
Virtual Cross-Flow Detouring
in the Deterministic Network Calculus Analysis

Steffen Bondorf
Faculty of Mathematics, Center of Computer Science

Ruhr University Bochum, Germany

Fabien Geyer
Technical University of Munich | Airbus CRT

Munich, Germany

Abstract—Deterministic Network Calculus (DNC) is commonly
used to compute bounds on the worst-case communication
delay in data networks. It provides various analyses to derive
these bounds from a model, giving different tradeoffs between
accuracy and analysis efficiency. Improving the tradeoff led to
increasingly complex algorithms. We set out to design a novel
DNC algorithm that is of low complexity while still providing
competitive delay bounds. To achieve this goal, we make use
of the insight that added pessimism in the model can alleviate
more severe limitations of the DNC analysis. To that end, we
introduce the concept of virtual cross-flow detouring where data
flows are assumed to cross additional servers. Ultimately, we
provide a heuristic that is simple, fast and high-quality. We show
in numerical evaluations that our detouring not only provides
a competitive alternative, it also outperforms current algebraic
algorithms’ delay bounds for >50% of analyzed flows.

I. INTRODUCTION

The correctness of many safety-critical applications is based
upon formally verifying upper bounds on the end-to-end
delay of data communication. They ensure proper functionality
of the system. Deterministic Network Calculus (DNC) is
a mathematical framework that has been applied for this
verification in a wide variety of applications such as virtual
machine placement in data-centers [1], in aerospace for the
certification of fly-by-wire avionics [2], or admission control in
self-modeling sensor networks [3]. To achieve valid bounds in
the DNC framework, the analysis computing them adds some
pessimism along the way. This may lead to over-provisioning
of network resources and should thus be minimized. There
have been efforts to extend the DNC with new results accord-
ingly [4, 5, 6, 7] as well as efforts to recombine existing results
to mitigate addition of pessimism [8, 6, 7]. Both of these
streams of improvements have resulted in ever more com-
plex algorithms; the tradeoff between complexity and quality
became an active research topic in DNC. E.g., this tradeoff
was improved by technical advances [9, 10], using machine
learning in heuristics [11, 12], or recombination with other
known results [13, 14]. In this paper, we will present a novel
result called virtual cross-flow detouring, in short detouring.
We integrate detouring into DNC to create a low-complexity
analysis algorithm. The result of this integration is not only
a considerably less complex and faster to execute heuristic.
Its delay bounds also achieve a high level of quality, even

exceeding those of the currently best fast analysis algorithm
in the majority of our samples.

The DNC framework consists of two parts: modeling and
analysis. A minimal DNC model provides the network topol-
ogy and functions that either bound resource availability or
demand at queueing locations (service curves and arrival
curves). A DNC analysis has the objective to derive a bound on
a specific flow’s end-to-end delay when crossing the modeled
network. The complexity in computing accurate delay bounds
arises from the following characteristics of a minimal model:
• Arrival curves are provided per-flow at network entrance.
• Service curves bound the aggregate forwarding capability.
Yet, the DNC analysis aims to compute per-flow delay bounds.

In this paper, we propose virtual cross-flow detouring as an
addition to existing analyses. Detouring defines a new degree
of freedom in the search for the best tradeoff between length
of analyzed server sequences (tandems) and flow aggregation.
The main idea is that, if a cross-flow is detoured over (parts
of) another flow’s path, both can be treated by the analysis
algorithm as an aggregate on a longer tandem. Despite the
additional load at servers to be detoured over, this approach
attains improved, valid delay bounds under certain conditions.

The addition of pessimism is not an entirely novel idea, a
proof of concept that is considerably more restrictive than our
detouring was presented in [15, 16]. This work proposed to
prolong flows over the end of their respective paths, not to add
servers at any location. The proposed exhaustive prolongation
algorithm has two main characteristics: it is nearly infeasible to
execute and the improvements to delay bounds are negligible.
Secondly, focusing on longer tandems was also attempted
in the recent literature [7]. While this can indeed lead to
improved delay bounds, it becomes forbiddingly complex and
infeasible to execute, too. We provide the first algorithm that
makes ideas from both these concepts feasible to execute,
even in combination, and without the use of techniques that
do not allow for traceability of the solution process like
optimization [5, 17] or machine learning [18, 11]. Despite the
necessary measures to reduce computational complexity of the
proposed algorithm, we observed that more than 50% of delay
bounds improved in every single network we analyzed (taken
from [6]). Execution times increased by 42.6% when adding
detouring to a known DNC analysis, yet, creating a heuristic
that is vastly faster than other similarly accurate analyses.ISBN 978-3-903176-28-7 ©2020 IFIP

c© IFIP, 2020. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use.
Not for redistribution. The definitive version will be published in IFIP Networking 2020.

1



The paper is structured as follows: Section II presents the
DNC background. In Section III, we provide the virtual cross-
flow detouring idea and a heuristic. Section IV benchmarks
against existing analyses before Section V draws conclusions.

II. DETERMINISTIC NETWORK CALCULUS BACKGROUND

An extensive treatment of DNC can be found in [19, 20].
For brevity, we only presents the required background to
understand virtual cross-flow detouring. DNC builds non-
negative, wide-sense increasing functions that are used to
lower bound resource availability guarantees (service curve β)
or upper bound demand (arrival curve α), both in interval time.
We abbreviate affine arrival curves (so-called token buckets)
as α = γr,b(t) = {rt + b} · 1t>0 and affine service curves
(so-called rate latencies) as β = βR,T (t) = R ·max{0, T − t}.

We assume three further properties that are not explicitly
modeled by these curves:
• order of data within a flow will not change (FIFO per flow),
• no knowledge about flow multiplexing in a server’s queue
is present (blind multiplexing of flows),
• multiplexing with cross-flows impacts the analyzed flow
once per shared path (Pay Multiplexing Only Once, PMOO).

Hence, it is beneficial to analyze a flow over a long sequence
of servers to capture the effect of the PMOO property. The
work of [4] proposed an analysis implementing the PMOO
property under the first two assumptions, known as PMOO
Analysis (PMOOA). In this work, we extensively apply the
following computation. It lower bounds the minimum residual
service on a sequence of servers.

Theorem 1: The affine PMOOA left-over service curve
βl.o. = βRl.o.,T l.o. for an analyzed flow of interest (foi) on a
tandem of servers T is computed as

Rl.o. =
∧

s∈T

(
Rs −

∑

(f∈s)\foi

rf
)

T l.o. =

∑
(f∈T )\foi b

f +
∑

s∈T
(
Ts ·

∑
(f∈s)\foi r

f
)

Rl.o. +
∑

s∈T
Ts

where ∧ is the minimum, s ∈ T is a server on tandem T ,
f ∈ T is a flow on T , and f ∈ s is a flow at server s.

For the computation of a single server’s βl.o., we usually
abbreviate the computation with the binary operator	 to β	α.
The two major known issues of Theorem 1 are:
1) Cross-flow bursts are served with the foi path’s minimum
left-over service rate Rl.o., i.e., with the minimum across the
entire tandem. Thus, βl.o. cannot benefit from increased service
curves for individual servers on the tandem [5].
2) Arrival curves are required per set of cross-flows sharing
one subpath of the foi path. This is known as segregation [7].

A recent, very accurate analysis called Tandem Match-
ing (TMA, [6]) proposed an exhaustive search among all
possible tradeoffs between these two aspects. Thus, TMA
applies PMOOA left-over service computations. Large anal-
ysis complexity stems from finding the best tandems (tandem
matching), not Theorem 1. Recently, it was proposed to replace
the exhaustive search with machine learning predictions [11].

s1 s2 s3
foi

xf1

s1⊗s2⊗s3
foi

xf1PMOOA’s view

Potential equivalences due to ⊗’s commutativity:

s1 s2 s3
foi

xf1
s3s2s1

foi

xf1

Figure 1: Potentially equivalent networks for a PMOOA due
to commutativity of the DNC convolution ⊗.

The intuition behind PMOOA is simple: convolve the
tandem of servers into a single system before subtracting
the interfering arrivals. While this implements the PMOO
principle, the underlying convolution causes issue 1. Con-
volution is commutative and therefore multiplexing cannot
be localized to exactly the server where it occurs. In this
paper, we look at PMOOA’s issue 1 from a different angle:
In Figure 1 we might be able to detour cross-flow xf1 over
server s1 or s3 without incurring a penalty for this added
pessimism of distributing server resources among more flows.
The conditions for such a PMOOA-equivalence (four equal
βl.o. in Figure 1 by Theorem 1) of the tandems are: all curves
are affine with Ts1 = Ts3 = 0, Rs2 ≥ Rs1 , Rs2 ≥ Rs3 .

III. VIRTUAL CROSS-FLOW DETOURING

Detouring is a simple extension of the DNC analysis that
adds servers to cross-flows’ paths (see Figure 2). Similar to
improved speed of existing servers (issue 1), adding servers
cannot improve the result of Theorem 1. Yet, it can have
a positive impact by allowing the analysis to derive better
network-internal arrival curves – output bounds derived as
α � β where � is the min-plus deconvolution [19]. We use
output bounds to get the arrivals of cross-flows at a location
where these flows interfere with a different, analyzed flow.

A. Detouring at the Front

In Figure 2, we are interested in a bound on the output after
the 2-server tandems. We aggregate flows as much as possible
and with α� βx � βy = α� (βx ⊗ βy) ([19] Thm 3.1.12),
the computation can progress server by server without losing
the PMOO-benefits when convolving their service curves first.
In Figure 2a, the output of server s1 is bounded by

αs1
′ = γrf1 ,bf1 � βRs1

,Ts1
= γrf1 ,bf1+rf1Ts1

and the output bound of server s2, the final result, is

(αs1
′ + αs2)� βs2 = γrf1+rf2 ,bf1+bf2+rf1 (Ts1

+Ts2
)+rf2Ts2

.

For this flow detouring at the front (Detfront) version in
Figure 2b, we assume both flows already multiplexed in

s1 s2f1
f2

(a) Original network

s1 s2f1
f2

(b) Flow detouring at the front

Figure 2: Adding servers at the front of a flow’s path.



s1’s queue and therefore we compute the output bound for
the aggregate of both flows. In general, aggregation benefits
the DNC analysis for this reason, yet, as we will see, flow
detouring at the front introduces pessimism that outweighs the
aggregation benefits in the output bound computation, too:

αDetfront
s1

′
= (γrf1 ,bf1 + γrf2 ,bf2 )� βRs1 ,Ts1

= (γrf1 ,bf1 � βRs1 ,Ts1
) + (γrf2 ,bf2 � βRs1 ,Ts1

)

= γrf1 ,bf1+rf1Ts1
+ γrf2 ,bf2+rf2Ts1

Note, that we applied distributivity of � over + for rate-
latency service and token-bucket arrivals [3]. This is not
necessary at this point but it results in two separate output
bound computations, nicely illustrating the increase of f2’s
maximum burstiness arriving at s2 by rf2T1. The disadvantage
is carried over to the output of server s2 of Figure 2b:

αDetfront
s2

′
= αDetfront

s1

′ � βs2
= (γrf1 ,bf1+rf1Ts1

+ γrf2 ,bf2+rf2Ts1
)� βRs2

,Ts2

= γrf1 ,bf1+rf1(Ts1
+Ts2)

+ γrf2 ,bf2+rf2(Ts1
+Ts2)

We have seen that flow detouring at the front will result in
worse bounds – even if flows can be aggregated for output
bounding. Next we show how flow detouring at the front can
lead to better bounds nonetheless.

B. Detouring of Cross-traffic: Improving Bounds Nonetheless
In this section, we demonstrate that detouring over a server

added to the middle of a flow’s path can improve delay
bounds derived by DNC despite the problems illustrated in
the underlying detouring at the front.

We investigate the network shown in Figure 3a [7]. The
output of cross-flows xf1 and xf2 after server s0 needs to be
bounded. Current DNC alternatives at s0 are
• Maximize aggregation. This enforces a hop-by-hop analysis
due to the fork above s0 and xf1 cannot benefit from PMOOA
when subtracting the impact of xf3 on the tandem s01, s0.
• Maximize tandem length. This strategy allows for implemen-
tation of the PMOO principle, yet, it requires to segregate xf1
and xf2. I.e., these flows are analyzed individually and assume
mutually exclusive worst-case system behavior at s0.

With the PMOOA (Theorem 1) and virtual flow detouring
in the analysis, we can benefit from the PMOO principle when
subtracting cross-flow xf3 and from aggregating xf1 and xf2
(see Figure 3b). Detouring is paid for by a different penalty
(cf. Detfront in Section III-A), creating a new tradeoff that can
beat the two existing strategies. The longer tandem will be
able to hold more data in transit (added pessimism), and the
issues of PMOOA prevent introduction of dangerous optimism
by making it lack the ability to distribute load in a better way
than on the original tandem. In summary, it is key to virtually
detour a flow over its cross-flows such that the PMOOA has
an impact. Then, the analysis of a more pessimistic setting
can indeed result in better output bounds as we illustrate on
Figure 3b next. For readability, we skip the s and f labels.

1) Detouring γDetouring = γrDetouring,bDetouring arrivals at s1

γDetouring = ((α2 � β02) + α1)� ((β01 ⊗ β0)	 α3)

s0

s1

s01 s02

foi

xf1 xf2
xf3

(a) Original network

s0

s1

s01 s02

foi

xf1 xf2
xf3

(b) Network after detouring

Figure 3: Cross-flow detouring in the network [7] known to
benefit from a longer tandem analysis of xf1.

= ((γr2,b2 � βR02,T02
) + γr1,b1)

�((βR01,T01
⊗ βR0,T0

)	 γr3,b3)
= (γr2,b2+r2T02

+ γr1,b1)� (βR01∧R0,T01+T0
	 γr3,b3)

= γr1+r2,b1+b2+r2T02
� β

(R01∧R0)−r3,T01+T0+
b3+r3(T01+T0)

(R01∧R0)−r3

with rDetouring = r1 + r2 and

bDetouring = b1 + b2 + r2T02

+(r1 + r2)

(
T01 + T0 +

b3 + r3(T01 + T0)

(R01 ∧R0)− r3

)

= b1 + b2 + r2T02

+ r2T01 + (r1 + r2)T0 + r1T01 + (r1 + r2)
b3 + r3(T01 + T0)

(R01 ∧R0)− r3

From the literature, we get two further valid bounds for the
arrival of xf1 + xf2 at s1, derived as follows:
2) Aggregate Arrival Bounding’s γAggrAB [8] in Figure 3a

γAggrAB = γr1+r2, b1+b2+r1T01+r2T02

+r1
b3+r3T01
R01−r3

+(r1+r2)
(
T0+

b3+r3(T01+T0)
R0−r3

)

3) Segregated Arrival Bounding’s γSegrAB [7] in Figure 3a

γSegrAB = γr1+r2, b1+b2+r1T01+r2T02+(r1+r2)T0

+r1
b2+b3+r3T01+(r2+r3)T0
(R01−r3)∧(R0−r2−r3)

+r2
b1+b3+(r1+r3)T0
R02∧(R0−r1−r3)

We see that all three alternatives compute the same arrival rate
at s1, r1 + r2, and that there are common terms in the arrival
burstiness, b1+ b2+ r1T01+ r2T02+(r1+ r2)T0. We assume
a network with homogeneous rates R0 = R01 = R02 =: R,
r1 = r2 = r3 =: r and compare the remaining burst terms.

• γDetouring < γAggrAB:

rT01 + 2r
b3 + r(T01 + T0)

R− r <

r
b3 + rT01
R− r + 2r

b3 + r(T01 + T0)

R− r
⇔ T01(R− 2r) < b3

• γDetouring < γSegrAB:

rT01 + 2r
b3 + r(T01 + T0)

R− r <

r
b2 + b3 + rT01 + 2rT0

R− 2r
+ r

b1 + b3 + 2rT0
R− 2r

⇔ (R− r)T01 − 2rT0 < b1 + b2



20 60 100 140 180 220 260 300 500
0

50

100
PMOOA+Detouring vs TMA

PMOOA vs TMA

Both vs SFA

Both vs ULP

Network size

Sh
ar

e
of

im
pr

ov
ed

de
la

y
bo

un
ds

(%
)

Figure 4: Delay bound improvements.

20 60 100 140 180 220 260 300 500

0

20

40

60

80

Network size

Sh
ar

e
of

str
ic

tly
im

pr
.d

el
ay

bo
un

ds
(%

)

PMOOA+Detouring vs TMA
PMOOA+Detouring vs ULP
PMOOA vs TMA

Figure 5: Strict delay bound reductions.

20 60 100 140 180 220 260 300 500

100

102

104

PMOOA

PMOOA+Detouring

SFA

DeepTMA

TMA
ULP

Network size

To
ta

le
xe

cu
tio

n
tim

e
(s

)

Figure 6: Execution times.

In [7], parameters were fixed to show γSegrAB < γAggrAB:
latencies are 0, b1 = b2 = 0. With the former, virtual detouring
will attain better results. Adding the latter, its results will
equal the SegrAB. The remaining parameters are constant. In
a homogeneous network modeled with affine curves, detouring
can theoretically outperform the AggrAB and SegrAB output
bounding strategies by an arbitrarily large margin.

C. Application to Large Feedforward Networks

In Figure 3, there is only a single sensible detouring alter-
native. In larger networks with flows taking different paths,
there may be several virtual detouring alternatives in order
to allow for the PMOO principle’s application to different
sets of their cross-flows – the amount of alternatives certainly
increases with the network size. This creates potential for a
combinatorial explosion. Therefore, we will provide a simple
yet effective heuristic to select one single detouring path.

From TMA [6] we learn the reason for effort in the DNC
analysis: The analysis is executed with recursive backtrack-
ing [8], starting from the foi and backtracking over cross-
flows. Bounds on arrivals of these cross-flows are not known
before the backtracking terminated and results for the piled
up recursion levels are computed. During backtracking, these
still missing results are yet required to find the best bound
computation for a recursion level. Thus, the exhaustive search
keeps all alternatives alive until all information is known.

From DeepTMA [11] we learn that we need a non-
exhaustive heuristic. Our detouring heuristic only operates on
the invariant data available at any location in the network:
service curves and the sole presence of flows (without arrival
curves / output bounds). The former is not of much use without
arrival curves and thus, we use the latter. We interpret presence
of flows as potential for cross-flow aggregation and additional
servers to detoured over. The decision on detouring can be
easily done server-by-server, embedded into the backtracking:
At any server, simply check all in-links and detour over the one
that has the most flows on it. If there are multiple alternatives,
randomly choose one of them. Note, that the random choice we
opted for in our heuristic negatively impacts reproducibility of
our evaluation results. But any other tie-breaker would increase
the complexity of the detouring heuristic. We terminate the
detouring-path search when one of these conditions is met:
i) there is no cross-flow or analyzed flow left to prolong over
ii) bounds become infinite (long-term service < arrivals).

IV. NUMERICAL EVALUATION

A. Evaluation Setup

For benchmarks, we compute delay bounds in the networks
from [6]1 (20 to 500 devices, 152 to 7504 flows). We mainly
compare PMOOA with detouring (PMOOA+Detouring), the
Tandem Matching Analysis (TMA) [6] paired with the Burst
Cap (BC) [13] mechanism and the optimization-based ULP
analysis [17]. The basis for our PMOOA+Detouring imple-
mentation is the open-source NetCal DNC v2.6 [21]2.

B. Improvement over Other Analyses

We compare in this section the resulting end-to-end delays
produced by PMOOA+Detouring and compare them against
TMA and SFA [19, 20]. We aim to derive the best delay bound
for every flow. There are no semantics assigned; the flow with
the best improvement could be the most important one.

We first evaluate how many flows have their end-to-end
delay bound matched or reduced with the use of detouring,
compared to the other analyses:

delayPMOOA+Detouring ≤ delayX

Results are presented in Figure 4. PMOOA+Detouring is able
to match or improve delay bounds of TMA for at least 53.0%
of the analyzed flows – this lowest value is obtained in the
largest network. In contrast to PMOOA without Detouring,
which matches at most 26.7% of the analyzed flows compared
in the largest network, the addition of detouring is beneficial.
As expected, the use of detouring has thus almost no impact
on the existing relation to SFA and ULP delay bounds [6].

As a second metric, we evaluate how many flows have their
end-to-end delay bound strictly reduced, namely we use a strict
inequality compared to before:

delayPMOOA+Detouring < delayX

Results are presented in Figure 5. As expected, PMOOA does
not produce tighter bounds than TMA. Using detouring results
in strictly tighter bounds for more than 51.4% of the analyzed
flows, meaning that our approach is able to outperform the
tightness of TMA for more than half of the evaluated flows.
Compared to ULP, no strict improvement is achieved, again
an expected result for the same reasons as above.

1Available at: https://github.com/NetCal/DNC_experiments
2Available at: https://github.com/NetCal/DNC



C. Relative Change

We illustrated that our heuristic can match or even outper-
form PMOOA and TMA+BC. As PMOOA+Detouring com-
petes with segregate arrival bounding of [7] (SegrPMOO), we
benchmark against the results available for TMA+SegrPMOO.
We compare delay bounds with the relative change metric:

RelativeChangex =
(
delayDetouring − delayx

)
/delayx

Results are presented in Figure 7 for the only two networks
from the dataset that can be analyzed with TMA+SegrPMOO.

−1 0 1 2 3
0

25

50

75

100

Relative change(%)

Cu
m

ul
at

iv
e

de
ns

ity
(%

) (a) Network with 20 devices

−1 0 1 2 3
0

25

50

75

100

Relative change (%)

(b) Network with 40 devices

TMA+SegrPMOO
PMOOA
ULP

Figure 7: Relative change of PMOOA+Detouring compared to
TMA+SegrPMOO, PMOOA and ULP.

As illustrated in Figure 7a, detouring can result in the
reduction of end-to-end delay bounds of up to 1% compared to
PMOOA, or up to 0.5% compared to TMA+SegrPMOO. This
effect is less visible in Figure 7b, but detouring still results in
0.2% in the best case.

D. Execution Time

In order to illustrate the impact of PMOOA+Detouring’s
small complexity, we compare the execution time of our
heuristic with other analyses. We benchmark the different
analyses by measuring the execution time per network, i.e.
the overall elapsed wall clock time of an analysis for all the
flows in a network size. Execution times presented here do not
include the time to model a network or derive the server graph
or adding the flows. These are not in focus of this work and
they are the shared prerequisite for all the evaluated analyses.

Results are presented in Figure 6. All execution times were
measured on the same machine with an Intel Xeon CPU E5420
at 2.50GHz. For DeepTMA, no GPU acceleration was used.
For ULP, CPLEX was used for solving the linear program.

PMOOA+Detouring takes advantage of the efficiency of
PMOOA and outperforms all other analyses by at least two
orders of magnitude, except pure PMOOA of course. On
average, the addition of detouring (with a PMOOA on the
detour) resulted in an increase of only 42.6% in average,
indicating that detours are rather short. Those results illustrate
that the computational cost of using detouring is negligible
compared to the gains in tightness illustrated earlier.

V. CONCLUSION

In this paper, we contribute virtual cross-flow detouring
(detouring) to deterministic network calculus. We show that
it is a powerful extension to the PMOOA analysis, resulting
in delay bounds matching or even outperforming the state-
of-the-art analyses that are considerably more involved. Our

contribution is based on the counter-intuitive idea of adding
pessimism to the model. Due to a previously frowned upon
characteristic of PMOOA, we can compute better delay bounds
nonetheless.

Our evaluation shows that detouring is able to outperform
the previously best analyses, in particular TMA. Delay bounds
of more than 50% of the analyzed flows improved compared to
TMA. This is achieved by only a small addition to PMOOA’s
execution time of 42.6% on average. That makes our proposed
heuristic not only comparable with TMA w.r.t. the computed
delay bounds but also faster by two orders of magnitude.

REFERENCES
[1] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable

message latency in the cloud,” in Proc. of ACM SIGCOMM, 2015.
[2] F. Geyer and G. Carle, “Network engineering for real-time networks:

comparison of automotive and aeronautic industries approaches,” IEEE
Communications Magazine, vol. 54, no. 2, pp. 106–112, 2016.

[3] S. Bondorf and J. B. Schmitt, “Boosting sensor network calculus by
thoroughly bounding cross-traffic,” in Proc. of IEEE INFOCOM, 2015.

[4] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving performance
bounds in feed-forward networks by paying multiplexing only once,” in
Proc. of GI/ITG MMB, 2008.

[5] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under arbi-
trary multiplexing: When network calculus leaves you in the lurch. . . ,”
in Proc. of IEEE INFOCOM, 2008.

[6] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of deter-
ministic network calculus – design and evaluation of an accurate and
fast analysis,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems (POMACS), vol. 1, no. 1, pp. 16:1–16:34, 2017.

[7] ——, “Catching corner cases in network calculus – flow segregation can
improve accuracy,” in Proc. of GI/ITG MMB, 2018.

[8] S. Bondorf and J. B. Schmitt, “Calculating accurate end-to-end delay
bounds – you better know your cross-traffic,” in Proc. of EAI ValueTools,
2015.

[9] N. Luangsomboon, R. Hesse, and J. Liebeherr, “Fast min-plus convolu-
tion and deconvolution on GPUs,” in Proc. of EAI ValueTools, 2017.

[10] A. Scheffler, M. Fögen, and S. Bondorf, “The deterministic network
calculus analysis: Reliability insights and performance improvements,”
in Proc. of IEEE Intl. Workshop on Computer-Aided Modeling, Analysis
and Design of Communication Links and Networks (CAMAD), 2018.

[11] F. Geyer and S. Bondorf, “DeepTMA: Predicting effective contention
models for network calculus using graph neural networks,” in Proc. of
INFOCOM, 2019.

[12] ——, “On the robustness of deep learning-predicted contention models
for network calculus,” 2019, arxiv:1911.10522.

[13] S. Bondorf and J. B. Schmitt, “Improving cross-traffic bounds in feed-
forward networks – there is a job for everyone,” in Proc. of GI/ITG
MMB & DFT, 2016.

[14] A. Mifdaoui and T. Leydier, “Beyond the accuracy-complexity trade-
offs of compositional analyses using network calculus for complex
networks,” in Proc. of CRTS Workshop, 2017.

[15] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea, “Estimating the worst-
case delay in FIFO tandems using network calculus,” in Proc. of ICST
ValueTools, 2008.

[16] S. Bondorf, “Better bounds by worse assumptions – improving network
calculus accuracy by adding pessimism to the network model,” in Proc.
of IEEE ICC, 2017.

[17] A. Bouillard, L. Jouhet, and É. Thierry, “Tight performance bounds in
the worst-case analysis of feed-forward networks,” in Proc. of IEEE
INFOCOM, 2010.

[18] F. Geyer, “Performance evaluation of network topologies using graph-
based deep learning,” in Proc. of EAI ValueTools, 2017.

[19] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[20] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. Wiley, 2018.

[21] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a comprehensive
tool for deterministic network calculus,” in Proc. of EAI ValueTools,
2014.


