setups. As sampling
is important in the latter case, we recommend using different
cores for capturing threads and analysis processes.

All these considerations lead to a capturing setup as shown
in Figure 2. A number of capturing threads in the network card
driver receive packets from the card, and push the packets to
multiple user space analysis applications. These threads can
belong to the same multi-core aware analysis application, pos-
sibly distributed over different process contexts. The capturing
threads write the packets into a buffer that is shared between
user space and kernel. The application threads read them from
these buffers as fast as they can process incoming packets.
Our sampling algorithm can be include into this setup as a
filtering plugin within the PF_RING sampling architecture and
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Fig. 2: Data flow for an example setup.

is applied by the capturing threads before the packet is written
to the shared buffer between the kernel and the application. A
sampling decision is derived on a per-ring fashion: The buffer
fill level of each ring is used for the calculation of the sampling
limit, resulting in a sampling limit which is adapted for each
ring, and hence each application thread. Therefore, thread-
specific load characteristics are considered by the sampling
process.

IV. EVALUATION

Since our algorithm is influenced by packet arrival times
and application’s processing time per packet, an evaluation
should be performed on a real productive system on real
network traffic. This is especially important since application
processing times depend on the used hardware, monitoring
application, and observed traffic features. We therefore start
our evaluation with a description of our hardware setup and
the network where we were able to deploy our vantage point
in Section IV-A. The validation of our algorithm in live
experiments with different monitoring applications on our
10GE link is described in Section IV-B and Section IV-C with
two setups.

A. Evaluation Setup

A live capturing setup for our evaluation was deployed in
the Munich Scientific Research Network (Münchner Wissen-
schaftsnetz, MWN) in Munich, Germany. The research net-
work interconnects three major universities and several affil-
iated research institutions in the area in and around Munich.
Furthermore, the network includes several student dorms that
provide housing for the students enrolled in the universities in
Munich. Finally, the network hosts a large super-computing
cluster that is used by researchers from Munich and other
research facilities around the world. In total, the network
hosts about 100,000 devices which are used by approximately
120,000 users. It is operated by the Leibniz Supercomputing
Center (Leibniz-Rechenzentrum, LRZ) and provides Internet
access for all its users via a 10 GBit/s link to its upstream
provider the German research network (DFN). Our vantage
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Fig. 3: Snort – Single Instance – Without sampling – botcc

point was deployed on the border gateway between the MWN
and its upstream service provider and is therefore able to
observe traffic exchanged between the MWN and the Internet.

Our monitoring setup was built around standard off-the-
shelf PC hardware, operated by a Linux-based operating
system. It was bought in 2009 and features a 3.2GHz Intel
Core i7 processor with four cores and hyperthreading enabled.
Kernel and user space share a total of 12 GB of RAM that
have been built into the system. An Intel 10GE network card
based on the 82598EB chipset is used in conjunction with
a TNAPI driver [9]. Three virtual CPUs are allocated to the
TNAPI driver to perform capturing, traffic distribution onto the
analyzing processes, and sampling. The other cores are able
to run instances of the analyzing application. We implemented
our algorithm as a PF_RING filtering plugin1, executing in the
softIRQ context of the TNAPI threads.

In the following sections, we evaluate our algorithm in live
setups. We use Snort in different configurations to perform
extensive live packet analysis on our 10GE link. Snort [1] is
a well-known security monitoring toolkit for signature-based
traffic analysis. It is known for its pattern matching capabilities,
and has been used for a number of publications in the context
of network security monitoring. Its traffic analysis engine is
driven by rule sets that define payload patterns of interest that
point to malicious activity in the network. Searching for those
patterns in traffic payload is known to be a computationally
complex task and can be challenging on high-speed and high-
bandwidth networks. The complexity of the analysis that
Snort performs depends on the configuration and the rule set,
which defines the patterns that Snort searches in the analyzed
traffic. Hence, we can use Snort to evaluate our algorithm
in different load scenarios with simple and computationally
complex setups.

We show the results for two different configurations with
different complexity. These configurations will be called botcc
and fullset in the remainder of this work. Both were obtained
on Jan. 08 2013 from emergingthreats.net [29]. The lightweight
botcc configuration is the free “ETopen” rule set that contains
rules for botnet command and control traffic detection. It
includes 146 rules with IP addresses of known command and
control servers of different botnets. Snort does not have to
perform pattern matching with this configuration but must only

1https://github.com/diekmann/cctrack

TABLE I: Sampling parameter set for Snort

Parameter Value
kP 3333335
kI 0.00093
kD 1500

const 1.1 MB
α 0.2

buffer size 268 MB

check IP addresses of the observed packets against the list
of command and control servers. The fullset consists of the
complete set of 11,748 rules, which contain a lot of patterns to
match against the observed packets. This configuration is used
as a setup to demonstrate the applicability of our algorithm for
complex traffic analysis tasks that put high load on the traffic
processing engine.

B. Simple analysis with lightweight rule set botcc

Figure 3 compares the number of packets on the link
to the number of packets that could be analyzed by Snort
with the botcc configuration. The figure shows the number
of packets per second (pps) that have been captured on the
link with the blue line. During the approximately 30 minutes
monitoring period, this number of packets varies between 705k
and 850k pps, which corresponds to the maximum number
of packets per seconds that can be delivered by the border
gateway router. On average the incoming packet rate was
around 810k pps (mean) or 820k pps (median) during the
observation period. Only a single Snort instance was used
to analyze the complete traffic on the link. The number of
analyzed packets is by far lower as the incoming rate and
changes over time depending on the features of the incoming
traffic (e.g. number of packets, number of new connections,
etc). It varies between about 270k pps (max) and 108k pps
(min) at an average of 195k packets per second. Snort’s packet
processing rate results in a median packet loss rate of about
630k pps. As previous research discussed in detail, e.g. [20],
[19], [10], this kind of random packet loss has the potential of
losing interesting packets.

We started another monitoring run with the same Snort
configuration, but this time we enabled the sampling algorithm.
Table I shows the PID controller parameters used throughout
our experiments. They were determined in experiments using
the heuristics of Section III-A. These parameters were used
for all experiments of the paper, including the multi-instance
setups and setups with different rule sets presented later on.
Our choice of parameters may not be optimal but the results
reveal that our solution performs well in different scenarios
even with a non-optimal choice of parameters.

Figure 4 plots the packet rate statistics for traffic analysis
in this setup. Incoming packet rates were similar compared to
the previous run: 860k pps were observed during peak times,
minimum packet rates were around 600k pps with a median
of 811k pps. The number of packets sampled by our algorithm
matches the number of packets consumed by Snort. No random
packet loss due to full buffers occurred, and all packets picked
by the sampling algorithm could be analyzed by Snort. This
reveals that our sampling algorithm picks the appropriate
sampling limit. A closer look at the number of Snort’s packet
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Fig. 4: Snort – Single Instance – Sampling – botcc

Fig. 5: Sampling limit development – Single Instance – botcc

consumption shows a mean number of around 115k pps with
a maximum of 213k pps and a minimum of 56k pps. The
median packet consumption rate is 105k pps. One can see that
the average packet processing rate in our sampling setup is
lower than the processing rate without sampling. The reason
for this can be found when taking a closer look at the analysis
that Snort performs, which results in non-uniform packet
processing. Instead, the per-packet processing time depends
on the characteristics of the incoming traffic. Our sampling
algorithm picks packets from the beginning of the connections,
which forces Snort to observe all connections on the network.
Random packet loss tends to oversample connections with
much traffic and tends to miss shorter flows [30]. As Snort
keeps per-connection state, this random packet loss decreases
the number of internal state Snort needs to manage and thus
influences the packet processing time. Those effects are in line
with the findings of previous work which analyzed the per-
packet processing rates of Snort [31]. The authors find that
the packet processing times for packets at the beginning are
higher than those packets at later points in a session. Hence, the
lower number of processed packets is an indicator that shows
our sampling algorithm works as expected. Similar effects will
be observable in the multi-instance setup and for the fullset.

We can observe the behavior of the PID controller when
inspecting the development of the sampling limit during this
particular monitoring period. Our sampling limit always counts
the complete layer four payload including header (TCP/UDP).
The first packet that exceeds the sampling limit is passed en-

Fig. 6: Snort – 4 instances – Without sampling – botcc

tirely to the application; only subsequent packets are dropped.
Therefore, the first packet of a flow is always sampled. Figure 5
plots the sampling limit development throughout the complete
monitoring run. The sampling limit starts with our const
parameter of 1.1 MB sampled traffic per flow, and adapts
according to the incoming packet rate and the processing rate
of Snort. As the sampling limit is updated on the arrival of
a sampled packet, a large number of sampling limits changes
can be observed during the monitoring interval. Our kernel
module provides average statistics on its sampling limit: Every
second a mean value of the sampling limits of the last second
is generated.

One can observe heavy changes in the first 10 minutes
of the sampling interval, which correlates with the incoming
packets rates seen in Figure 4. Incoming packet rates in this
time interval vary highly between 800k pps and 650k pps.
The sampling limit adapts to these packet rates: it increases as
capturing buffers empty during lower incoming packet rates,
and decreases as buffers fill up due to increased incoming
packet rates. During this time, the sampling limit reaches a
limit set by the implementation and its configuration. As our
algorithm is implemented as a kernel-level filter, we cannot use
floating-point arithmetic [32] but need to calculate sampling
limit updates using integer arithmetic. The maximum sampling
limit depends on the parameter set, e.g. buffer size, const,
k(·), α . For our configuration, the maximum sampling limit
is reached at around 22 MB.

As packet rates grow steadier towards the maximum num-
ber of packets the system can consume, changes to the sam-
pling limit become smaller and the sampling limit settles down
at much smaller values. However, we can observe increases in
the sampling limit as soon as the number of packets on the link
decreases. Hence, the system tries to maximize the number of
analyzed packets, which is the improvement we desired over
the traditional Time-Machine style sampling.

In order to study our algorithm in modern multi-core-aware
environments, we set up a test run with four instances of
the same Snort configuration (botcc) running in parallel. At
first, we use the configuration with our sampling disabled, and
report the performance of the parallel running Snort instances
in Figure 6. The incoming packet rate, blue line, starts at
around 800k pps and remains in this region throughout most of
the time. However, at the beginning of the monitoring interval,
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Fig. 7: Snort – with sampling – 4 instances – botcc

Fig. 8: Sampling limit development – 4 instances – botcc

starting at about 16:05, there is an approximately 5 minute
time interval where the incoming packet rate drops to around
500k pps. The four Snort instances consume, as expected, a
significant higher packet rate, averaging at 360k pps (mean)
or 350k pps (median). However, more than half of the packets
(396k pps mean / 433k pps median) are dropped due to full
buffers. Again, this random packet loss reduces the number of
flows that can be observed by the analyzers.

When adding our sampling algorithm to the setup, as shown
in Figure 7, we can see some changes to the processing rate.
At first, the number of incoming packets is smaller than in the
run before. It averages at a mean of about 686k pps (median:
678k pps), and varies between 840,000 and 594,000 pps.
All Snort instances are able to consume the complete set of
sampled packets, at rates that vary between 496k pps and
132k pps with mean and median at about 198k pps. No random
packet loss occurred. A closer look at the development of
the sampling limit, shown in Figure 8, reveals an increased
sampling limit compared to the first monitoring run with a
single instance. This is due to the lower incoming packet
rate, and the fast packet consumption by Snort. All obtained
average sampling limits in our monitoring interval are higher
than 10 MB.

As our plotted sampling limit is a per-second average, the
applied per packet sampling limit may vary from the average
in certain cases. We therefore cross-check the influence of
the sampling limit by examining the biflow cutoff during the
setups. A biflow cutoff is the point in the biflow, where the

Fig. 9: Biflow cut off – botcc

sampling algorithm decides to cut off the connection and stops
sampling more traffic from this biflow. This cutoff depends on
the current sampling limit when a new packet is observed for
a biflow.

Figure 9 shows the sampling limit cutoff for the previ-
ous scenarios for all observed biflows. The single instance
setup observed 27.8 million biflows throughout its monitoring
period. Out of these, 94.65% were fully analyzed, which
means that no sampling cutoff applied for these biflows. The
remaining share of the flows where cut off as shown in the
figure. The packet for which the cutoff occurs is always
sampled, thus, the first packet(s) of each flow are always passed
to the application. The class > 1M shows those flows that have
not been fully sampled but have had a cutoff that is larger than
1 MB. In the single instance monitoring run, only very few
biflows where cut off at 65 to 512 bytes. Most of the biflows
that where not fully sampled had a cutoff between 10KB and
100KB. However, even this class represents less than 0.1% of
all flows. The four instance Snort monitoring scenario with
its larger sampling limit had 99.69% of all flows completely
sampled.

C. Complex traffic analysis with rule set fullset

In order to determine the results of our algorithm in higher-
load scenarios, we performed experiments with the fullset rule
set. As this rule set includes many more rules than the previous
one, we would expect a lower number of packets analyzed by
Snort. The results in Figure 10a confirm this assumption: A
median incoming packet rate of 756k pps translates into a
median loss rate of 707k pps.

Figures do not increase significantly when four instances
are run instead of a single one, as shown in Figure 10b. This
time, an incoming packet rate of 780k pps results in a median
loss rate of 659k pps. While adding more analysing instances
increases the analyzed packet rate from 114k pps to 179k pps,
the majority of the traffic is still randomly lost.

When we observe the incoming packet rates for the single
and multi instance setups with fullset with our sampling
enabled, we make similar observations as before. Figure 10d
shows the figure for the single and multi instance setups. Both
have similar incoming packet rates with a median at 781k pps
(single instance) and 734k pps (multiple instances), and both
setups did not experience any data loss due to full buffers. All
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Fig. 10a: Snort – Single Instance –
Without Sampling – fullset

Fig. 10b: Snort – Multiple instances –
Without Sampling – fullset

Fig. 10c: Biflow cutoff – fullset

Fig. 10d: Snort – With Sampling –
fullset

Fig. 10e: Snort – Sampling Limit –
Single Instance – fullset

Fig. 10f: Snort – Sampling Limit –
Multple Instance – fullset

packets that have been taken by the sampling algorithm could
be analyzed by the Snort instances. The multi instance setup
analyzed a median packet rate of 84,000 pps while the single
setup only analyzed 58,000 pps.

A closer look at the sampling limit development reveals
bigger differences than the look at the packet consumption
rate. Figure 10e and Figure 10f compare the sampling limit
for both setups. While the sampling limit for the single Snort
setup can be measured in the region of 10Kb, the four instance
setup finds itself with a higher average limit.

The same observation can be made when analyzing the
biflow cutoff, which is shown in Figure 10c for both setups.
The single instance setup, where only one core was used to
analyze the complete traffic, was only able to analyzed around
28% of the observed 20,633,534 million biflows completely,
and had to cut off the rest of the biflows. Most of the biflows
were analyzed to an extend between 1KB to 10KB of their
length. The multi instance setup was capable to fully analyze
96.6% of its 20,134,556 million biflows in its monitoring
interval. All remaining biflows were cut off somewhere after
100KB with no biflow being cut off with less than 100KB
observed.

V. CONCLUSION AND FUTURE WORK

This paper presented an adaptive load-aware sampling
algorithm for high speed networks. It is based on a well-known
sampling mechanism that previous work found to be useful for
many applications. Our proposed algorithm overcomes limita-
tions of previous work by introducing a dynamic sampling

limit. This sampling limit is automatically adapted to match
run-time events such as changes in the incoming packet rate or
packet consumption rates of the monitoring application. It is
chosen such that both the monitoring application’s utilization
of processing power is maximized and the random packet loss
is minimized.

We evaluated our algorithm in live traffic capturing set-
ups and found that traffic feature changes make choosing a
static sampling limit required by previous algorithms very
difficult. Short-term changes in traffic features can influence
the processing rate of monitoring applications such that that
they are able to consume more or less traffic than in the
previous time interval. Our dynamic sampling algorithm adapts
the sampling limit to those short-term events with the result
that the available computing resources are fully utilized. It is
capable of being used in current multi-core aware traffic setups
which run multiple instances of monitoring applications, each
on a separate core. These capabilities allow the inclusion of our
algorithm into traffic analysis setups that exploit the features
of current multi-core hardware.

Our work presented heuristics for determining a good
parameter set for our algorithm, and our evaluation showed that
a generic parameter set yields good performance in different
scenarios. Providing the user with a mechanism that automat-
ically finds optimal parameters for a given capturing setup
could further improve the ease of use and performance of our
algorithm. Furthermore, our algorithm targets all monitoring
applications that could benefit from sampling the beginning
of connections. Its performance was therefore evaluated with
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regard to analyzed packets, packet drops, and the development
of the sampling limit. This evaluation can be extended by
a closer look at the influences of our sampling algorithm
on specific applications, such as detection rates in security
monitoring tools.
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