
Towards the Classification of TCP Throughput
Changes

Simon Bauer, Benedikt Jaeger, Max Reimann, Jonas Fromm, Georg Carle
Technical University of Munich (TUM), Department of Informatics

Chair for Network Architectures and Services, Garching b. München, Germany
{bauer | jaeger | reimann | fromm | carle}@net.in.tum.de

Abstract—Analyzing throughput limitations of TCP connec-
tions has been a frequently studied topic. While existing ap-
proaches determine throughput limitations for whole connections
or specific segments of connections, this paper surveys whether
such approaches can also be used to classify individual changes
in the throughput of a connection.

In this paper, we introduce an approach to classify changes
in TCP throughput based on their coincide with changes be-
tween TCP transfer periods. We evaluate different change point
detection methods with generated TCP traffic providing ground
truth data regarding throughput changes. Further, we survey
the matching between throughput change points and transfer
periods in passively captured Internet traffic. We conclude that
the classification of TCP throughput changes with TCP transfer
periods is feasible for a significant share of changes and observe
significant differences in matching results depending on the used
change point detection method.

Keywords—Change point detection, TCP throughput analysis,
TCP transfer periods

I. INTRODUCTION

Analyzing throughput limitations of TCP connections is
purposed to support service and infrastructure providers to
increase understanding of the performance of their networks,
services, or customers. Such analysis, also referred to as TCP
root cause analysis enables insights into the utilization of
network resources and supports tasks like network resource
planning or anomaly and incident detection. So far, TCP
throughput limitation analysis determines the primary through-
put limitation for a whole connection [8] or segments of a
connection [1], [10].

This paper pursues whether approaches from the field of
TCP throughput limitation analysis can be utilized to classify
individual changes in the throughput of a TCP connection.
As a first step towards the classification of TCP throughput
changes, we use transfer periods according to Siekkinen et
al. [1], which segment a connection into bulk transfers and
application limited periods.

Accordingly, this paper examines the proportion of through-
put changes that coincide with changes between transfer
periods. For this purpose, we investigate the suitability of
different change point detection methods for detecting changes
in TCP throughput. We introduce a measurement framework
that enables the evaluation of change point detection results
with ground truth data and conduct passive measurements

on Internet traffic to investigate how many of the detected
changes can be classified using our approach. We find that the
sensitivity of the change point detection method is crucial and
survey the trade-off between the share of classifiable changes
and matched period changes.

The outline of this paper is structured as follows: We intro-
duce background regarding TCP transfer periods and change
point detection methods in Section II. Section III describes our
approach to the classification of changes in TCP throughput
and the evaluation of different change point detection methods.
In Section IV we describe the implementation of used traffic
analysis and traffic generation tools. The evaluation of change
point detection methods based on our generated data set is
presented in Section V. Section VI presents results of mea-
surements conducted on captured Internet traffic. We provide
an outlook on related work in Section VII and conclude this
paper with a summary of our findings and future work in
Section VIII.

II. BACKGROUND

This section introduces background on TCP throughput
limitations, transfer periods as determined by the Isolate &
Merge (I&M) algorithm, and change point detection (CPD)
methods.

A. TCP Throughput and Throughput Limitations

The transmission control protocol (TCP) is purposed to
determine fair data transmission rates for single connections
to avoid overloading the passed network path and the receiver
of sent packets. In order to determine a fair transmission rate,
the sender of a TCP connection increases its transmission rate
as far as there are no indicators for overload at other entities.
The manner of determining the sending rate depends on the
applied congestion control algorithm [2] that increases and
decreases the congestion window for a connection based on
different indicators [3]–[6]. We refer to a connection’s data
transmission rate as throughput in the following.

Besides congestion control, a TCP connection’s throughput
can be limited for different reasons. The analysis of such
reasons is referred to as TCP root cause analysis or throughput
limitation analysis and has been studied in several studies [7]–
[10]. Examples of throughput limitations are bottleneck links
on the network path, a slow receiving entity, or TCP itself, e.g.,
due to a congestion window that does not increase sufficiently978-1-6654-0601-7/22/$31.00 © 2022 IEEE

fast. A further limitation to TCP throughput is a sending
application with limited performance, i.e., when a sender
does not produce enough data to exploit available network
resources.

B. The Isolate & Merge Algorithm and TCP Transfer Periods

To determine time intervals in which the sending application
limits a connection, Siekkinen et al. [1] introduce the Isolate &
Merge (I&M) algorithm that segments a flow in three different
kinds of periods:
• Application Limited Periods (ALP): the sending application

does not provide enough data to fully utilize available
network resources.

• Bulk Transfer Periods (BTP): the sender produces enough
data to continuously send data and fully utilize available
network or receiver resources.

• Short Transfer Periods (STP): short bulk transfers that
contain less than 130 packets and are mainly dominated by
congestion control.
First, the I&M algorithm isolates ALPs, BTPs, and STPs

from each other. Therefore, the Isolate procedure processes
all packets of a connection according to their order. Initially,
the algorithm starts to account packets to an ALP. If three con-
secutive data packets as large as the Maximum Segment Size
(MSS) are observed, the Isolate procedure starts a BTP. Further
packets are assigned to such BTP as long as two conditions are
satisfied: a) the share of packets smaller than the MSS within
the last ten packets is not larger than a predefined threshold
value (th) and b) the inter-arrival time (IAT) between two
successive packets is not larger than RTT

2 . If such conditions
are no longer satisfied, the Isolate procedure assigns packets
to an ALP and terminates the current BTP. After isolating
transfer periods, the Merge procedure is purposed to merge
ALPs with adjacent BTPs as far as the impact of the ALP
is insignificant regarding the periods’ average throughput. An
ALP gets merged to the adjacent transfer periods if merging
the periods does not result in a significantly lower average
throughput of the new period than the average throughput
of each BTP before merging. Merging relies on a predefined
threshold value (drop) that decides whether the throughput of
a merged period is significantly lower or not.

C. Change Point Detection

Change point detection (CPD) is purposed to detect changes
in a signal, respectively, in a sequence of values. Detected
changes are referred to as change points (CP). CPD is applied
in different contexts considering different characteristics of the
applied method. While some approaches require the number of
expected changes within a signal before the estimation, other
methods do not require such information beforehand. A further
differentiation exists between online and offline detection.
Online CPD aims to provide fast detection of changes, while
offline CPD allows processing the signal without constraints
regarding the execution time. According to Truong et al. [11]
a change point detection method is defined by a cost function,
a search method, and different constraints depending on the

method. The cost function is purposed to assess the homo-
geneity of a signal. Therefore, it decides how likely a change
is to occur in a given signal. The search method determines
the processing of the signal to detect changes.

III. APPROACH

First, this section describes the classification of changes in
TCP throughput based on transfer periods. Second, this section
introduces metrics used to evaluate the suitability of CPD
methods for changes in TCP throughput.

A. Classifying TCP Throughput Changes

In this paper, we pursue whether transfer periods are suitable
for classifying changes in the throughput of a TCP connection.

We define four types of change points according to their
relation to transfer periods as determined by the I&M al-
gorithm: The first type is referred to as a matching change
point, defined as CPs that match a border between transfer
periods. If a connection changes from application limitation to
bulk transfer, it is expected that the connection’s throughput
will increase. Another way around, we expect throughput
to decrease significantly when a bulk transfer ends and an
ALP begins. Next to matching change points, there might
be changes that do not coincide with borders of transfer
periods. We refer to such CPs as unmatched. Unmatched CPs
are subdivided according to the transfer period surrounding
the CP. Correspondingly, the four types of CPs are matched,
unmatched in an ALP, unmatched in a BTP, and unmatched
in an STP. Figure 1 shows an example of the throughput of a
TCP connection over time. In this example, the flow includes
two BTPs separated by an ALP. The changes between the
transfer periods imply throughput changes that are marked as
change points CP1 and CP4. During the ALP, throughput
changes again. The corresponding unmatched change points
CP2 and CP3 can be traced back to the application lim-
ited behavior of the sending application. There are expected
changes in throughput when an application switches between
sending small packets and completely idling during an ALP.
As illustrated, the throughput during the second BTP increases
resulting in CP5 and CP6, for example, as there is temporarily
more available bandwidth on the bottleneck link.

B. Evaluating Change Point Detection Methods

To the best of our knowledge, the application of CPD on
throughput changes of TCP connections has not been studied
so far. Therefore, we evaluate the suitability of different change
point detection methods for our problem. The metrics used for
evaluating CPD methods are described in this section. In order
to evaluate different CPD methods, we require the generation
of TCP connections with intended changes in throughput.
The implementation of the generation process of labeled TCP
connections is described in Section IV-D.

The first metric we consider is the Annotation Error [11].
The Annotation Error is defined as the difference between the
number of actual changes (derived from ground truth labeling)
and the detected change points. A significant Annotation Error

0

T
hr

ou
gh

pu
t

Time

BTP ALP BTP

1

CP1 CP2 CP3 CP4 CP5 CP6

Fig. 1: Illustration of the matching between transfer periods
and different types of change points.

implies a large number of undetected changes (false negatives)
or a large number of detected changes without an actual
change (false positives).

A further indicator for the accuracy of a CPD estimation
is the F1-score according to Truong et al. [11]. The F1-score
is calculated as the harmonic mean of precision and recall,
which assess the impact of false negatives, respectively false
positives on the detection results. Precision is calculated by
the ratio of detected change points that match an actual signal
change. Therefore, strong over-segmentation by the detected
change points results in low precision due to many false
positives. Recall is the ratio of actual change points matched
by a detected change point. The definition of recall indicates
that many false negatives, i.e., not detected changes, result in
low values. Whether an actual change and an estimated CP
are referred to as matched depends on the error margin, also
referred to as tolerance interval, used for the score calculation.
As the harmonic mean of precision and recall, the F1-score is
normalized between 0 and 1, while larger F1-scores indicate
better change point detection results.

IV. IMPLEMENTATION

We use two frameworks to implement traffic analysis and
traffic generation. First, we implement a traffic analysis frame-
work to parse captured network traffic, conduct CPD, and run
the I&M algorithm. The second framework is purposed to
generate TCP connections with intended throughput changes
while tracking ground truth information for each connection.

A. Flow Analysis and Feature Extraction

The introduced traffic analysis framework consists of a
pipeline of analysis components, each interacting with a
database backend to read and write results. The first analysis
step is extracting packet information from a PCAP containing
captured traffic, and aggregating packets to connections, also
referred to as flows in the following. The flow aggregation
and feature extraction component is written in Go and relies
on the gopacket library [12] to read packets. We extract packet
timestamps, payload sizes, the MSS, TCP flags, sequence
numbers, and TCP options for each packet and compose

packets to a flow based on the IP5-tuple considering packets
in both directions.

Further, the framework calculates a sequence of throughput
for each flow. Calculating throughput is done by segmenting
the flow duration in intervals of fixed size and aggregating
transmitted bytes for each interval. By default, we use a
resolution of throughput calculation of 100ms.

B. Change Point Detection

For the implementation of change point detection, we rely
on the Python library ruptures introduced by Truong et al. [13].

Ruptures enables users to compose CPD methods from
over eight different cost functions and four search methods
applicable to our use case, i.e., offline CPD for an unknown
number of changes. For our measurements, we choose the
cost function that assesses the homogeneity of a signal based
on the least absolute deviation. The least absolute deviation
is purposed to detect shifts in the median of the analyzed
signal while it is expected to provide outlier robust change
point detection [16]. The considered search methods are the
optimal method Pelt [17] and the three approximate search
methods Binary Segmentation (Bin. Seg.) [18], Bottom Up
Segmentation (Bott. Up.) [19], and Window-based CPD (Win.-
based). Further, ruptures uses the penalty value to influence the
sensitivity of applied change point detection. In the following,
we refer to a CPD method as a tuple of cost function and
search method. In order to estimate changes, the analysis
framework reads a sequence of measured throughput for each
connection and conducts change point detection. Afterward,
the CPD component writes detected changes to the frame-
work’s backend. A further component, responsible for the
validation of estimated change points, receives ground truth
data by processing configuration files of the traffic generation
framework introduced in Section IV-D. Such configuration
files include the point when an intended throughout change
took place. Based on the set of intended changes and the set
of estimated change points, the analysis framework calculates
scores to assess CPD results for generated traffic as introduced
in Section III-B.

C. Transfer Period Analysis

A further analysis component takes care of identifying
transport periods for each flow according to the I&M algo-
rithm introduced by Siekkinen et al. [1] as described in Sec-
tion II-B. The implemented I&M component calculates inter-
arrival times (IAT) and round trip time (RTT) estimates for
each connection. Further, we determine the distance between
the capturing point and the sender as required for the I&M
algorithm. Our framework relies on two approaches to derive
RTT estimates of a flow. First, we calculate the initial RTT
during the TCP Three-Way-Handshake. As the sequence of
packets during the handshake is well-known, initial RTT can
be estimated by the intervals between the SY N packet and
the consecutive SY N + ACK packet, referred to as d1, and
between the SY N + ACK packet and the following ACK
packet, referred to as d2. Next to estimating the initial RTT,

100 101 102 103 104 105 106 107 108 109
0

0.5

1

Penalty Value

Sc
or

e

1% - F1-Score 1% - Recall 1% - Precision
10% - F1-Score 10% - Recall 10% - Precision
25% - F1-Score 25% - Recall 25% - Precision

(a) Impact of penalty value for different amplitudes (Pelt).

100 101 102 103 104 105 106 107 108 109
0

0.5

1

Penalty Value

Sc
or

e

0.1 s - F1-Score 0.1 s - Recall 0.1 s - Precision
0.2 s - F1-Score 0.2 s - Recall 0.2 s - Precision
0.3 s - F1-Score 0.3 s - Recall 0.3 s - Precision

(b) Impact of error margin (Pelt).

10−2 10−1 100 101
0

0.5

1

Amplitude [%]

F1
-S

co
re

Pelt - 104 Bin. Seg. - 104 Bot. Up - 104

Pelt - 107 Bin. Seg. - 107 Bot. Up - 107

(c) Impact of change amplitude for different penalties.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

F1-Score

C
D

F

Pelt - 104 Bin. Seg. - 104 Bot. Up - 104 Window - 104

Pelt - 107 Bin. Seg. - 107 Bot. Up - 107 Window - 107

(d) Traffic with random parameters for different penalties.

Fig. 2: Measurement results of CPD method evaluation with different generated data sets.

we calculate RTT estimates based on the TCP timestamp
option if a connection uses it. The timestamp option-based
approach identifies triples of packets carrying matching TCP
timestamp values and calculates the intervals between such
packets. Afterward, we calculate the average of all estimated
RTTs to be used by the algorithm. As the capturing point might
not be close to the sender, Siekkinen et al. [1] propose shifting
of packet timestamps in order to calculate IATs between a
received ACK and a sent data packet. Shifting is based on the
relative distance between the capturing point and the sender.
The intervals d1 and d2, as introduced above, are used to
estimate the relative distance between sender and receiver as

d1

d1+d2
. Based on the extracted data, our framework determines

the segmentation of each connection into different transfer
periods as specified by Siekkinen et al. [1].

D. Labelled Traffic Generation

In order to evaluate different CPD methods, we require to
generate TCP traffic with intended throughput changes. We
rely on the TCP measurement framework introduced by Jaeger
et al. [14], based on the network emulation tool Mininet [15].
The measurement framework by Jaeger et al. enables network
and host parameters to be dynamically reconfigured based on
user-defined schedules. According to the configured schedule,
the framework orchestrates network entities to generate traffic
and adapts parameters like link bandwidth, link delays, or loss.
TCP traffic is generated by transmitting data with the netcat
utility. A simple topology consisting of two hosts connected
via a switch is sufficient for our traffic generation, as we only
aim to modify the throughput of a specific connection. Further,
the measurement framework already satisfies our requirement
to dynamically change a flow’s throughput, as the schedule-

based configuration can configure the bandwidth of a link,
which we use as an upper limit of throughput.

V. EVALUATION

To evaluate different CPD methods, we conduct measure-
ments on generated TCP traffic, including intended throughput
changes. As described in Section IV we implement change
point detection with the Python library ruptures and use the
least absolute deviation as cost function. Measurements are
conducted with the search methods Pelt, Bin. Seg., Bott. Up,
and Win.-based CPD. We calculate the Annotation Error, F1-
score, Recall, and Precision as defined in Section III-B. Our
evaluation is purposed to determine how reliable changes are
detected with different search methods, penalty values, and
amplitudes of changes. We generate three traces for each traffic
configuration to ensure results are robust to measurement
artifacts. Plotted results show the average of the different
measurement runs per configuration.

First, we assess the impact of different penalty values on the
accuracy of conducted change point detection. We generate
connections with a duration of 30 s and 30 equidistantly
distributed changes, and configure change amplitudes of 1 %,
10 %, and 25 %. We observe that very high penalties imply
worse accuracy depending on the amplitude of changes as
CPD gets less sensitive. This can be seen in Figure 2 a)
for measurements conducted with the search method Pelt,
different amplitudes, and an error margin of 200 ms. We
observe constant F1-scores, recall values, and precision values
for smaller penalties. Further, we note that F1-scores slightly
increase for specific penalties before penalties become too high
and no changes are detected. This observation can be traced
back to fewer false positives for larger penalties. We find a

significant impact by the error margin used for the F1-score
calculation. For example, increasing the error margin from
200 ms to 300 ms increases the F1-score for measurements
conducted with Pelt from 0.7 to 0.9 for most penalties as
shown in Figure 2 b) for an amplitude of 10%. The same
patterns are observed for other search methods. With an error
margin of 300 ms we observe large recall values for Pelt, Bin.
Seg., and Bottom Up. This observation indicates that nearly
all intentionally generated throughput changes are detected.
A significantly lower precision value implies that the CPD
methods detect more changes as intended. For Win.-based
CPD, we observe larger precision values than recall values.
This indicates that fewer intended changes are detected, while
the false positives share is significantly lower than for other
search methods. However, Pelt, Bin. Seg., and Bottom Up
result in significantly larger F1-scores and, therefore, overall
accuracy. To assess the impact of changes’ amplitude, we run
measurements with varying amplitudes. Again, we generate
connections of 30 seconds, apply an error margin of 200 ms,
and consider several penalty values. Figure 2 c) shows F1-
scores for considered amplitudes and penalties of 104 and 107

for Pelt, Bin. Seg., and Bottom Up. We observe pretty small
F1-scores for all methods and very small amplitudes for both
penalties. As expected, smaller penalty values enable to detect
changes with smaller amplitudes. We find constant accuracy
after the amplitude exceeds a certain threshold for both penal-
ties. Such observations of the F1-scores can be explained by
the according AnnotationErrors. For small amplitudes, too few
changes are detected. With increasing amplitudes, the number
of false negatives decreases. To further examine differences
between search methods, we generate 250 connections with
randomly selected amplitudes for each change, randomly
selected numbers of changes per connection, and randomized
intervals between two changes. The cumulative distribution
of measured F1-scores for an error margin of 200 ms reveals
that 50 % of measured F1-scores are larger than 0.7 for Pelt,
Bin. Seg., and Bottom Up with a penalty of 104, as shown
in Figure 2 d). Win.-based CPD shows significantly lower
accuracy. The accuracy with a penalty of 107 is slightly smaller
compared to accuracy with a penalty of 104 for Pelt, Bin. Seg.,
and Bottom Up, and significantly smaller for Window-based
CPD. We find that Pelt and Bottom Up Segmentation result in
the nearly identical F1-scores for applied penalties. The same
observation applies to measurements discussed above.

For our analysis of Internet traffic, we conclude that Pelt,
Bott. Up, and Bin. Seg. are expected to provide more accurate
results than Window-based CPD. The measured recall values
for such search methods imply that it is more likely to detect
false positives than not detecting an intended change.

VI. ANALYSIS OF CAPTURED INTERNET TRAFFIC

To evaluate the suitability of our approach to classify
changes in TCP throughput, we conduct measurements on
captured Internet traffic. We compare measurement results for
different CPD methods and penalty values. Note that measure-
ments with Pelt were not feasible due to Pelt’s computational

100 101 102 103

0.4

0.6

0.8

1

Number of CPs per flow

C
D
F

Bin. Seg., Pen. = 10 Bin. Seg., Pen. = 104 Bin. Seg., Pen. = 107

Bott. Up, Pen. = 10 Bott. Up, Pen. = 104 Bott. Up, Pen. = 107

Fig. 3: Number of CPs per connection.

complexity. To survey the results of our matching analysis
between period changes (PC) and change points (CP), we
calculate two shares: We define the CP share as the share of
detected change points matching to a period change and the PC
share as the share of period changes that match to a detected
change point. The CP share represents the share of matched
change points and also implies the share of unmatched change
points as defined in Section III. Therefore, a large CP share
indicates that we are able to classify a large share of detected
change points as matching to a period change. The PC share
indicates how successful period changes were matched to
detected change points and whether period changes do not
coincide with an estimated throughput change.

For our study, we analyze a traffic capture provided by the
Measurement and Analysis on the WIDE Internet (MAWI)
Working Group [20]. The trace taken on the 31st of July 2021
includes 15 minutes of Internet traffic captured at MAWI’s
Samplepoint-F. We filter out TCP connections consisting of
less than 130 packets, which is the minimum packet count
for an STP, as such connections are not relevant for our
analysis of matching between CPs and PCs. Further, we only
consider IPv4 traffic. Next to packet count and IPv4, we
constraint analyzed connections to those who provide a fully
captured TCP Three-Way-Handshake as this is required for
the I&M algorithm. In total, we find 1649 connections that
fulfill all analysis requirements in the analyzed traffic capture.
We choose a matching margin of 300 ms. This means that we
refer to a change point as matched if the difference between
the timestamp of the change point and the nearest period
change is smaller 300 ms. We calculate throughput in intervals
of 100 ms. For measurements with the I&M algorithm, we
choose a drop value of 0.9 and a th value of 3 as proposed by
Siekkinen et al. [1].

To assess the distribution of change points on connections,
we conduct measurements with different change point detec-
tion configurations and calculate the cumulative distribution
function (CDF) of the number of change points per connection
as shown in Figure 3. We observe that different penalty values
result in significantly different numbers of detected change
points per flow for both search methods. Further, we find that
the number of changes decreases significantly with increasing
penalty values. Bottom Up segmentation results in signifi-
cantly more detected change points than Binary Segmentation.
Independent of the search method and the penalty, we find

TABLE I: Total number and share of matched period changes (PC) and change point (CP) types.

Method Penalty Total CPs Matched CPs Unmatched in BTP in ALP in STP Matched PCs

Bin. Seg.
101 4502 683 (15.17 %) 3819 (84.83 %) 3491 (77.54 %) 286 (6.35 %) 42 (0.93 %) 31.41 %
104 2065 446 (21.60 %) 1619 (78.40 %) 1527 (73.95 %) 69 (3.34 %) 23 (1.11 %) 20.51 %
107 510 286 (56.08 %) 224 (43.92 %) 209 (40.98 %) 0 (0.0 %) 15 (2.94 %) 12.32 %

Bottom Up
101 8991 1195 (13.29 %) 7796 (86.71 %) 6128 (68.16 %) 1562 (17.37 %) 106 (1.18 %) 54.97 %
104 5578 878 (15.74 %) 4700 (84.26 %) 4071 (72.98 %) 567 (10.16 %) 62 (1.11 %) 40.39 %
107 819 301 (36.75 %) 518 (63.25 %) 502 (61.29 %) 1 (0.12 %) 15 (1.84 %) 13.85 %

that the vast majority of connections include less than 10
estimated change points while observing a very long tail of
detected change points per flow. Within the 1649 analyzed
connections, we find 1100 connections that only consist of
one single ALP. We remove such connections from our data
set as they are not relevant for further analysis of throughput
change classification. The I&M algorithm detects 2174 period
changes for the considered TCP connections.

Regarding the results of our matching analysis between CPs
and PCs, as shown in Table I, we observe that the share of
matched change points increases with increasing penalties. At
the same time, the absolute number of matched CPs decreases,
such as the total number of detected CPs. In contrast, the share
of matched period changes increases with decreasing penalty.
This pattern can be explained by fewer change points for
larger penalties and more change points for smaller penalties.
For changes detected by Bin. Seg. and a penalty of 107 we
observe a CP share of 56 %, i.e., a period change can explain
56 % of estimated change points. However, at the same time,
the mentioned CPD configuration only has a PC share of
12.3 %. This indicates that over 85 % of period changes are
not matched by a change point. With Bott. Up segmentation
and a penalty of 104, we observe a PC share of over 40 %,
respectively 54.9 % for a penalty of 10. Such large PC shares
can be explained by a larger number of detected change
points, also implying large numbers of unmatched changes.
We conclude that the penalty value can be used to either
increase the CP share at the cost of a worse PC share or vice
versa. An exemplary analysis of measured shares for Bottom
Up segmentation reveals that nearly 40 % of flows show an PC
share equal to 1 with a penalty value of 10. At the same time
CP shares for the same penalty show large shares of unmatched
change points. Contrary to such observation, a penalty value
of 107 results in significantly larger CP shares than PC shares.
This implies a trade-off between increasing CP and PC shares
depending on the penalty value.

VII. RELATED WORK

The application of change point detection in network traffic
analysis has been studied before. For example, change point
detection is considered to detect anomalies and network intru-
sion in real-time with a focus on efficient and fast detection
of changes in traffic parameters, as for instance caused by
denial of service attacks [21]–[23]. Besides its application to
anomaly detection, change point detection has been considered

to optimize TCP congestion control in combination with the
application of deep learning by Li et al. [24].

Next to different applications of change point detection
our work is closely related to the field of TCP throughput
limitation analysis, also referred to as TCP root cause anal-
ysis. Starting with Zhang et al. [10], researchers presented
different approaches to detect different limitations of TCP
throughput [1], [7]–[9]. While we evaluated the classification
of throughput changes with transfer period changes, further
throughput limitations could be considered for the classifica-
tion of further changes. Thereby, changes occurring during
bulk transfer periods are of major interest as the question arises
whether the root cause of throughput limitation changes when
significant changes in throughput are observed. In previous
research, we introduced an approach to the online monitoring
of TCP throughput limitations [26], [27] which also could be
complemented with online change point detection in future
work.

VIII. CONCLUSION

This paper introduces an approach to classify TCP through-
put changes with TCP transfer periods. We evaluate change
point detection methods against ground truth data and con-
duct measurements on captured Internet traffic. We find that,
depending on the change point detection configuration, over
50 % of detected changes can be matched to a change between
transfer periods. High rates of matching change points coincide
with low shares of matched period changes, i.e., not all period
changes can be matched to an estimated change of throughput.
Our measurements also reveal large numbers of unmatched
change points that mainly occur during bulk transfers.

Our observations motivate further studies on the coin-
cides between throughput changes and transfer periods, like
the optimization of CPD configuration. Throughput changes
within bulk transfers are considered to be of interest for
further analysis regarding their coincide with changes in
the throughput limitation of a connection. Such refinement
requires the extension of our approach with further concepts
from throughput limitation analysis.

ACKNOWLEDGMENTS

This work was supported in part by the German Research
Foundation, project ModANet (CA595/11-1) and by the Ger-
man Federal Ministry of Education and Research, projects
PRIMEnet and 6G-live.

REFERENCES

[1] M. Siekkinen, G. Urvoy-Keller, and E. W. Biersack, “On the interaction
between internet applications and tcp,” in Proceedings of the 20th
International Teletraffic Conference on Managing Traffic Performance in
Converged Networks, ITC20’07, (Berlin, Heidelberg), Springer-Verlag,
2007.

[2] E. Blanton, D. V. Paxson, and M. Allman, “TCP Congestion Control.”
RFC 5681, Sept. 2009.

[3] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm.” RFC 6582, Apr. 2012.

[4] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp. 64–
74, 2008.

[5] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a Deeper Understanding of TCP BBR Congestion
Control,” in IFIP Networking 2018, (Zurich, Switzerland), May 2018.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: congestion-based congestion control,” Communications of the
ACM, vol. 60, no. 2, pp. 58–66, 2017.

[7] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and D. Collange, “A
root cause analysis toolkit for tcp,” Comput. Netw., vol. 52, June 2008.

[8] M. Timmer, P.-T. de Boer, and A. Pras, “How to identify the speed
limiting factor of a tcp flow,” in 2006 4th IEEE/IFIP Workshop on End-
to-End Monitoring Techniques and Services, pp. 17–24, IEEE, 2006.

[9] A. Bak, P. Gajowniczek, and M. Zagozdzon, “Measurement methodol-
ogy of tcp performance bottlenecks,” in 2015 Federated Conference on
Computer Science and Information Systems (FedCSIS), pp. 1149–1156,
IEEE, 2015.

[10] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the character-
istics and origins of internet flow rates,” in Proceedings of the 2002
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’02, (New York, NY, USA),
pp. 309–322, ACM, 2002.

[11] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Processing, vol. 167, p. 107299, 2020.

[12] “google/gopacket: Provides packet processing capabilities for go.”
[13] C. Truong, L. Oudre, and N. Vayatis, “ruptures: change point detection

in python,” arXiv preprint arXiv:1801.00826, 2018.
[14] B. Jaeger, D. Scholz, D. Raumer, F. Geyer, and G. Carle, “Reproducible

Measurements of TCP BBR Congestion Control,” Computer Communi-
cations, vol. 144, pp. 31–43, May 2019.

[15] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International Conference on Commu-
nication, Computing & Systems (ICCCS), pp. 139–42, 2014.

[16] J. Bai, “Least absolute deviation estimation of a shift,” Econometric
Theory, vol. 11, no. 3, pp. 403–436, 1995.

[17] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of
changepoints with a linear computational cost,” Journal of the American
Statistical Association, vol. 107, no. 500, pp. 1590–1598, 2012.

[18] P. Fryzlewicz, “Wild binary segmentation for multiple change-point
detection,” The Annals of Statistics, vol. 42, no. 6, pp. 2243–2281, 2014.

[19] P. Fryzlewicz, “Unbalanced haar technique for nonparametric function
estimation,” Journal of the American Statistical Association, vol. 102,
no. 480, pp. 1318–1327, 2007.

[20] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the wide
project,” USENIX 2000 FREENIX Track, USENIX, 2000.

[21] A. G. Tartakovsky, A. S. Polunchenko, and G. Sokolov, “Efficient com-
puter network anomaly detection by changepoint detection methods,”
IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 1,
pp. 4–11, 2012.

[22] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blazek, and H. Kim, “A novel
approach to detection of intrusions in computer networks via adaptive
sequential and batch-sequential change-point detection methods,” IEEE
transactions on signal processing, vol. 54, no. 9, pp. 3372–3382, 2006.

[23] M. Alkasassbeh, “A novel hybrid method for network anomaly detection
based on traffic prediction and change point detection,” arXiv preprint
arXiv:1801.05309, 2018.

[24] W. Li, S. Gao, X. Li, Y. Xu, and S. Lu, “Tcp-neuroc: Neural adaptive
tcp congestion control with online changepoint detection,” IEEE Journal
on Selected Areas in Communications, 2021.

[25] T. Iwata, K. Nakamura, Y. Tokusashi, and H. Matsutani, “Accelerating
online change-point detection algorithm using 10 gbe fpga nic,” in

European Conference on Parallel Processing, pp. 506–517, Springer,
2018.

[26] S. Bauer, K. Holzinger, B. Jaeger, P. Emmerich, and G. Carle, “On-
line monitoring of tcp throughput limitations,” in NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium, pp. 1–9,
IEEE, 2020.

[27] S. Bauer, F. Wiedner, B. Jaeger, P. Emmerich, and G. Carle, “Scalable
tcp throughput limitation monitoring,” in 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 410–416,
IEEE, 2021.

