
Demo: Environment for Generic In-vehicular
Network Experiments - EnGINE

Marcin Bosk*,1, Filip Rezabek*,1, Kilian Holzinger1, Angela Gonzalez2,
Abdoul Kane2, Francesc Fons2, Zhang Haigang2, Georg Carle1, and Jörg Ott1

1Department of Informatics, Technical University of Munich, Germany
2Huawei Technologies Düsseldorf GmbH, Germany
1{bosk | rezabek | holzingk | carle | ott}@in.tum.de,

2{angela.gonzalez.marino | abdoul.aziz.kane | francesc.fons | zhanghaigang}@huawei.com

Abstract—Self driving cars bring new challenges to intra-
vehicular networks (IVNs), such as increased bandwidth and the
need for more powerful computation. To solve these challenges,
in recent years, the IVNs started shifting towards the use of
Ethernet, which with IEEE Time-Sensitive Networking standards
can support deterministic behavior required for these networks.
To evaluate the application of Ethernet in IVNs, we introduce
novel approach called EnGINE - an Environment for Generic In-
vehicular Networking Experiments. The environment is based on
commercial off-the-shelf components and open-source software.
In this work we present EnGINE and showcase an exemplary
use-case it can support.

I. INTRODUCTION

Autonomous driving and shared mobility are just two
examples of modern trends within the automotive industry.
These novelties are enabled by deterministic real-time com-
munication in an intra-vehicular network (IVN). Due to rising
demands on bandwidth, we start to see more Ethernet-based
IVN solutions. Although Ethernet, by design, cannot offer
deterministic behavior, with the Time-Sensitive Networking
(TSN) family of standards it can provide real-time guarantees.

TSN has been a major research subject in recent years
with most experiments being conducted using simulation. This
approach has its advantages such as easy reproducibility and
configurability. Still, it has many challenges, e.g., omission of
clock-deviation and other real-deployment artifacts.

To combine the simulations’ ease-of-use and behavior of
real network deployments we introduce EnGINE [7] - an
Environment for Generic In-vehicular Network Experiments.
Instead of using micro-controllers [4], EnGINE uses PCs
which emulate zonal gateways (ZGWs) and vehicle control
computers (VCCs). It builds upon the Linux networking
stack and its queuing disciplines (qdisc) with initial focus on
802.1Qav, 802.1Qbv, and 802.1AS TSN standards [5] unlike
previous work using OpenAvnu [8]. EnGINE is managed using
a custom-built Ansible-based [1] orchestration tool which
allows for configuration of the network and data sources/sinks.
The setup follows recommendations of the AVNU Alliance
and TSN Standards outlined in IEEE P802.1DG [6]. Further-
more, the framework enables extensive monitoring that can

*Marcin Bosk and Filip Rezabek contributed equally to this paper.

1Gbit/s

ZGW 3
41

2 3

ZGW 2
3

412

ZGW 1
2 3

41

i210 Interface
Number

VCC 1
1

23

5

6

4
Livoxtech

Viewer

Livoxtech
LIDAR

Connections used in
the experiment
Connections to other
EnGINE nodes

Figure 1: Excerpt of EnGINE network topology

later be used for evaluation or traffic re-play. Using EnGINE
the experiments are conducted autonomously, and can be
easily repeated and reconfigured. Thanks to the framework’s
flexibility, novel IVN architectures can be developed.

In this work, we show our design goals and their realization
for an easily configurable and flexible IVN experiment infras-
tructure. Furthermore, we introduce one of the IVN use-cases
and demonstrate how it can be evaluated using EnGINE.

II. SYSTEM DESIGN

To provide a framework for IVN research, we follow the
ACM Policy [2] and define additional requirements for our
system: repeatability, reproducibility, and replicability. With
those requirements in mind, we build EnGINE using com-
mercial off-the-shelf (COTS) network interface cards (NICs).
More specifically, the 1Gbit/s Intel® I210 NICs, which are
used to interconnect our Linux-based ZGWs and VCCs as
outlined in Fig. 1. All nodes utilize standard PC components.
Open vSwitch is used to prepare the network topology for each
experiment and forward traffic.

To orchestrate EnGINE, we built a framework using Ansi-
ble [1], an idempotent, descriptive language using YAML and
Jinja. Fig. 2 shows a typical workflow, where the management
host remotely executes commands on a node 1©. Then 2©
respective node runs this code and 3© interacts with others.
Next, the nodes store the collected artifacts on the management
host 4©, where the collected artifacts are processed 5©.

Each experiment campaign consists of four phases: install,
setup, scenario, and process. In install, the nodes required
for the campaign are allocated and booted with an operating

Management Host

Node 1 Node 15...

3

1 44

22

5

1

Figure 2: Communication workflow

system using pos [3]. Setup follows with installation of depen-
dencies required for the experiments. Also, scripts and other
prerequisites are copied from the management node. Individual
experiments are performed in scenario phase. After each ex-
periment, the generated artifacts are collected and transferred
to the management node. The campaign is concluded with
post-processing where those artifacts are evaluated and initial
plots are generated.

III. EXPERIMENT SETUP

To show the capabilities of EnGINE we define a use-case
where a LIDAR trasmits a point-cloud to one of the VCCs.
For that, we use a Livoxtech LIDAR Mid40 connected to
ZGW1 that sends data towards the VCC1 where a Viewer
application outputting a live picture of the point-cloud is
placed. The LIDAR sends approx. 1000 packet/s (depending
on configuration), each with a payload of 1318B for a total of
1388B on the physical layer (PHY). The data is transferred
over the network consisting of ZGW2 and ZGW3 placed in a
line topology between ZGW1 and VCC1 as shown in Fig. 1.

We configure the network for two experiment types. The
first one uses the 802.1Qav Credit-Based shaper (CBS) qdisc
configured for the PHY bandwidth of 11 104 kbit/s which cor-
responds exactly to that of the Livoxtech LIDAR. The second
one utilizes the 802.1Qbv Time-Aware shaper (TAS/TAPRIO)
qdisc and Earliest Time First (ETF) as a child qdisc configured
in the deadline mode. We calculated the TAPRIO window
sizes and cycle time corresponding to the link speed and
packet spacing, which is approx. 10 µs and 100 µs respectively.
The qdiscs are configured on each node and interface of the
used topology. Furthermore, in each experiment we introduce
competing cross-traffic that follows the same path as LIDAR
traffic. The testbed also allows the competing traffic to follow
any other available path. In case no qdiscs are configured, the
time guarantees for the LIDAR traffic are not met and due to
processing delay on each hop we see high fluctuation. This
behavior is resolved by using properly configured CBS and
TAPRIO along the path.

IV. DEMONSTRATION

Section III outlines the experiment performed using En-
GINE deployed on COTS hardware as presented in Fig. 3. The
Livoxtech LIDAR is connected to ZGW1 (right) and Livoxtech
Viewer displayed on a monitor connected to VCC1 (left).

For each experiment we obtain a live point-cloud preview
as shown on the monitor in Fig. 3. Furthermore, after each
experiment the data transmitted by the LIDAR is analyzed

Figure 3: EnGINE hardware deployment

and the end-to-end delay, jitter, and throughput are visualized.
We observe that the misconfigurations of CBS and TAPRIO
result in the live output of the LIDAR starting to lose frames
and thus signify the importance of proper shaper configuration
for mission critical traffic.

V. CONCLUSION

In this paper, we introduce EnGINE, a framework for
repeatable, reproducible, and replicable IVN and TSN exper-
iments. The framework is built using open-source solutions
coupled with COTS hardware and supports TSN standards
as recommended by P.802.1DG [6]. Furthermore, we show
that EnGINE can support IVN experiments, demonstrating a
LIDAR point-cloud data subjected to various network condi-
tions. Naturally, the framework inherits some challenges from
its open-source nature, for example the inherent complexity
of the Linux kernel or of other utilized software artifacts. We
overcome those challenges with our framework structure and
implementation to ensure real-time system performance. As
the framework is still in development, the source code is not
yet publicly available and will be published in the future.

REFERENCES

[1] Ansible is Simple IT Automation. https://www.ansible.com.
[2] Artifact Review and Badging - Current. https://www.acm.org/

publications/policies/artifact-review-and-badging-current.
[3] S. Gallenmüller et al. “High-performance packet processing

and measurements”. In: 2018 10th International Conference on
Communication Systems Networks. 2018, pp. 1–8.

[4] J. Hwan Seo and J. W. Jeon. “Comparison of IEEE802.1Q
and IEEE802.1AVB in multi switch environment in embedded
system”. In: 2017 17th International Conference on Control,
Automation and Systems (ICCAS). 2017.

[5] “IEEE Standard for Local and Metropolitan Area Network–
Bridges and Bridged Networks”. In: IEEE Std 802.1Q-2018
(2018), pp. 1–1993.

[6] D. Pannell et al. Use Cases - IEEE P802.1DG V0.4. https :
/ / www . ieee802 . org / 1 / files / public / docs2019 / dg - pannell -
automotive-use-cases-0919-v04.pdf. Sept. 2019.

[7] F. Rezabek et al. “EnGINE: Developing a Flexible Research
Infrastructure for Reliable and Scalable Intra-Vehicular TSN
Networks”. In: 2021 3rd International Workshop on High-
Precision, Predictable, and Low-Latency Networking. 2021.

[8] T. A. Xu et al. “Poster: Performance Evaluation of an
Open-Source Audio-Video Bridging/Time-Sensitive Network-
ing Testbed for Automotive Ethernet”. In: 2018 IEEE Vehicular
Networking Conference (VNC). 2018.

2

