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Abstract New web technologies led to the development of browser applica-
tions for data analysis. Modern browser engines allow for building interactive
real-time visualization applications that enable efficient ways to understand
complex data. We present Flow-Inspector, a highly interactive open-source
web framework for visualizing network flow data using latest web technolo-
gies.

Flow-Inspector includes a backend for processing and storing large-scale
network flow data, as well as a JavaScript-based web application capable to
display and manipulate traffic information in real-time. This work provides
operators with a toolkit to analyze their networks and enables the scientific
community to create new and innovative visualizations of traffic data with an
extensible framework. We demonstrate the applicability of our approach by
implementing several different visualization components that help to identify
topological characteristics in network flows.

1 Introduction

The increasing popularity of web applications has led to numerous W3C stan-
dards that specify functionality to build dynamic and interactive web appli-
cations. Prominent representatives of such technologies include HTML5 and
JavaScript. Those standards provide mechanisms for real-time rendering of
2D graphics and are favored by browser vendors, which leads to advances in
rendering speed as browser implementations improve.
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Fig. 1 Flow-Inspector data processing chain

As a result of this technological progress, JavaScript-based frameworks for
data visualization emerged [1]. Such frameworks already implement a variety
of algorithms useful for the data visualization community, which can be par-
ticularly applied to study network measurement data. While such algorithms
are capable to display large data sets in a human-understandable way, the
use of JavaScript enables highly interactive analyses by providing means to
manipulate rendered images. This flexibility can lead to additional insights
compared to common static visualization approaches.

We present Flow-Inspector, a JavaScript-based web application that ap-
plies modern web technologies to visualize network flow data. The systems
consists of a backend for preprocessing, aggregation and storage of data, and
a frontend that allows for interactive querying and rendering.

This paper targets two audiences alike: operators and researchers. First,
operators benefit from our framework when confronted with analyzing traf-
fic flows in their own networks. Several built-in visualization components are
available for different use cases, including volume-based and node-based visu-
alization of traffic.

Flow-Inspector provides users with a new traffic visualization approach:
hive plots [2] enable novel analyses of network flow data. The analysis frontend
supports drill down methods to filter data and an interface for interacting with
rendered images. Additional pieces of information can be provided, e.g. tool
tips can be requested by hovering over objects.

Second, researchers and developers can profit by Flow-Inspector’s extensi-
ble framework. It is straightforward to integrate new visualization algorithms
while relying on the backend to provide the necessary data. It is even pos-
sible to extend the data model without interfering with other visualization
components. This technical flexibility allows for rapid development and early
visualization of novel data sets.

We organize our paper as follows: Section 2 introduces the design of our
framework, with focus on easy extensibility. With Section 3, we discuss built-
in visualization algorithms shipped with Flow-Inspector. We compare our ap-
proach to related work in Section 4, and conclude the paper in Section 5.

2 Design and Implementation

Flow-Inspector consists of two main components. A backend that is responsible
for preprocessing, aggregating and storing of flow data. While preprocessing
the data, it also generates several pre-computed statistics on the data and
makes all data available via an HTTP-API.
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The second part is a JavaScript application that displays the pre-processed
flow information using the methods of current web browsers.

2.1 Data Model

Flow-Inspector’s primary goal is to visualize traffic measurements that de-
scribe how hosts (or networks) communicate with each other. Relevant char-
acteristics of such communication patterns depend on the environment and
the user’s intended results, i.e. necessary data is potentially unknown from
the design’s point of view. Traditional flow information, such as the informa-
tion transported by NetFlow v5 messages might not be sufficient for certain
visualization tasks.

Additional information like the results of QoS measurements, application
specific information, or additional structural information could be interesting
for a user to visualize. Since we cannot anticipate future use cases and do
not want to restrict users, we focus our design on extensibility. We take the
definition of a flow given by the IPFIX standard as a base for our data model:

A flow is defined as a set of IP packets passing an observation point in the
network during a certain time interval. All packets belonging to a particular
flow have a set of common properties. [3]

The IPFIX flow definition allows for different types of flows and arbitrary
supplemental information. Properties that define a flow could be the IP five
tuple but are not limited to these keys.

We provide implementational flexibility by allowing the developer to in-
dividually specify flows based on a set of arbitrary keys. Supplemental flow
properties can be specified as well. Adding new properties does not require
any changes to the core code for implementing new visualization components.

2.2 Backend

The previous section outlined the need for a flexible data model that needs
to handle potentially unknown data types. Flow-Inspector’s backend supports
such indetermined data objects with a document-based database called Mon-
goDB [4]. Documents thereby consist of key-value pairs of arbitrary types, and
allow to import any flow information from NetFlow or IPFIX messages into
the database. Interaction between the frontend application and the database
backend is realized using a JSON data model, that allows the frontend to
query any types of data as lists of key-value pairs.

The choice of MongoDB was also motivated by some of its built-in func-
tionality: Mongo supports so-called sharded databases which allows to dis-
tribute the database onto multiple machines. Furthermore, the database in-
cludes built-in support for the MapReduce programming model which allows
to parallelize complex database requests onto a sharded database. Besides
MapReduce, MongoDB also provides a system called "Aggregation Frame-
work", which provides simple ways to perform aggregation on the stored data.
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Fig. 2 Slicing flows into buckets

The aggregation framework is compatible with sharded databases which allows
to execute the aggregation in parallel on multiple machines.

All flow data is pre-processed before it is stored in the database, which
results in an overall architecture as shown in Figure 1. This pre-processing step
includes temporal and spatial flow data aggregation as described in [5], and
flow indexing for quick data access. Aggregation techniques are applied based
on a given backend configuration, where operators can specify aggregation flow
keys for spatial aggregation, and time intervals for temporal aggregation.

Time aggregation is essential in order to allow users to choose visualiza-
tion intervals and analyze traffic over time. Flow-Inspector thereby integrates
mechanisms for temporal aggregation and interval distribution [5]. Each flow
is associated with a start and end time, i.e. the time of the first and last packet
observed within a flow. The system configuration contains time intervals that
define the visualization granularity (e.g. 5/10/30/60 minutes). Flows are sliced
to match those intervals, called buckets throughout the rest of this paper, as
shown in Figure 2. Flows that share the same aggregation flow keys in the
same interval on the other handy aggregated into a single flow.

The stored data can be queried by an HTTP API provided by the server.
This API further provides filtering mechanisms to purge data sets based on a
client’s request. Data rendering is exclusively performed on the client.

2.3 Frontend

Flow-inspector’s frontend is implemented as an interactive JavaScript appli-
cation that is automatically delivered when loading the website in a browser.

The core of this application utilizes D3.js [6], a library that allows data-
driven manipulations of the website’s document object model (DOM). With
D3.js, complex interactive visualizations of arbitrary data can be efficiently
build using HTML5, SVG and CSS. Additional JavaScript libraries, e.g. from
the projects listed in [1], that provide specialized types of visualization can be
integrated into the application as well.

Flow-Inspector also relies on BackBone.js [7], which provides a model-view-
-controller design architecture that facilitates extending the system with new
visualizations. While providing new view classes that perform data rendering,
model classes responsible for fetching data can be re-used. We created several
visualization components based on this approach, which will be discussed in
the following section.
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Fig. 3 Flow-Inspector: Control Interface

3 Visualizations

One of the most important steps for a visualization process is the proper
selection of the parts of the data that should be displayed to the user. Figure 3
shows the control interface of Flow-Inspector that is shared by most of the
views of the system. Each view includes three major regions.

The first region is the side bar on the left, and contains the filtering and
control options of the view. These include common controls shared by all vi-
sualizations, such as fields for filtering for ports, protocols, or IP addresses.
Furthermore, each visualization can add it’s own controls. The example shows
the Force Graph visualization, presented in Section 3.2, which provides some
view specific operations that control the graph layout. Each control field pro-
vides information on its proper usage with tool tips that are displayed when
the component is highlighted.

Time-based selection of traffic is performed in the bottom field of the view.
This field contains an time-based overview of the traffic volumes. A time-
interval can be selected by clicking on a start-interval and dragging the mouse
over the available intervals.

The final and major component displays the flows that have been selected
by the controls using one of the implemented visualization techniques. These
are described in the remainder of this section.

3.1 Volume-based Visualization

Volume-based representations are the most common technique for presenting
the current and past state of network traffic to an operator. They can be
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Fig. 4 Time series: number of flows over time

used to obtain an initial understanding of the time-dependent dynamics in
a network. Time-series-based graphs that show the overall volume of traffic
divided per transport protocols are generally available in systems that show
network flows. Flow-Inspector supports such standard time-series-based views
as well as views that allow to identify dominant hosts or services in the traffic
data.

Typical time-series volume graphs, as shown in Figure 4, provide an overview
about the number of flows, packets, and bytes observed in the user-defined
buckets. They provide timeline views on the x-axes and display the amounts
of flows, packets, or bytes split by transport layer protocol on the y-axes.
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Fig. 5 Distributions of host with highest flow counts

Other pieces of helpful information are the global distributions of flows,
packets or bytes among IP addresses (hosts) and ports (services). These dis-
tributions show the most active hosts and most heavily-used services in the
network. Flow-Inspector uses donut charts to represent the share of individual
IP addresses or ports in the total amount of traffic, as shown in Figure 5.
All IP addresses or ports are sorted by one of the sums available in the pre-
computed buckets (flows, packets or bytes). The most active IPs or ports are
then shown as individual segments, while all others are summarized into an
"others" segment in order to avoid an overcrowded visualization.

An additional host overview graph displays the most active hosts sorted by
bytes, packets or flows in table form. Figure 6 shows an example of a flow-based
host overview graph. The host overview graph complements the donut view
by breaking down its visualization into the different transport layer protocols
and comparing only the most active IP addresses or ports.
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Fig. 6 TOP 15 hosts (most flows)

All views are associated with additional information that is only provided
upon interaction between the user and the graphs. The graphs are connected
to buttons that allow the user to choose a metric he wants to observe, e.g.
distributions by number of flows, packets or bytes. Furthermore, every bar in
the time-series and host overview graphs is provided with a tool tip that holds
additional information. It is shown as soon as the user hovers over a portion
of the graph.

Volume-based graphs can help to find time spans with unusual traffic,
e.g. the time of service outages or network attacks. The views are especially
helpful in order to identify time intervals that should be further investigated
in other views. While such graphs provide oversight of overall traffic volumes,
they do not provide insight into communication patterns between nodes.

3.2 Force Graphs

Node-flow graphs show these patterns by representing hosts or networks as
nodes, and the communication flows between them as lines that connect the
nodes. By adopting the line color depending on the time a given flow was
observed, communication patterns and changes in those patterns over time
can be made visible.

The human eye requires a meaningful layout in order to derive useful infor-
mation from such a flow graph. Corresponding layouts should minimize line
crossings by grouping the nodes in a way such that connections overlap as
little as possible.

One of the most popular approaches to generate graph layouts with respect
to visualizations of relationships between entities with little overlap are force-
directed layouts. There are various algorithms available, but most of them
share the idea of a physics-based, iterative simulation until a power equilibrium
is reached.

Flow-Inspector uses the force-graph layout algorithm provided by D3.js,
which uses position Verlet integration [8]. Links between nodes are considered
as a weak geometric constraint that have a desired length. Initially, nodes
are randomly positioned on the canvas resulting in a non-optimal layout. The
force-graph algorithm then tries to iteratively optimize the position of all nodes
under their geometric constraints, computes new positions and then optimizes
them again. An example of a node-flow graph with a force-directed layout can
be seen in Figure 7.
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Fig. 7 Force Graph

In Flow-Inspector, rendering and calculating of the force graph layout is
carried out after a user selects a time interval. All observed flows during this
time interval define connections between nodes. The graph is calculated and
drawn in multiple iterations, until a steady state is reached or the user aborts
the iterative algorithm by clicking onto the graph.

If the user modifies the selected time range changes, which selects other
flows between the nodes, all new flows are drawn into the previously calculated
force-graph image. This enhances the comparability between the time ranges.
By clicking the force button in the control area, the user can derive a new
force-layout from the newly loaded flows. This new force-graph can be created
based on the previous layout, or based on a new randomized placement of the
nodes.

Force-directed layouts can often reveal structures in a graph which might
be hard to recognize in trivial layouts. They minimize the length of connec-
tions and line crossings and usually lead to graph drawings with a natural
look. In contrast to static visualizations of such graphs, Flow-Inspector can
attach additional information to its nodes: Hovering over nodes in interesting
communication patterns reveals their IP address which can be used for further
investigations.

Filtering of data to an interesting subset is nevertheless a crucial part of
this visualization technique. If the number of rendered nodes and flows grows
to large, the graph will most likely contain many overlapping connections,
which decreases the visibility and readability of communication patterns.

3.3 Hierarchical Edge Bundles

A drawback of force graphs is that two nodes are generally connected using a
straight line, which can result in unwanted line crossings.
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Fig. 8 Hierarchical Edge Bundle

Large-scale data sets with many nodes and connections tend to lead to
massive line crossings. Bundle graphs are one way to group the connections
between entities in a more comprehensible way.

The basic idea behind edge bundle graphs is to create bundles of similar
connections to increase the visibility of connection structures between end
systems. An example for those edge bundles is shown in Figure 8, where entities
are organized on a circle. Flow-Inspectors supports this technique with entities
that are either IP addresses or networks in CIDR notation.

The layout on the circle is defined by a radial tree layout that groups IP ad-
dresses based on membership of a network. IP addresses in the same networks
are mapped close to each other with additional space between networks.

Flows between these IPs are drawn as bundled lines using hierarchical edge
bundling. The lines are interpolated with a piecewise cubic B-spline. A tension
parameter between zero and one allows to control the attraction of the line to
its control points, which affects the tightness of the flow bundles.

The graph itself is an interactive graph with several ways to filter and
display additional information upon user request: A timeline at the bottom
of the page allows a user to select the time range that should be visualized.
If multiple buckets are selected, the color of the lines represent the buckets
in which corresponding flows have been observed. When rendering the image,
all available information for an entity (i.e. number of flows, packets, bytes) is
loaded from the database and provided as a tooltip. In addition, if the user
hovers over a node, only flows that involve the corresponding IP address are
rendered.

3.4 Hive Plots

A relatively new approach to visualize large-scale data are Hive Plots [2]. An
example for a hive plot is shown in Figure 9. To the best of our knowledge, no
one has previously used hive plots for visualizing Netflow or IPFIX data.
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Fig. 9 Hive Plot

The developers of the hive plot concept criticize force-directed methods
for visualizing large data sets as "hairballs", which do not provide much in-
sight into the data. Unreasonable positioning of nodes is criticized as well: the
resulting graph is often confusing. Hive plots are a completely different and
highly customizable way to make trends visible in a huge set of relations.

A hive plot consists of a predefined number of axes arranged on a radial
layout. Flow-Inspector uses three axes for mapping IP addresses or networks.
When rendering data, each node needs to be assigned to one of the axes
(node-to-axis mapping). Nodes are thereby positioned on axes using some
feasible heuristic (position mapping). The links of the graph are drawn as lines
between two axes starting and ending at the corresponding node positions.
This approach is especially useful in analysis scenarios that aim at getting
insight into large communication structures.

Mapping and position of nodes to axes is crucial for the insight that a
Hive Plot can provide. Furthermore, any interpretation heavily depends on the
specific node-to-axis and position mapping. In Flow-Inspector, those mappings
are therefore configurable by the user.

The configuration sidebar contains one input field for each axis in the
hive plot. Those input fields expect lists of IP addresses/networks in CIDR
notation.

The flows between the specified nodes are drawn as B-splines between two
adjacent axes, starting and ending at the position of the nodes. Hive plots can
be used to display the traffic relationship between networks mapped to axes.

Operators can asses the amount of traffic flows exchanged between net-
works. The visualization can also be used to determine whether there are
unexpected or interesting traffic flows between parts of the networks. For ex-
ample, flows can be unexpected due to access rules that should not allow those
traffic streams. This allows to identify errors in firewall configurations.

The plots can also help to understand the traffic flows in complex appli-
cations with frontend and backend traffic: By mapping clients to one axis,
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frontend servers to the second axis, and backend servers to the third axis,
communication patterns that are caused by frontend traffic can be observed.

Hive plots can also be used to analyze complex load-balancing environ-
ments, which often use multiple layers of load-balancing. Clients can be as-
signed to one or more load-balancing servers by a DNS-based round-robin
scheme. The load-balancing services can relay the incoming connections to
a large number of backend servers, which then respond to the actual client
requests. By visually analyzing corresponding scenarios, the quality of a load-
balancing process can be estimated.

4 Related Work

The need for visualization of traffic data resulted in many systems with differ-
ent analysis purposes. Some of them display information on traffic volumes and
constituencies. NfSen [9] and FlowScan [10] provide mechanisms for visualiz-
ing Netflow data that is generated by monitoring probes, routers, or switches.
Their visualization methods concentrate on presenting traffic volumes includ-
ing information about the used transport protocols.

Ntop [11] is a web-based system for analysing and visualizing traffic infor-
mation and also focuses on flow traffic analysis. It provides tools for collecting
and generating flow information for its visualization process. In addition to
standard volume-based visualizations, ntop provides tools for combining flow
information with other data sources such as BGP data or IP-based geograph-
ical information.

Our system differs from these approaches: NfSen, FlowScan and ntop per-
form the visualization at server side, providing fixed images to the user. Flow-
Inspector on the other hand renders its images in a client’s browser. This
allows for providing users with a higher level of interaction.

Other approaches do not provide web interfaces for visualizations tasks. In-
stead, they created full-fledged client applications that perform the rendering.
These, usually platform-depended applications, can make use of 3D capabili-
ties of the client systems’ graphic cards.

In [12], the authors present the client-based visualization tool FlowVis,
which uses the SiLK tools for processing NetFlow data. They provide proof-
of-concept visualizations like activity plots, flow edge bundles, and network
bytes viewer. Lakkaraju et al. presented NVisionIP [13], a tool for displaying
traffic patterns in class-B networks using scatter plots and volume-based vi-
sualizations. Yin et al. presented an animated link analysis tool for Netflow
data [14], which leverages a parallel coordinate plot to highlight dependencies
in the network.

Flow-Inspector has several advantages compared to those approaches. Due
to its web-based nature, any computer with a modern browser can be used
to interact with Flow-Inspector without any additional software installations
required. Another major advantage is Flow-Inspector’s extensibility. An active
community of JavaScript developers is working on visualization libraries for
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various purposes. Although such libraries might aim at implementing new
visualization techniques for tasks beyond network flow analysis, corresponding
approaches can often be adopted for displaying traffic data. Flow-Inspector
users can benefit from such developments due to its extensible framework that
allows to easily integrate these new visualization libraries.

5 Conclusion

In this paper we introduced Flow-Inspector, an interactive web application
for dynamic network flow visualization. For network operators, visualization
of traffic data is an important tool that can help to understand network char-
acteristics and to identify immediate and long-term problems. We therefore
encourage network operators to use our framework.

Our paper further aims at making Flow-Inspector available to the research
community. Researchers can use it to build new and innovative visualization
tools for network traffic data. The code is available for download at http://flow-
inspector.net.in.tum.de, and we invite others to use and extend the system.
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