
Scalable TCP Throughput Limitation Monitoring
Simon Bauer, Florian Wiedner, Benedikt Jaeger, Paul Emmerich, Georg Carle

Technical University of Munich (TUM), Department of Informatics
Chair for Network Architectures and Services, Garching b. München, Germany

{bauer, wiedner, jaeger, emmericp, carle}@net.in.tum.de

Abstract—The analysis of TCP throughput limitations is pur-
posed to determine the limitation preventing a TCP connection
to increase its throughput. Monitoring throughput limitations
of TCP connections enables detecting network misconfiguration,
overload, and other anomalies while connections are still active
in the monitored network. Therefore, TCP throughput limitation
monitoring enables reactions to such incidents in real-time to
improve per-flow and network-level performance.

This paper presents a multi-threaded TCP throughput limi-
tation monitoring framework providing scalability due to fully
parallelized analysis pipelines. We benchmark our framework’s
performance and use our implementation to conduct a case study
on real-world Internet traffic captured on 10 Gbit/s links.

Our framework shows to scale up linearly and to be capable
of monitoring workloads of several Gbit/s distributed on several
ten thousands of concurrent flows on commodity hardware. We
use a real-world Internet trace set including over 9 million TCP
flows to assess the share of flows suitable for our monitoring
approach, interpret distributions of measured limitation scores,
and estimate the throughput limitations of the analyzed TCP
connections.

Index Terms—TCP, throughput limitations, traffic monitoring,
high-performance

I. INTRODUCTION

The Transmission Control Protocol (TCP) is the dominant
transport layer protocol in use. Due to providing reliable data
transmission, TCP is the used Layer 4 protocol for many types
of network traffic like web applications or file transmission
protocols. This fact significantly increases interest in the
analysis of the throughput and the throughput limitation of
TCP flows. Analyzing TCP throughput limitations supports
revealing network entities’ misconfiguration, network debug-
ging, and other administrative tasks like network resource
planning. So far, previous studies introduced approaches to
determine the throughput limitation of TCP flows also referred
to as TCP root cause analysis [1]–[3]. These approaches expect
network traffic captures as input and, therefore, only allow the
offline analysis of captured traffic. In previous research [4] we
introduced an approach to make the online monitoring of TCP
throughput limitations feasible. We evaluated our implementa-
tion based on synthetically generated traffic in a controlled test
environment. Our proof of concept implementation showed
to be limited by computational resources restricting analysis
throughput to about 500 Mbit/s on commercial off-the-shelf
hardware.

In this paper, we survey the use of our approach to an-
alyze TCP throughput limitations in real-time in productive

environments considering traffic rates of several Gbit/s on
commodity hardware. We survey how to implement scalable
and productively usable TCP throughput limitation monitoring
and survey the performance limitations of such an implemen-
tation. Besides, we examine the question of what limits TCP
throughput in real-world Internet traffic.

We present a linearly scalable framework to monitor TCP
throughput limitations, that is capable of analyzing several
Gbit/s of TCP traffic consisting of millions of TCP flows in
real-time. Based on this framework, we conduct a case study
on real-world Internet traffic traces provided by the MAWI
Working Group Traffic Archive [5] and contribute a detailed
analysis of measurement results.

The remainder of this paper is structured as follows: First,
we briefly introduce background and terminology on offline
and online analysis of TCP throughput limitations. Next, we
describe the optimization of our framework regarding new
requirements for large-scale traffic monitoring. Afterward, we
evaluate the performance of our framework and present results
of measurements on real-world Internet traffic. We conclude
our work with an overview of related work and progress
in TCP performance analysis and high-performance network
monitoring.

II. BACKGROUND

This section introduces terminology and background knowl-
edge regarding approaches to determine TCP throughput lim-
itations and to monitor them in real-time.

A. Offline Analysis of TCP Throughput Limitations

In 2007 and 2008, Siekkinen et al. published approaches
to determine the limiting factor of the throughput of TCP
connections for captured traffic [2], [3]. The authors’ approach
considers two steps. The first step uses the Isolate and Merge
algorithm [2] to separate a flow into three types of periods.
Such periods are application limited periods (ALPs), short
transfer periods (STPs), and bulk transfer periods (BTPs). Dur-
ing ALPs, the throughput does not increase since not enough
data is ready to be transmitted. Periods containing less than
130 packets are referred to as STPs. They are not considered
for further analysis as they are assumed to be dominated by
congestion control algorithms [3]. For bulk transfer periods,
there are five different limitations of throughput: unshared
bottleneck links, shared bottleneck links, the TCP receiver
window, the transport protocol, i.e., TCP itself, or causes that
can not be clearly identified.978-3-903176-32-4 © 2021 IFIP



To differentiate between throughput limitations of bulk
transfer periods, Siekkinen et al. [3] introduce four limitation
scores to assess the impact of a potential root cause. These
scores are later used to determine the limiting factor of a
connection based on a decision tree that compares score values
to predefined threshold values.

The first limitation score is the dispersion score, which
compares the throughput of a flow to the capacity of the path of
the flow. The dispersion score is purposed to detect limitations
by an unshared bottleneck link. An unshared bottleneck link is
wholly utilized by a single flow and, therefore, limits further
throughput increase. The second score is the retransmission
score proposed to detect limitations by shared bottleneck
links. This score compares the amount of retransmitted data
to the amount of totally transmitted data for a certain bulk
transfer period. This way, the retransmission score determines
the impact of packets getting dropped at so-called shared
bottleneck links. Shared bottleneck links limit the throughput
of flows as they are thoroughly utilized by several concurrent
flows competing for available bandwidth. Next, Siekkinen et
al. introduce the receiver window score that estimates the data
that can be sent until the receiver window is wholly used and
prevents higher throughput rates. To detect shared bottleneck
links that do not cause retransmitted packets due to large
buffers that prevent packets from getting dropped, Siekkinen
et al. introduce the burstiness score. The burstiness score uses
the relation between the average advertised receiver window,
the maximum segment size (MSS), capacity, and round trip
time (RTT) to assess traffic burstiness within a certain period.

B. Online Monitoring TCP Throughput Limitations

In previous research [4], we introduced an approach to
analyzing throughput limitations of TCP flows online. We
rely on the limitation score-based approach of Siekkinen et
al. and described adaptations to the original algorithms to
make calculations of limitation scores feasible in real-time.
We contributed a prototype implementation of our approach
based on the high-performance traffic capture and analysis
tool FlowScope [6], [7] and evaluated our prototype with a
synthetically generated labeled data set.

Our approach implies several adaptations to the original
approach to satisfy online analysis requirements. For instance,
we abandon the Isolate and Merge algorithm’s merge step as
this step requires several iterations over previously detected
transfer periods. As this step is not feasible in real-time, we
renounce to merge transfer periods. Instead, we use sliding
windows to track previously extracted packet information
for each flow and calculate the limitation scores based on
such windows. The sliding windows of a flow containing the
extracted packet data are stored in a flow’s connection state.

Our approach considers two steps of packet data processing
to reduce the computational load per packet. First, we extract
the necessary information per packet and store it to the flow’s
connection state. Second, the computationally expensive calcu-
lation of limitation scores is carried out in fixed time intervals,
referred to as periodic result calculations. Our prototype stores

connection states as hash table entries. To avoid expensive
resizing of hash table entries, we use a static connection state
size of 156 kB, which is an upper bound to the aggregated
sliding window sizes per flow.

III. FRAMEWORK IMPLEMENTATION FOR LARGE-SCALE
ANALYSIS

This section introduces optimizations to the existing proto-
type implementation [4] to enable scalable monitoring capa-
bilities and describes their implementation.

As our framework is purposed to monitor network links
with data rates of several Gbit/s, we require efficient use of
computational resources and a scalable analysis design. Our
prototype implementation already considers efficient packet
analysis [4]. Efficiency is achieved by reducing computational
load per packet by offloading expensive calculations, e.g.,
calculating limitation scores, to periodically performed result
calculations. However, to scale up monitoring capabilities,
we consider the parallelization of the whole traffic analysis
pipeline.

A. Multi-threaded Traffic Analysis

One primary goal of our framework is to scale up moni-
toring capabilities to achieve analysis throughputs of several
Gbit/s. Therefore, we implement the parallelization of the
complete analysis pipeline used for the existing prototype
implementation.

Our framework uses the packet capturing and analysis
tool Flowscope [6], [7] as a base for packet processing and
analysis. FlowScope natively supports multi-threaded packet
analysis based on Receive Side Scaling (RSS). RSS enables
NICs to distribute packets to several RSS queues, while each
RSS queue is mapped to a specific CPU core. The distribution
of packets to RSS queues relies on hardware-based hashing of
packet header data. So far, FlowScope only supports the multi-
threaded analysis of unidirectional traffic, as RSS natively
does not ensure that packets of both directions of a TCP
flow are mapped to the same RSS queue. However, our
monitoring approach requires that the same analysis pipeline
analyzes both directions of a flow. To meet the bidirectional
RSS requirement, we extend FlowScopes RSS capabilities to
support symmetric hashing of packet data. We use a symmetric
hash key introduced by Woo et al. [8]. To fully exploit speed
up by RSS, we parallelize all further steps of the analysis
pipeline. Each RSS queue provides received packets to a
pipeline consisting of four threads:

• First, a thread responsible for copying packets from the RSS
queue to FlowScope’s packet buffer.

• A thread that reads packets from the packet buffer to perform
per-packet analysis and feature extraction.

• A third thread to run periodic result calculations based on
data in the connection states and to detect expired flows.

• A thread to finally expire flows by deleting connection
states.



B. Flow Handling

Appropriate flow handling is a central aspect of our moni-
toring approach that impacts performance and our framework’s
applicability. We refer to a flow as packets with the same 5-
tuple consisting of server and client IP addresses, ports, and
the used L4 protocol. From an analysis point of view, we can
only consider flows for that we observe the complete TCP
three-way handshake. Observing the handshake is required to
extract data necessary to run the TCP throughput limitation
analysis, such as the MSS, sender and receiver information,
and the measurement position.

To optimize the memory consumption of our framework,
we take care of proper flow expiration. As soon as a flow
is expired, its connection state is no longer needed, and
there is no need to consider the flow for periodic result
calculation further. Therefore, flow expiration contributes to
efficient memory and CPU utilization. A flow is expired if we
do not observe a packet with the corresponding 5-tuple for a
specific time interval. For our measurements, we use a time
interval of 180 seconds.

IV. EVALUATION

A. Test setup

To evaluate our implementation’s performance and to con-
duct a case study on real-world Internet traffic captures, we
run measurements in a test setup consisting of three physical
hosts. We replay packet captures from a dedicated host referred
to as Load Generator. The Load Generator runs the packet
generator MoonGen, capable of replaying packet captures at
rates of several Gbit/s [9]. Our monitoring framework runs
on a second host referred to as Device under Test (DuT). A
third host provides an ElasticSearch database backend to store
results for further analysis. The LG and the DuT are connected
with 10 GE cabling. The DuT is connected to the backend
host using 1 GE cabling. The LG is equipped with two AMD
EPYC 7601 CPUs, each capable of 32 physical cores with
2.2 GHz clock frequency, 1 TB of DDR4 main memory, and
an Intel X550T 10 GE NIC connected to the DuT. The DuT is
capable of two Intel Xeon Gold 6130 CPUs with 16 physical
cores per socket with 2.2 GHz clock frequency, 395 GB DDR4
main memory, and two Intel X722 10 GE NICs. As hyper-
threading is enabled, each socket provides 32 virtual cores.
The backend host provides the same hardware configuration
as the DuT. All hosts run Debian stretch.

B. Performance Measurements

In previous research [4], we found two significant perfor-
mance limitations of our prototype implementation: a) com-
putational resources and b) memory consumption. To survey
our optimized and extended monitoring framework’s analysis
capabilities, we benchmark our tool with a synthetically gener-
ated data set and packet traces taken from the MAWI Working
Group Traffic Archive [5].

21 23 25 27 29 211 213

0

2

4

6

8

Concurrent Flows

A
na

ly
ze

r
T

hr
ou

gh
pu

t
[G

bi
t/

s]

1 Pipeline 2 Pipelines 4 Pipelines 8 Pipelines

Fig. 1. Analyzer throughput for varying numbers of concurrent flows.

1) Synthetic Data Set for Performance Evaluation: To
benchmark our monitoring framework’s analysis throughput,
we generate a data set consisting of synthetically generated
TCP traffic. We use the traffic generator iperf to generate TCP
flows with 1500 B packet size, a data rate of 1 Mbit/s, and
a duration of 10 seconds. iperf is limited in the number of
concurrently generated flows as too many concurrent flows
result in inaccurate data rates per flow. We observe such
inaccuracies for flow counts larger than 128. Therefore, we
capture several traces with 128 concurrent flows and merge
them to achieve larger numbers of concurrent flows. The
resulting data set provides traces from 1 flow up to 8192
concurrent flows. As we generate flows at 1 Mbit/s data rate,
the maximum expected data rate in our data set is around
8 Gbit/s corresponding to about 1.2 million packets per second.
However, we found that the achieved average data rate for the
trace with 8192 flows is a little lower than expected, i.e., about
7.5 Gbit/s, due to inaccuracies in the merged PCAPs.

2) Performance Evaluation: We measure the achievable
throughput of the analysis pipelines with the generated data
set. We find that a single pipeline can analyze 1024 con-
current flows without dropping packets or ignoring flows
for the analysis. With increasing load, i.e., more than 1024
concurrent flows, packets get dropped due to fully exploited
computational resources, and the maximum achieved analysis
throughput is around 1.5 Gbit/s for 2048 flows. We observe
that throughput additionally decreases for measurements with
a single pipeline and flow counts larger than 2048 down
to 1 Gbit/s. For setups with more than one single pipeline,
we find a throughput of approximately 1 Gbit/s per pipeline.
This observation holds for all setups, even for eight parallel
pipelines and an offered load of 8192 concurrent flows. The
measured analyzer throughput for all pipeline setups is shown
in Figure 1. We conclude that these observations indicate the
linear scalability of our framework due to independent analysis
pipelines.

Next, we want to assess the memory consumption of our
framework. Therefore, we conduct measurements with traces
taken from the MAWI Working Group Traffic Archive [5].
Choosing such traces for evaluating memory consumption



TABLE I
USED MAWI TRACES

Date, Time Avg. Data Rate Packets TCP Flows

2019/01/02, 13:59-14:14 1.532 Gbit/s 136 M 526 K
2019/01/09, 14:00-14:15 2.684 Gbit/s 300 M 1,634 K
2019/01/16, 14:00-14:15 2.781 Gbit/s 308 M 1,684 K
2019/01/23, 14:00-14:15 2.823 Gbit/s 280 M 1,319 K
2019/01/30, 14:00-14:15 3.033 Gbit/s 278 M 1,208 K
2019/02/06, 14:00-14:15 2.214 Gbit/s 211 M 1,047 K
2019/02/13, 14:00-14:15 2.601 Gbit/s 245 M 931 K
2019/02/20, 14:00-14:15 1.967 Gbit/s 205 M 1,130 K
2019/02/27, 14:00-14:15 2.831 Gbit/s 260 M 1,001 K

is motivated by the expectation that these real-world traces
carry larger numbers of concurrent flows than our synthetically
generated dataset. We run measurements with six, respectively
16, parallel analysis pipelines and observe the used memory
during the analysis. The setup with six pipelines cannot
analyze all packets of some traces due to computational
limitations. However, the setup with 16 pipelines is capable
of analyzing all traces without reaching computational limits.
We find a maximum memory consumption of 65 GB for six
parallel pipelines, respectively 160 GB for the setup with 16
pipelines. In addition to the connection state size allocated in
memory for each analyzed flow, our tool consumes significant
amounts of memory per pipeline to provide the ring buffer
QQ that Flowscope uses to buffer received traffic before pro-
cessing it to further analysis steps. By default, our framework
allocates 8 GB per analysis pipeline to maintain the QQ buffer.
For measurements with six analysis pipelines, we observe a
maximum memory consumption of about 65 GB, while 48 GB
are allocated by the QQ instances. During the measurements
with 16 pipelines, we find a maximum memory consumption
of 160 GB, while 128 GB are allocated by QQ instances. These
numbers indicate that the setup with 16 pipelines allocates
connection states up to 32 GB during the measurements with
the used trace set. Observed values vary slightly for each
dataset as maximum memory consumption depends on the
highest amount of concurrent flows in a particular input
data period. We observe that our framework can analyze all
considered traces with 16 parallel analysis pipelines without
any packets dropped due to overload, while traces include
traffic peaks up to 4 Gbit/s.

C. Case Study

To show our framework’s analysis capabilities, we conduct
measurements with real-world Internet traffic taken from the
MAWI Working Group Traffic Archive [5]. In this section, we
survey the applicability of our framework outside controlled
test environments and analyze the TCP throughput limitations
of real-world Internet traffic.

1) Data Set Characteristics: We use packet captures pub-
lished by the Measurement and Analysis on the WIDE Internet
(MAWI) Working Group for our measurements. The MAWI
Working Group provides traffic traces captured on different
sample points on the WIDE backbone network. We choose

nine traces captured on Samplepoint G in January and Febru-
ary 2019. Each trace provides 15 minutes of captured traffic.
Such traces carry packet counts between 136 million and 308
million. Per trace we find TCP flow counts between 500k and
over 1,600k and average data rates between 1.5 Gbit/s and
3 Gbit/s. All used traces are listed in Table I.

Our framework requires a minimum amount of data packets
per flow. Such a minimum is necessary to provide enough
input data to the analysis modules, such as the capacity
estimation module, which is implemented according to the
PPrate algorithm [10]. We observe that 300 packets are a
suitable lower bound to avoid more considerable inaccura-
cies of capacity estimates in controlled test environments.
Therefore, we configure our framework only to consider flows
carrying more than 300 data packets for further analysis. This
significantly decreases the number of considered flows per
trace. We find that the vast majority of flows in our data set
consist of fewer than 300 packets considering both directions
of a flow. The 97th percentile of packets per flow lies between
150 and 340 packets for all traces. The 99th percentile of
packets per flow significantly exceeds 1000 packets for the
most traces. This observation implies that only between 1 %
and 2 % of all observed TCP flows are relevant for our
analysis. We observe an exponential distribution of packets per
flow. I.e., we find large numbers of very short flows and tiny
numbers of large flows up to several million packets per flow.
Next to a sufficient number of packets per flow, a captured
flow is required to provide all required handshake information
to be considered for further analysis. This implies that flows
that began before traffic capturing started can not be analyzed.
In total, our framework was able to successfully estimate the
capacity for 29K flows that provide full handshake information
across all analyzed MAWI traces.

Further, we analyze the distribution of server ports across
the analyzed traces. We observe that nearly 50 % of all flows
are addressed to well-known server ports, i.e., port 1 to 1024.
For port numbers higher than 1024, flows are distributed rel-
atively equally. Furthermore, our server ports analysis reveals
that the significantly dominating ports are port 80 and port
443. Due to the dominant share of web traffic, we decide to
focus on web traffic for the detailed analysis of throughput
limitations next to the remaining well-known ports.

2) Capacity, Throughput, and Application Limitation: As
explained above, we require a successful capacity estimate to
analyze a flow’s throughput limitation. Therefore, we consider
successful capacity estimation as a prerequisite for further
analysis of a flow. We find that 50 % of all estimated capacities
are lower than 2 Gbit/s and only observe minor deviations be-
tween the distributions of capacities for port 80, port 443, and
the remaining well-known TCP ports. We measure an average
throughput of less than 10 Mbit/s for over 60 % of all score
calculation intervals. For over 90 % of calculation intervals, we
measure an average throughput lower than 100 Mbit/s. Beside,
we observe outliers with throughputs higher than 1 Gbit/s. As
expected, the cumulative distribution of measured capacities
is an upper bound to the cumulative distribution of measured



0.0 0.2 0.4 0.6 0.8 1.0
Dispersion score

0.0

0.5

1.0
C
D
F

0.0 0.2 0.4 0.6 0.8 1.0
Retransmission score

0.0

0.5

1.0

C
D
F

0.0 0.2 0.4 0.6 0.8 1.0
Receiver window score

0.0

0.5

1.0

C
D
F

−105 −104 −103 −102 −101 −100 0 100

Burstiness score

0.0

0.5

1.0

C
D
F

Port 80 Port 443 Well-known TCP ports without 80/443

Fig. 2. Cumulative distributions of measured score values.

average throughput.
Before evaluating measured limitation scores, we survey the

share of application limitations. Application limited periods
significantly impact our approach as a) limitation scores are
only calculated during bulk transfer periods and b) we reset
the sliding windows containing extracted packet data of a
flow after each ALP. We are interested in the time flows
spend in application limited periods and find that the share
of application limitation is near zero for nearly all flows in
the analyzed MAWI traces.

3) Limitation Scores: In the following, we present mea-
surement results for the limitation scores used to determine the
throughput limitation of a TCP connection. The formulas for
the limitation scores are specified by Siekkinen et al. [3]. Fig-
ure 2 shows the cumulative distribution for measured limitation
scores. As our framework calculates results periodically based
on a defined time interval, we likely receive several calculated
limitation score vectors per flow. We configure the framework
to calculate scores at an interval of three seconds. On average,
each flow with successfully estimated capacity is considered
around eight times for the periodic score calculations. This
implies that flows may contribute several results to our score
analysis depending on the flow duration.

a) Dispersion Score: The dispersion score compares
the average throughput of a flow during the current bulk
transfers period, respectively, the current sliding window, to
the capacity estimate of the flow. Small dispersion score
values indicate a limitation by an unshared bottleneck link. In
our measurements, less than 5 % of all calculated dispersion
scores are smaller than 0.8.This observation indicates that most
flows utilize less than 20 % of the corresponding network path

capacity.
b) Retransmission Score: The retransmission score is an

indicator of shared bottleneck links. The score compares the
amount of retransmitted data to the total amount of transmitted
data to assess the impact of packets being dropped due to fully
utilized links. We determine a packet to carry retransmitted
data if the packet’s sequence number is smaller than the largest
sequence number observed so far.

We find that 60 % of all calculated retransmission scores
are zero for flows on server port 80. Regarding the remaining
well-known ports we measure a retransmission score equal to
zero for 80 % of all calculation periods. At the same time,
we observe a small share of relatively large retransmission
scores near one. Such high score values indicate that nearly
all packets are classified as retransmitted data. We explain
such large values with the missing implementation of packet
reordering. If packets are not received in order, our framework
assumes such packets to be retransmissions. This assumption
indicates that our framework potentially suffers from many
false-positives during the detection of retransmitted data. We
consider analyzing the impact of such unordered packets on
the retransmission score for future research.

c) Receiver Window Score: The next score is the receiver
window score used to assess whether the receiver window size
limits further throughput increase. A receiver window score
close to 1 indicates that the connection uses a large share of
the receiver window size and, therefore, tends to be limitted
by the receiver window. The distribution of measured score
values reveals that the majority of receiver window scores are
either 0 or 1 and that only 5 % to 10 % of the scores show a
value unequal 0 and 1. We find that between 20 % and 30 %



dispersion score
< th1

retr. score
> th2

rec. win. score
> th3

retr. score == 0 &
rec. win. score == 0

burst. score
> th4

unshared
bottleneck

shared
bottleneck

receiver
limitation

L4
limitation

mixed or
unknown

False False False

TrueTrue True

False

True

True False

Fig. 3. Decision tree to determine throughput limitations by Siekkinen et al.
[3].

of all calculated score values equal 0 and that around 50 %
and 60 % of all calculated score values are equal to 1.

d) Burstiness Score: The burstiness score is used to as-
sess a flow’s burstiness, which indicates whether a connection
is affected by large buffers that prevent shared bottleneck
links from dropping packets. Larger score values indicate
no impact by buffered packets, while smaller values imply
more significant bursts inside the analyzed flow. We measure
burstiness scores between −107 and 1. Over 75 % of all
calculated scores are greater than -1000. Based on previous
studies [4] of the burstiness score with a synthetic data set we
assess values greater than -1000 as relatively large. Therefore,
we expect no significant burstiness for the majority of the
analyzed flows.

4) Root Cause Estimation: To determine the actual limita-
tion of the analyzed traffic, we apply the decision tree-based
analysis of limitation score vectors as purposed by Siekkinen
et al. [3]. The decision tree, as shown in Figure 3, compares
predefined threshold values to measured scores. Siekkienen et
al. propose threshold values for the dispersion score (th1 =
0.2), retransmission score (th2 = 0.01), and receiver window
score (th3 = 0.5). There is no purposed threshold value for
the burstiness score as the original approach relies on the b-
score to approximate the actual burstiness score. Therefore, we
define the corresponding threshold value th4 = −1000 based
on experiences with a synthetically generated data set.

We determine that shared bottleneck links limit the through-
put of over 35.1 % of all analyzed flow intervals. The second
most common throughput limitation is the receiver window
size, which was determined for over 32.1 % of all intervals.
The remaining shares of estimated root causes are 12.2 %
for L4 limitations, 5.3 % for unshared bottlenecks links, and
15.1 % of measured score vectors result in mixed, respectively
unknown, throughput limitations.

V. RELATED WORK

The analysis of TCP throughput limitations has a lengthy
history in the field of network traffic analysis. Early publica-
tions work out potential limitations and approaches to identify
them. As mentioned before, our approach is based on the TCP
root cause analysis approach introduced by Siekkinen et al. [2],
[3], while Zhang et al. [1] initially introduced potential TCP
throughput limitations. Bak et al. [11] present a throughput
degradation analysis approach based on a decision tree similar

to Siekkinen et al. and evaluate their approach with 4G
wireless Internet traffic. While the mentioned approaches focus
on flows carrying large amounts of data, several publications
surveyed the performance of short TCP connections [12]–[14].
Arajo et al. [15] survey the impact of the network, hosts,
and applications on TCP throughput rates in a longitudinal
study for MAWI traces from 2006 to 2011. Authors show, that
the mentioned entities constraint over 50 % of analyzed TCP
traffic. Regarding the real-time analysis of TCP performance,
Ghasemi et al. [16] present a P4 prototype called Dapper, that
integrates the analysis of TCP performance to the data plane.
The integration of TCP analysis capabilities to softwarized
networks were surveyed by Singh et al. [17] and Kagami et
al. [18]. Next to the analysis of TCP throughput limitations,
recent publications survey the performance of congestion con-
trol algorithms [19], [20], or focus on the optimization of TCP
performance indicators like throughput [21] or latency [22].
Besides analyzing TCP performance and limitations in general,
approaches exist to assess and analyze traffic in more specific
scenarios, such as Loh et al. [23] who study video stalls in en-
crypted video streaming traffic to support QoE analysis. Other
researchers survey the modeling of service performance [24]
and automation of monitoring deployments [25].

Regarding the performance of traffic analysis and mon-
itoring frameworks, several recent publications survey the
suitability of DPDK-based tools for such tasks. Ren et al. [26]
introduce the high-performance packet processing and analysis
framework PacketUsher. Zhang et al. [27] present a DPDK-
based tool to monitor flows at line rate of several Gbit/s, while
Trevisan et al. [28] presented an implementation of statistical
traffic analysis up to 40 Gbit/s.

VI. CONCLUSION

We presented an implementation of a linear scalable TCP
throughput limitation monitoring framework. Our implementa-
tion is capable to monitor several Gbit/s of traffic and several
thousands of concurrent flows on commodity hardware. We
find that the use of 16 analysis pipelines, corresponding to 64
CPU threads, and 160 GB of memory is sufficient to monitor
replayed packet traces with data rate peaks up to 4 Gbit/s
in real-time. We conclude that TCP throughput limitation
monitoring is feasible in large-scale environments.

In a case study on captured Internet traffic we found shared
bottleneck links and the receiver window’s utilization as the
dominant throughput limitations. We observe that only 1 % up
to 2 % of all TCP flows are relevant for our analysis due to
the number of packets per flow in the considered MAWI data
set.

ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (project ModANet under grant no. CA595/11-1) and by
the German-French Academy for the Industry of the Future.



REFERENCES

[1] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the character-
istics and origins of internet flow rates,” in Proceedings of the 2002
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’02. New York, NY,
USA: ACM, 2002.

[2] M. Siekkinen, G. Urvoy-Keller, and E. W. Biersack, “On the interaction
between internet applications and tcp,” in Proceedings of the 20th
International Teletraffic Conference on Managing Traffic Performance
in Converged Networks, ser. ITC20’07. Berlin, Heidelberg: Springer-
Verlag, 2007.

[3] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and D. Collange, “A
root cause analysis toolkit for tcp,” Comput. Netw., vol. 52, no. 9, Jun.
2008.

[4] S. Bauer, K. Holzinger, B. Jaeger, P. Emmerich, and G. Carle, “Online
Monitoring of TCP Throughput Limitations,” in 2020 IEEE/IFIP Net-
work Operations and Management Symposium (NOMS 2020), Budapest,
Hungary, 2020.

[5] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the wide
project,” ser. USENIX 2000 FREENIX Track. USENIX, 2000.

[6] P. Emmerich, M. Pudelko, S. Gallenmller, and G. Carle, “Flowscope:
Efficient packet capture and storage in 100 gbit/s networks,” in 2017
IFIP Networking Conference (IFIP Networking) and Workshops, June
2017.

[7] P. Emmerich, M. Pudelko, Q. Scheitle, and G. Carle, “Efficient Dynamic
Flow Tracking for Packet Analyzers,” in CloudNet, Tokyo, Japan, Oct.
2018.

[8] S. Woo and K. Park, “Scalable tcp session monitoring with symmetric
receive-side scaling,” KAIST, Daejeon, Korea, Tech. Rep., 2012.

[9] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings of
the 2015 Internet Measurement Conference, ser. IMC ’15. New York,
NY, USA: ACM, 2015.

[10] T. En-Najjary and G. Urvoy-Keller, “Pprate: A passive capacity estima-
tion tool,” in 2006 4th IEEE/IFIP Workshop on End-to-End Monitoring
Techniques and Services, April 2006.

[11] A. Bak, P. Gajowniczek, and M. Zagodon, Analysis of TCP Connection
Performance Using Emulation of TCP State, 12 2017, vol. 461.

[12] C. Barakat and E. Altman, “Performance of short tcp transfers,” in
Proceedings of the IFIP-TC6 / European Commission International Con-
ference on Broadband Communications, High Performance Networking,
and Performance of Communication Networks, ser. NETWORKING ’00,
2000.

[13] N. Cardwell, S. Savage, and T. Anderson, “Modeling the performance
of short tcp connections,” 1998.

[14] A. Hafsaoui, D. Collange, and G. Urvoy-Keller, “Revisiting the perfor-
mance of short tcp transfers,” vol. 5550, 05 2009.

[15] J. T. Araújo, R. Landa, R. G. Clegg, G. Pavlou, and K. Fukuda, “A
longitudinal analysis of internet rate limitations,” in IEEE INFOCOM
2014-IEEE Conference on Computer Communications. IEEE, 2014.

[16] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of TCP,” CoRR, vol. abs/1611.01529, 2016.

[17] M. Singh, N. Varyani, J. Singh, and K. Haribabu, “Estimation of end-
to-end available bandwidth and link capacity in sdn,” in International
Conference on Ubiquitous Communications and Network Computing.
Springer, 2017.

[18] N. S. Kagami, R. I. T. da Costa Filho, and L. P. Gaspary, “Capest:
Offloading network capacity and available bandwidth estimation to
programmable data planes,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, 2019.

[19] B. Jaeger, D. Scholz, D. Raumer, F. Geyer, and G. Carle, “Reproducible
Measurements of TCP BBR Congestion Control,” Computer Communi-
cations, vol. 144, May 2019.

[20] S. Patel, Y. Shukla, N. Kumar, T. Sharma, and K. Singh, “A comparative
performance analysis of tcp congestion control algorithms: Newreno,
westwood, veno, bic, and cubic,” in 2020 6th International Conference
on Signal Processing and Communication (ICSC), 2020.

[21] R. Kumar, A. Koutsaftis, F. Fund, G. Naik, P. Liu, Y. Liu, and S. Panwar,
“Tcp bbr for ultra-low latency networking: challenges, analysis, and
solutions,” in 2019 IFIP Networking Conference (IFIP Networking).
IEEE, 2019.

[22] I. Ali, T. Hussain, F. Perviz, and A. Hussain, “Analysis of tcp congestion
control queuing mechanism and investigation for high throughput and
low queuing delay,” EasyChair, Tech. Rep., 2020.

[23] F. Loh, F. Wamser, C. Moldovan, B. Zeidler, D. Tsilimantos, S. Valentin,
and T. Hofeld, “Is the uplink enough? estimating video stalls from
encrypted network traffic,” in NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, 2020.

[24] F. Moradi, R. Stadler, and A. Johnsson, “Performance prediction in
dynamic clouds using transfer learning,” in 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). IEEE, 2019.

[25] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu, “Conmon: An
automated container based network performance monitoring system,”
in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). IEEE, 2017.

[26] Q. Ren, L. Zhou, Z. Xu, Y. Zhang, and L. Zhang, “Packetusher:
Exploiting dpdk to accelerate compute-intensive packet processing,”
Computer Communications, vol. 161, 2020.

[27] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,
“Flowmon-dpdk: Parsimonious per-flow software monitoring at line
rate,” in 2018 Network Traffic Measurement and Analysis Conference
(TMA), 2018.

[28] M. Trevisan, A. Finamore, M. Mellia, M. Munafò, and D. Rossi, “Dpdk-
stat: 40gbps statistical traffic analysis with off-the-shelf hardware,”
Telecom, Paris, France, Tech. Rep, vol. 318627, 2016.


