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Abstract—Monitoring and optimizing network per-
formance is essential for data center operators and
service providers. To better understand network per-
formance, the throughput limiting factor of TCP con-
nections can be analyzed. Previous research introduces
approaches for the offline analysis of root causes of TCP
throughput based on previously captured traffic. With
increasing computational power and packet processing
capabilities on commodity hardware, previously exist-
ing analysis limitations get overcome nowadays.
This paper presents a scalable tool to analyze the

throughput limitation of TCP flows in real-time, i.e.,
while the tool observes traffic on a network inter-
face. We describe the adaption of existing approaches
for TCP throughput limitation analysis and required
passive capacity estimation to satisfy online analysis
requirements.
We evaluate the effectiveness and accuracy of our

implementation with a generated data set for differ-
ent TCP congestion control algorithms and varying
network parameters. Furthermore, we survey the per-
formance of our implementation with thousands of
concurrent flows and discuss trade-offs and limitations
of such sophisticated analysis in real-time.
We provide our code as free and open-source.
Index Terms—Traffic monitoring, TCP, throughput,

root cause analysis

I. Introduction
Providing reliable and fast data transmission is a pri-

mary interest of service providers and data center oper-
ators. The performance of network traffic often relates
to the performance of the Layer 4 protocol TCP, which
provides reliable data transmission to higher layers and
their applications. When talking about TCP performance,
throughput, also referred to as data rate, is of primary
interest.

As higher throughput indicates faster data transmission
and therefore influences user experience, it is essential to
understand the causes behind achieved data rates. Under-
standing and analyzing such causes allows optimizations
of network infrastructure, operating systems, and applica-
tions and helps to detect network incidents or anomalies.

Especially the latter one motivates to perform the anal-
ysis of throughput limitations online, i.e., during traffic
is observed. The causes behind TCP throughput were
studied in previous research and referred to as TCP root
cause analysis (RCA). Siekkinen et al. [1] introduce a
TCP RCA toolkit that estimates the reason behind a

network limited data transfer. While such toolkit relies
on full traffic captures of network traffic, it is limited
to offline analysis. This paper closes the gap between
sophisticated offline analysis of TCP characteristics and
online monitoring of such characteristics.
We contribute a scalable tool to run TCP RCA in online.

The tool is capable of analyzing hundreds of Mbit/s on
commodity off-the-shelf (COTS) hardware. We describe
modifications of the TCP RCA algorithm presented by
Siekkinen et al. [1], [2] concerning online analysis. Fur-
thermore, we survey design decisions and trade-offs of our
implementation and evaluate the effectiveness, accuracy,
and performance of our implementation with a generated
data set. Our tool is available as free and open-source.
The remainder of this paper covers the following:

First, we provide background knowledge regarding TCP
throughput and previous research on the before-mentioned
TCP RCA toolkit. Next, we describe the design and
implementation of our tool. Further, we describe our test
setup and data set generation before evaluating our tool.
We conclude with determined trade-offs of our approach.

II. Background

In this section, we provide background knowledge re-
garding TCP throughput, TCP congestion control algo-
rithms, the potential limitations of TCP throughput, and
the analysis of such limitations.

A. TCP Throughput and Congestion Control
The transmission control protocol (TCP), as originally

specified in RFC 793 [3], provides reliable data transfer
in unreliable network environments. TCP takes care of
retransmitting data in case of packet loss or packet dam-
age. Packet loss is detected by the absence of an expected
acknowledgment packet or by repeating acknowledgments
for previous packets.
TCP uses a window field to enable the receiving end-

point to limit the sending rate of the sender, if necessary.
The sender is not allowed to send more unacknowledged
data than the size of the receiver advertised window. As
the receiver window field is limited to 65535B by its length
of 16 bit, a window scaling option can be used to increase
the receiver window up to 1GB [4].
TCP congestion control is purposed to optimize the
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should converge to the available bandwidth of the bottle-
neck link of the path of a connection. Different algorithms
exist to determine an optimal congestion window size as
close as possible. While algorithms differ significantly in
details, congestion control is typically based on different
phases which define the increase or decrease of the con-
gestion window. Indicators for these increases or decreases
are connection characteristics like packet loss or the round
trip time (RTT). We consider the congestion algorithms
Reno [5], CUBIC [6], and BBR [7] as the most wide-spread
and relevant approaches.

B. TCP Throughput Limitation Analysis

While TCP tries to maximize a connection’s through-
put up to the available bandwidth, different factors can
limit throughput. Siekkinen et al. [1], [2] surveyed TCP
throughput and its limitations in details.

Authors differ between two types of limitations: appli-
cation limitation and network limitation. Next to applica-
tion limited periods (ALPs), Siekkinnen et al. introduce
bulk transfer periods (BTPs) and short transfer periods
(STPs). STPs are defined as transfer periods with less
than 130 packets which are not application-limited. To
determine the network limiting factor of a BTP, authors
introduce a decision tree. The decision tree differs between
four different root causes: unshared and shared bottleneck
links, the advertised receiver window, and the transport
layer itself.

Unshared and shared bottlenecks imply that the
throughput of a connection cannot be increased due to the
limited capacity of a network link. This bottleneck link is
either fully utilized by a single flow (unshared bottleneck)
or the bottleneck link is shared by several concurrent flows
that fully saturate the link (shared bottleneck). A flow is
referred to as receiver limited, if the receiver advertised
window prevents the sender to send out more packets while
no other limitation prevents the increase of throughput.
The transport layer limitation relates to TCP’s congestion
avoidance (CA). CA may limits throughput when the
sender cannot fully exploit the receiver advertised window,
while no limitation by the network path occurs. Figure 1
shows an illustration of the decision tree introduced by
Siekkinen et al. [1]. So-called limitation scores indicate the
described root causes.

The scores used to estimate a root cause are deducted
as follows: The dispersion score indicates whether an
unshared bottleneck limits a flow. Such indication is done
by analyzing the ratio between achieved throughput and
maximum physical bandwidth on the whole path. Here-
after, we refer to the maximum physical bandwidth of a
network path as the capacity of the path.

The retransmission score compares the amount of re-
transmitted data to the amount of total transmitted data.
A high frequency of retransmitted data indicates an over-
loaded shared bottleneck link. As packets get dropped
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Fig. 1. Decision tree for TCP throughput limitations according to
Siekkinen et al. [1].

at the bottleneck due to overload and therefore require
retransmissions.
The receiver advertised window score analyzes whether

the receiver advertised window allows the sender to send
more data without acknowledgments or not. In the sec-
ond case, the receiver advertised window prevents higher
throughput.
The burstiness score or b-score, is purposed to filter out

connections, that are limited by a shared bottleneck but do
not suffer from packet loss. Shared bottleneck links with
large buffers can cause such observation. Large buffers
avoid packet drops and therefore avoid retransmissions.
Siekkinen et al. limit the scope of their RCA toolkit to

long-lived TCP connections, e.g., connections that trans-
mit around 100KB - 150KB. An additional requirement of
the tool is FIFO queuing at all passed routers, as required
for the used passive capacity estimation approach. The
passive capacity estimation of the original toolkit is based
on the PPrate algorithm introduced by En-Najjary et
al. [8] which works on packet dispersion.

III. Design and Architecture for Online
Analysis

To implement our online throughput limitation analysis
tool, we build on the network capture tool FlowScope due
to its efficient packet processing capabilities. FlowScope
uses the Data Plane Development Kit (DPDK) for packet
I/O and is highly scalable. Benchmarks show FlowScope’s
capabilities to process over a million flows concurrently,
and to achieve high analysis rates, up to 100Gbit/s [9],
[10].
FlowScope uses a hashtable indexed with flowkeys to

keep track of flows and to store flow specific information.
Dynamically re-sizing of hashtable entries is too expensive
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Fig. 2. Illustration of processing steps and connection state handling.

for online analysis. Therefore, we decide to use static
hashtable entry sizes. While this avoids expensive resizing,
the state possibly stored for each flow gets limited.

As we require both directions of a flow for our analysis,
we rely on bidirectional flow tracking. We do this based
on the flowkey. We calculate the flowkey as a hash
of a sorted connection identifier, based on the source
and destination addresses, respectively ports. To keep the
association of the sender, respectively the receiver, to the
corresponding IP address, we store such information in the
connection state of each flow.

As mentioned above, we decide to use a fixed connection
state size. Therefore, we have to choose a sufficiently
large hashtable entry size to provide enough space for
different data collected over time, that is required for the
analysis. We choose a connection state size of 156KB.
Tests show that this size is sufficiently large, while memory
requirements are not too extensive. I.e., a connection state
size of 156KB implies an approximated memory need
of 160GB for 1 million concurrent flows. This relation
seems reasonable considering modern commodity-off-the-
shelf (COTS) hardware.

We split analysis tasks in different modules to provide
flexibility and maintainability. In order to achieve bet-
ter performance, we decide to separate the purpose of
each module in two steps: First, we extract features of
newly arrived packets and store them in the connection
state. Feature extraction is done by a handlePacket()
function each module provides. Second, a periodically
called function calculates the final results of a particular
module based on the previously stored data. This step
is implemented in the checkExpiry() function of each
module. In the following, we refer to a call of this function
as the periodical calculation step. As a default, we set the
interval between calculation steps to one second.

We orchestrate and call the different modules in the
main module. I.e., the main module invokes packet han-

dling by the other modules, runs the calculation steps,
and collects return values. The main module enables to
configure the execution order of the analysis modules and
the frequency of their calculations. The different modules
and their purpose are described in details in Section IV.
A further design decision is the use of the available

connection state. In contrast to the original offline imple-
mentation of the TCP RCA toolkit, we only have limited
capabilities to store data per analyzed flow. We use the
connection state as a ring buffer to handle overrunning
connection states. The ring buffer enables us to maintain
a sliding window of currently considered data that was
previously extracted per packet.
Figure 2 shows the mentioned processing steps and

their interplay with the connection state. As illustrated,
data in the connection state can be used several times
by different calculation steps, depending on the rate of
arriving packets.

IV. Implementation of Analysis Modules
In this section, we describe the implementation and

functionality of the single analysis modules. In total,
the tool consists of 10 different modules, including the
aforementioned main module.

a) Handling Connection Establishments: We assume
that the first packet of a connection is a TCP SYN packet
from the client to the server. If the first observed packet of
a connection is not an SYN packet, we ignore the flow for
further analysis. During the TCP Three-Way Handshake,
the module extracts the maximum segment size (MSS) and
the TCP window scaling options for both directions.

b) Position Estimation: To estimate the measure-
ment point’s position on the network path of a connection,
we observe time intervals during the Three-Way Hand-
shake. I.e., the module analyses the relation of the time
interval between the initial SYN packet and the correspond-
ing SYN + ACK packet and the time interval between the
SYN + ACK packet and the following ACK packet. These
time intervals are referred to as δt2 respectively δt1 in
Figure 3. We calculate the measurement position by δt2

δt1
The position estimation is purposed to decide whether

it is necessary to shift certain packet timestamps or not.
Shifting might be required for the time-series of receiver
advertised windows and outstanding bytes. Shifting is not
applied if we measure traffic near the sender, in our ter-
minology the server, but for receiver-side measurements.
Based on δt2 and δt1 the shifting value is determined by
δt2
δt1

· RTT2
c) ALP Detection: If a packet belongs to an ALP, it is

ignored for further network limitation analysis. We detect
ALPs according to the approach proposed by Siekkinen et
al. [2]. I.e., we determine the current period as application
limited if we observe an idle time larger than RTT

2 or a
too-high share of packets smaller than the MSS. An ALP
ends, if we observe three consecutive packets with a size
equal to the MSS. Our tool keeps track of ALPs by labeling
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Fig. 3. Position and RTT estimation during the Three-Way Hand-
shake.

a packet received during an ALP and calculates the share
of ALPs of the whole flow. While isolating ALPs from
BTPs is feasible, merging of BTPs separated by small
ALPs as described by Siekkinen et al. [2] cannot be done
online. Merging such periods requires the whole history of
a flow, a requirement we cannot guarantee due to limited
connection state.

d) RTT Estimation: We estimate the current RTT
with the TCP timestamp option. TCP timestamps are
widely spread nowadays and allow to estimate RTTs
straightforward. The RTT estimation module stores the
TCP timestamp value (TSval) and TCP timestamp echo
reply value (TSecr) for each packet. During the periodical
calculations, the estimation module takes the latest packet
whose TSval value can be matched to the TSecr value
of an already observed packet. The time interval between
these both packets is referred to as δt1, as shown in
Figure 3. Next, the tool takes the TSecr value of the first
packet and matches it to the packet with the corresponding
TSval value. We refer to this time interval as δt2 and
estimate the RTT as δt1 + δt2.

e) Capacity Estimation: The capacity estimation
module is based on the PPrate algorithm published by En-
Najjary et al. [8]. The module can estimate the capacity
for both directions of the connection based on the stream
of data packets or based on the stream of ACK packets.
The better-suited method depends on the measurement
position.

After choosing the estimation method, we calculate
capacity samples for each received packet based on packet
size and the inter-arrival times of packets. Capacity sam-
ples get stored in the connection state.

During the periodical calculations, the module performs
statistical analysis of the before calculated capacity sam-

ples.
We filter and process the stored capacity samples ac-

cording to the PPrate algorithm. The algorithm requires
to estimate capacity by the strongest and narrowest mode
higher than the so-called asymptotic dispersion rate, which
is derived during statistical processing. As the determina-
tion of the strongest and narrowest mode is not further
defined, we use an own function to find the strongest
and narrowest mode. The function determines the correct
mode based on mode significance and the count of samples
next to the actual mode.
To avoid unreliable estimates, the module only considers

flows for which more than a configurable count of packets
have been observed. The corresponding sliding window size
can be configured. The sliding window size parameter is
purposed to limit the possible input size for the further
calculations. This is motivated by performance considera-
tions and is not expected to impact accuracy, as the sliding
window is configured to consider a sufficient number of
packets.

f) Dispersion Score: The dispersion score is calcu-
lated by the ratio between the average throughput of a
bulk transfer and the capacity of the connection path. The
ratio then is subtracted from 1. The average throughput is
calculated based on the last n packets of the connection,
while the sliding window size n can be configured.

g) Retransmission Score: The purpose of the retrans-
mission score is to detect shared bottlenecks due to a high
share of retransmitted data packets. The score calculates
the relation between retransmitted data and the trans-
mitted data in total. We identify retransmitted packets
by observing sequence numbers. If we observe a sequence
number smaller or equal to the highest sequence number
observed previously, we classify a packet as a retransmit.
During the periodical calculation step, we sum up the

observed data and calculate the final retransmission score.
h) Receiver Window Score: The receiver window

score requires time series data of the receiver advertised
window and of the number of outstanding bytes.As men-
tioned above, time-series data might requires to be shifted
depending on the position of the measurement point. For
each packet we shift timestamps and keep track of the
highest seen ACK and SEQ number as time-series. Based on
both time-series we periodically calculate the number of
outstanding bytes. If the difference between the receiver
advertised window and the number of outstanding bytes
is larger than three times the MSS, the module appends
a 1 to a boolean vector. Otherwise, the module appends a
0. Finally, the receiver window score is the average of all
vector elements in the sliding window.

i) Burstiness Score: In contrast to the original RCA
toolkit [1], we decide to use the burstiness score and
not the proposed b-score. This decision is reasonable, as
our framework always keeps track of the current RTT
and capacity. As all necessary per-packet data is already
extracted by other modules, we can directly calculate
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the burstiness score during the periodic calculations. The
needed average of the receiver advertised window size is
determined during the periodic step, too.

V. Evaluation
For the evaluation of our tool we consider two aspects:

the effectiveness of the implemented modules and overall
performance. First, we describe the generation of our test
data in Section V-A. Afterwards we evaluate effectiveness
in Section V-B and performance in Section V-C

A. Test Setup and Test Data Sets
We generate test data sets with the measurement frame-

work introduced by Jaeger et al. [11] based on the network
emulation tool Mininet [12]. The measurement framework
allows to configure setups with various parameters, like
bandwidth, TCP algorithm, packet delays, or loss rate.

We use a basic topology consisting of several sending
nodes, representing the clients, and a receiver node, rep-
resenting the server. As the framework generates TCP
traffic with iperf3, the client corresponds to the sender in
this setup. Senders are connected to the receiver via two
switches that are interconnected with a link. Both switches
serve as capturing points. This enables us to capture traffic
on both sides of the bottleneck link. Figure 4 illustrates
this basic setup.

Generated PCAPs are then replayed with the packet
generator MoonGen [13] between two physical hosts. This
setup, as illustrated in Figure 5, is similar to a monitoring
host that listens on mirror link.

For the evaluation of the accuracy of implemented ca-
pacity estimation module, we consider different test cases.

We survey the estimation accuracy for the considered
TCP congestion algorithms Reno, CUBIC, and BBR.
Additionally, we are interested in the impact of packet
loss on the estimation accuracy. Therefore, we generate
flows suffering under different probabilities of packet loss

at the bottleneck link. To study accuracy for different
bottleneck capacities, we generate PCAPs with different
bottleneck capacities. To inspect the impact of several
concurrent flows sharing the bottleneck link, we produce a
set of PCAPs with an increasing number of concurrently
established TCP connections.
Table I summarizes all configurations of the measure-

ment framework for different test cases. By default, we
configure a capacity of 10Mbit/s. For each configuration
we produce 10 PCAPs.
To evaluate the effectiveness of the implemented limita-

tion scores we generate traffic consisting of a bulk transfer
limited by a specific root cause. We vary parameters like
congestion control algorithm, and round trip time for each
root cause. Bottleneck capacity is set to 10Mbit/s. In
total, we generate 360 test PCAPs for each of the four
root causes.
To capture flows limited by an unshared bottleneck,

we establish a single TCP connection. The only limiting
factor is the limited capacity of the bottleneck link. For
shared bottleneck limited traffic, we extend the setup
of unshared bottlenecks by an additionally established
connection. This way, two flows limit each other on the
shared bottleneck link. To reproduce receiver window
limited flows, we disable the TCP receiver window scaling
option in the Linux kernel of the receiving host before
establishing the connection. To capture congestion window
limited data transfer, we establish connections that are
terminated after 1 second. For such short connections we
expect the TCP slow start to mainly limit throughput.
To evaluate performance, we generate PCAPs with

varying number of concurrent flows. As the measurement
framework is not purposed for high numbers of concurrent
flows with high bandwidth, we generate traffic between
two physical servers. Several iperf3 servers are started in
parallel and respond to several clients on different ports.

B. Evaluation of Module Effectiveness
This section presents results of measurements of the

implemented capacity estimation module and the modules
responsible for score calculation.

a) Capacity Estimation: We evaluate the accuracy of
the passive capacity estimation for different tests cases as
described in Section V-A. To assess accuracy, we define
different thresholds for the relative error of a capacity
estimate. Measurements show that the results for both
methods are quite stable. Results captured on switch S2
are estimated with the data packet-based method. For
captures received from switch S1 we apply the ACK-based
method.
Our analysis shows that for the most test cases less than

50% of all estimates satisfy an accuracy threshold of 3%.
For an relative error acceptance of 5% accuracy increases
significantly for measurements with different congestion
control algorithms and several concurrent flows. We find
that there is no significant impact by the TCP algorithm



TABLE I
Results of the evaluation of the capacity estimation module for different accuracy thresholds.

Data packet-based ACK-based Both methods
Test Case Varied Values Error < 3% < 5% < 10% Error < 3% < 5% < 10% Error < 50%

Cubic only - 32% 96% 99% 28% 98% 100% 100%
TCP Cong. Control Reno, CUBIC, BBR 66% 97% 97% 73% 90% 93% 100%
Packet Loss 0% - 25% 48% 73% 78% 47% 71% 77% 78%
Concurrent Flows 1 - 25 37% 95% 98% 36% 95% 98% 98%
Capacity 5Mbit/s - 100Mbit/s 48% 59% 70% 47% 68% 81% 90%

on the accuracy, while TCP CUBIC results in even higher
accuracy.

As expected, the accuracy of estimates decreases with
increasing packet loss. Results’ correctness drops signif-
icantly for probes suffering from loss higher than 2%.
However, such high loss rates are expected to have a heavy
impact on network communication and should not occur
in real-life networks.

Furthermore, we find that our implementation results
in less accurate estimates with increasing bottleneck ca-
pacity. While we observe an accuracy near 100% for
bandwidths between 5Mbit/s and 30Mbit/s, we only
observe an accuracy about 60% for bandwidths between
5Mbit/s and 100Mbit/s with an error tolerance of 5%.
Further analysis and debugging is required to understand
the causes of such higher deviations.

Table I shows a summary of the results for all different
test cases and different error tolerances. The table shows
the share of estimates that satisfy a certain accuracy
threshold for all test cases and both estimation methods,
i.e., data packet-based and ACK-based.

b) Score Calculation: Regarding the effectiveness of
the tool’s limitation score modules, we study the cumu-
lative distribution functions (CDF) for each score for the
different test cases. We expect that scores allow separating
the different root causes. For each test run we get several
score values due to several periodical calculations. We
calculate the CDF with the averages of all received score
values of a single test run.

For the dispersion score, we expect scores of unshared
bottlenecks to be significantly smaller compared to others.
Figure 6 shows the cumulative distribution function of
the dispersion score calculated for all test cases. Nearly
80% of flows limited by an unshared bottleneck result in a
dispersion score of less than 0.1, while the scores calculated
for other test cases have a significant share of higher
dispersion scores. As we calculate the dispersion score by
1 − throughput

capacity , negative score values are unexpected. Such
values can be traced back on underestimated capacities.

After filtering unshared bottlenecks due to the disper-
sion score, the classification scheme uses the retransmis-
sion score to separate limitations by shared bottlenecks
from receiver window or transport layer limitations. We
expect the retransmission score of receiver window or
transport layer limited flows to be significantly smaller,
as shared bottlenecks cause retransmissions of packets

dropped at the shared bottleneck link. Figure 6 shows
the retransmission score of the mentioned test cases. We
can differ receiver window limited flows from others, while
transport layer-limited flows show similar retransmission
scores as shared bottleneck limitations. This observation
is caused by our test data. We generate transport layer
limited flows by capturing flows during the TCP slow start
phase, which also suffers under packet loss and, therefore
includes retransmissions.
The receiver window score is purposed to separate flows

that tend to be receiver limited from flows that are limited
by the transport layer. Figure 6 shows the distribution of
calculated receiver window scores for both of the corre-
sponding data sets. The receiver score recognizes receiver
window limited flows due to high values. The scores cal-
culated for shared bottleneck and transport layer limited
flows are mostly zero.
The RCA classification scheme considers that there

are cases of shared bottleneck limitations that show high
receiver window scores. This situation might be the case if
a packet passes larger buffers that delay the transmission
of outstanding bytes. However, as our data set does not
consider such a scenario, the receiver window limitation
scores for shared bottlenecks are quite small.
The burstiness score is purposed to filter receiver win-

dow limitations from shared bottlenecks. CDFs for both
limitations differ significantly as shown in Figure 6 and
allow separating both cases from each other.

c) Summary: Our implementation of the passive ca-
pacity estimation module works sufficiently accurate for
most test cases. An artifact to mitigate is the increasing
relative error for higher capacities. However, the inaccu-
racy of the capacity estimation did not affect the evalua-
tion of the implemented limitation scores significantly, as
measurements of score modules are done with a capacity
of 10Mbit/s.
The results of the limitation score modules satisfy our

expectations regarding the correlations between the la-
beled root cause of test case and the calculated score
values. Except the inaccurate test cases for transport
layer limited flows due to retransmissions during the slow
start phase, we did not observe unexpected scores. The
plotted distributions show the variance of our generated
test cases and indicate potential threshold values required
to determine the actual throughput limiting factor of a
flow.
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C. Performance Measurements
We evaluate the performance of our implementation

to assess its scalability and to determine performance
bottlenecks. The used Device under Test (DuT) runs an
Intel Xeon CPU E5-2620 processor with 2.00GHz clock
rate and possesses 128GiB memory. Traffic is generated
as described in Section V-A. We replay the captures at a
rate of 2Gbit/s to overload the DuT. We only run a single
analyzer thread, i.e., the analysis is done on a single core.

According to our design, we try to do as few calculations
as possible on a per-packet base and to offload such
expensive calculations to the periodical calculation checks.
This circumstance motivates to optimize the performance
of single modules and to analyze the costs of each module.

We measure the run time of the periodical calculations
for all different modules with a single flow. As shown in
Table II, most modules take less or around 20 ns. However,
three modules consume significantly more run-time - es-
pecially the capacity estimation module with over 15ms,
and the dispersion score calculation with over 2.5ms. The
calculation of the dispersion score requires to work on
time-series data for the receiver advertised window and
the number of outstanding bytes. Working on time-series
data probably causes expensive lookups.

The long run time of the capacity estimation can be
traced back to expensive operations like the differentiation
of histograms and operations on a sliding window of
previously observed data. The module was configured to
work on a sliding window of 1000 packets.

Such a long run time of single modules can cause a
limitation regarding the number of concurrently processed
flows. Assuming a load of 70 flows and a capacity esti-
mation module runtime of up to 15ms, might result in a
run time of over one second for a single calculation run.
Therefore, the periodical calculations would be too slow for
an interval of one second. While this might be mitigated
by increasing the time between check intervals, it is still a
trade-off between scalability and analysis effectiveness.
Another potential performance limitation of our analy-

sis tool is the analyzer throughput. To avoid influences by
too extensive run times, we disable the capacity estimation
module for the benchmarking of the analyzer throughput.
We start measuring analyzer throughput for a single flow
and achieve a data rate of 620Mbit/s.
In further measurements, we analyze the impact of

the number of concurrently analyzed flows and increase
the number of current flows up to 4096. Figure 7 shows
the analyzer throughput and the aggregated run time of
all modules. For up to 32 concurrent flows throughput
decreases continuously. Afterward, throughput decreases
significantly for the next increments of the flow count. We
trace this observation back to the Last Level Cache (LLC)
of the CPU. Significant performance decrease occurs when
the aggregated size of all connection states approaches the
size of the LLC. When the LLC is full, connection states
have to be loaded from main memory, what makes packet
analysis more expensive. In our measurements, the effect
of the LLC is observed between a number of 32 and 64



TABLE II
List of included modules and the runtime of one periodical

calculation.

Module Runtime

Connection identification 21 µs
ALP detection 6 µs
Position estimation 2 µs
RTT estimation 9 µs
Capacity estimation 15167 µs
Dispersion score calculation 94 µs
Retransmission score calculation 13 µs
Receiver window score calculation 2536 µs
Burstiness score calculation 21 µs
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Fig. 7. Analyzer throughput and aggregated run time of periodical
calculations.

flows. This matches our assumption, as 64 flows have an
aggregated connection state size of about 11MB with the
used connection state size of 156KB. The DuT has an
LLC size of 12MB. After the drop due to the filled LLC,
throughput remains constant for increasing flow counts.
As expected, the aggregated module run time increases
linearly with the number of concurrent flows.

VI. Related Work
As already mentioned, this work is highly related to the

TCP RCA toolkit proposed by Siekkinen et al. [1], [2].
In this paper, we present an approach to perform the de-
scribed root cause analysis in real-time. While Siekkinen et
al. focus on long-lived TCP connections, further research
surveyed the performance of shorter TCP connections, like
Barakat et al. [14] and Zhang et al. [15]. Such approaches
might extend the capabilities of our online RCA tool in
future work. An analysis of flow rates on the Internet is
introduced by Zhang et al. [16] in 2002. One outcome
of this research is the TCP rate analysis tool T-RAT
purposed to determine the cause behind observed flow
rates.

However, the analysis of TCP flows and their perfor-
mance, in general, are a frequently studied topic. Bak et
al. [17] introduce a root cause analysis approach consid-
ering root causes like packet loss, anomalies, or network
limited throughput. A review of bottlenecks in content
delivery networks was published by Peng et al. [18] who
introduce a tool to monitor and analyze TCP statistics.

Similar work was done by Jaiswal et al. [19] who analyzed
TCP characteristics based on congestion window sizes and
RTT. Hagos et al. [20], [21] recently studied the field
of TCP state monitoring and prediction with the help
of machine learning. The impact of BBR on loss-based
congestion control algorithm was recently surveyed by
Ware et al. [22].
For the implementation of our passive capacity estima-

tion tool, we mainly follow the algorithm from the PPrate
tool published by En-Najjary et al [8]. PPrate relies on
the packet dispersion technique. Further research studied
capacity estimation based on packet dispersion. For exam-
ple, Katti et al. [23] presented the capacity estimation and
bottleneck detection tool Multiq and Dovrolis et al. [24]
survey packet dispersion techniques in more details.

VII. Conclusion and Future Work

In this paper, we describe an implementation of TCP
throughput limitation analysis in real-time and survey
design decisions for such sophisticated online traffic anal-
ysis. We adapt existing approaches for online analysis
requirements and evaluate our implementation regarding
effectiveness and performance. Our evaluation shows, that
online throughput limitation analysis is feasible in real-
time with reasonable performance on commodity hard-
ware, i.e., with a rate of over 350Mbit/s for 4096 parallel
flows on a single analyzer core.
We find several trade-offs between the accuracy and

responsiveness of the tool and performance. The analysis
of sliding windows requires long analysis run times, while
run time is limited due to periodical calculations. Our
analysis shows, that memory concerns are not crucial for
modern commodity hardware. Our tool requires approx-
imately 160GB memory for one million concurrent flows
with a connection state size of 156KB. This justifies fixed
state size per flow, which is reasonable to avoid expensive
resizing of hash table entries.
For future work, we plan the parallelization of our

tool across several CPU cores. Such parallelization is
expected to enable an analysis of 10Gbit/s links on COTS
hardware. Additionally, the optimization of the capacity
estimation module regarding larger capacities and meth-
ods to automatically derive reasonable thresholds for the
limitation factor classification are considered for further
research.
We provide our code as free and open-source [25].
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