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ABSTRACT
The ongoing evolution of technologies and network services
on the Internet indicates ongoing changes in traffic and flow
characteristics. Since the analysis of flow characteristics,
like duration, size, and rate, has been a frequently studied
topic before, results on the evolution of flow characteristics
are rare. This paper surveys how flow characteristics have
changed over time and whether there are significant trends
in such characteristics.
We present a long-term study of TCP flow characteris-

tics based on traffic captures taken between 2008 and 2019.
We apply different methods to analyze the distribution of
characteristics, the relevance of heavy hitters, and correla-
tions between characteristics. Our analysis shows significant
trends in the 99th percentiles of flow characteristics, persis-
tent dominance by heavy hitters regarding transmitted data,
and increasing relevance of so-called big-fast flows.

CCS CONCEPTS
•Networks→ Transport protocols;Networkmeasure-
ment; Network monitoring;

KEYWORDS
Traffic characterization, Flow analysis, Heavy hitters

1 INTRODUCTION
The emergence and evolution of technologies and services on
the Internet, such as better network expansion, the Internet
of Things, or audio and video streaming, suggest that char-
acteristics of Internet flows, like duration, size, and rate, are
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also changing. While patterns, distributions, and correlations
of TCP flow characteristics have been studied in previous
research [1–3], there is little insight into the evolution of
characteristics over time.

This paper pursues how flow characteristics have changed
during the last years. We contribute a large-scale analysis
of flow characteristics of two datasets composed of Internet
traffic captures taken between 2008 and 2016, respectively, in
2018 and 2019, published by CAIDA [4]. In total, we analyze
over 2.5 billion TCP flows that transmitted over 65 TB of
payload data. We apply different taxonomies to assess the
relevance of heavy hitters and so-called big-fast flows, as
introduced in previous studies [2, 3]. Further, we survey the
distribution and correlation of considered characteristics. To
encourage further studies on flow characteristics, we present
a highly scalable traffic analyzer implemented in Go [5].

Our study shows persistent relevance of bytes transmitted
by heavy hitters, while we find significant changes regard-
ing duration and rate of such flows. Applying a two-two
taxonomy on flow size and rate results in increasing shares
of bytes transmitted by big-fast flows over time. Further, we
confirm previously observed correlations between TCP flow
characteristics.

The remainder of this paper is structured as follows: First,
we describe the extraction and definition of flow character-
istics, as well as applied methods for analysis in Section 2.
In Section 3, we present the datasets used for our analysis.
We then study measured flow characteristics in Section 4.
Section 5 reviews related work before Section 6 concludes
with a summary of our findings.

2 FLOW ANALYSIS
This section introduces the architecture and implementa-
tion of a multi-threaded flow analysis tool, describes the
calculation of flow characteristics, and presents methods and
taxonomies used for our analysis.

2.1 Scalable Flow Analyzer
To efficiently analyze large packet captures of several 100GB
in size, we implement a multi-threaded flow analysis tool in
Go. Cost-intensive packet parsing and composition of flow
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characteristics are completely parallelized. The analyzer con-
sists of five major components, as shown in Figure 1, which
are described in more detail in the following.
Reader We use the Go library gopacket [6] to read raw
packets from PCAPs. As analyzed protocols are known be-
forehand, DecodingLayerParsers (DLP) [7] provide efficient
traffic parsing by only decoding specified protocol headers.
So far, the analyzer supports parsing Ethernet, IPv4, IPv6,
TCP, and UDP headers. Additional headers can be included
by extending the reader’s DLP with further layers and pro-
tocols from the gopacket library.
Parsers After reading packets and decoding headers, packet
features are extracted by a parser component.Multiple parsers
can run entirely independently from each other to provide
scalability. To save storage capacity and preserve privacy,
only required packet information is stored, while payload is
ignored. IP addresses are stored as 64-bit integer hashes using
xxHash [8]. Using hashed IP addresses provides anonymity
regarding input data and benefits from efficient integer com-
parisons in Go.
Ringbuffer As multiple parsers may analyze packets of the
same flow parallel without synchronization, it is required to
re-order packets. To bring the packets back into the order
they were received, the parsers store the extracted packet
information to a ringbuffer. To avoid locking, the reader
uses a counter to provide each packet with a packet number,
which is used as index for the ringbuffer. Sorting is then
done automatically by such packet numbers that already
specify the correct packet order. A routine regularly checks
the ringbuffer and writes sorted packet information to a pool
component.
Pools To collect and store extracted packet information of
all packets of a flows until the flow is terminated, we use
so-called pools. Pool threads work without any synchroniza-
tion to provide high scalability to the analysis capabilities of
our tool. We calculate a flow key based on hashes of a flow’s
server and client IP addresses, port numbers, and the used
transport layer protocol to assign packets to the correct pool.
We sum up hashes of IP addresses to generate a bidirectional
flow key for each flow. Bidirectional flow keys are required
as packets of both directions of a flow have to be assigned
to the same pool. As there may are several flows resulting
in the same flow key, the analyzer takes care of detecting
such cases by observing header flags and applying timeouts
to inactive flows. If a flow terminates, collected flow infor-
mation is written to the metric component and flushed from
the pool afterwards.
Metric Output Finally, flow characteristics are calculated
by an own component that receives collected information of
terminated flows and corresponding packets in the correct
order. Before writing results to files, the analyzer aggregates
flow characteristics from collected packet data.

Reader

PCAP

Parser

Parser

Parser

Ringbuffer
Pool

Pool

Pool

Flow Packets
a 1, 3
b 2, 14
g 5, 13. . .

Flow Packets
d 4, 11
f 8, 12
j 9, 16. . .

Flow Packets
e 6, 22
h 2, 15
i 7, 17. . .

Metric

Files

Figure 1: Architecture for scalable flow analysis.

2.2 Flow Characteristics
We refer to a flow as a sequence of packets bidirectionally
sent and received by the same IP 5-tuple. To identify flows,
we rely on different methods for TCP and UDP traffic. Re-
garding TCP, we require a flow to start with the TCP 3-way-
handshake. As UDP is a stateless protocol, we define a UDP
flow to start with the first packet we observe for an unseen
IP 5-tuple. Observing the TCP handshake allows detecting
the initiator of a connection that we refer to as the client
while servers respond to the initially sent packet. For UDP,
we assume that the server is often using a system port. If this
heuristic is not feasible, we assume that the client sends the
first packet. TCP flows end, if we observe the TCP connec-
tion tear-down, observe a TCP handshake of an IP 5-tuple
already tracked, or in case we cannot observe a packet with
the corresponding IP 5-tuple for a specific time interval. For
UDP, we only rely on time intervals without observed pack-
ets to terminate flows. By default, the analyzer uses a timeout
interval of 5 minutes.
We define the duration of a flow as the time interval be-

tween the first seen packet and the moment of termination
of the corresponding flow by the analyzer. We refer to flow
size as the sum of the Layer-4 payload sizes of all packets of
a flow. To assess flow rate, we calculate the average rate of a
flow based on Layer-4 payload sizes and flow duration.

2.3 Comparison of Flow Characteristics
We apply different methods and taxonomies to describe prop-
erties of analyzed flows and differences between single traces
to analyze the evolution of flow characteristics.
To describe changes regarding the distribution of mea-

sured characteristics, we calculate the cumulative distribu-
tion function (CDF) for each characteristic and trace. The
cumulative distribution of characteristics is purposed to com-
pare the share of flows for a particular interval in the spec-
trum of measured characteristics.
To analyze the relevance of so-called heavy hitter flows,

we apply the threshold-based taxonomy introduced by Lan et
al. [3]. Lan et al. define Elephant, Tortoise, and Cheetah flows
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Figure 2: Used datasets: traces taken in Chicago [9] in
blue, traces taken in New York [10] in red.

as heavy hitters regarding size, duration, and rate. Thresholds
are determined by taking the average of measured values
and adding the standard deviation three times, respectively,
by calculating the 99th percentile of measured values. This
taxonomy allows comparing the share of bytes transmitted
by each kind of heavy hitters for different traces.
Further, we apply a two-two taxonomy introduced by

Zhang et al. [2] to classify flows regarding their size and rate.
Based on threshold values for flow size and rate, the taxon-
omy classifies flows according to four groups: small-slow,
small-fast, big-slow, and big-fast flows. We are particularly
interested in the share of big-fast flows and the correspond-
ing share of bytes, as Zhang et al. found that most bytes of
Internet traffic are transmitted by a tiny share of big-fast
flows.
Next to assessing the relevance of heavy hitters, we are

interested in analyzing the correlation between flow char-
acteristics as done by earlier studies [2, 3]. Therefore, we
calculate correlation coefficients according to Pearson. Such
coefficients describe the linear relation between two charac-
teristics. A correlation coefficient near 1 indicates a strong
positive correlation, while -1 implies a strong negative cor-
relation. A coefficient near zero implies no correlation at
all. We logarithmically transform input data before calculat-
ing correlation due to the extensive spectrum and uneven
distribution of observed values.

3 DATASET
This section introduces the traces selected for our analysis,
describes the relevance of TCP traffic in the datasets, and as-
sesses the impact of applied pre-filtering of flows for further
analysis.

Traces. For our long-term analysis of Internet traffic char-
acteristics, we select traces from two different capturing
points provided by the Center of Applied Internet Data Anal-
ysis (CAIDA) [4]. All traces provide one hour of network
traffic captured on Internet backbone links with a bandwidth
of 10Gbit/s. To respect entities’ privacy, CAIDA anonymizes
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Figure 3: Share of TCP flows and transmitted bytes.

IP addresses of captured traffic in a prefix preserving manner.
To survey changes over time, we select 23 traces captured
between June 2008 and March 2016 on a Tier-1 ISP backbone
link in Chicago [9]. In consideration of distributing traces
equally over time, we choose 23 traces mainly at three-month
intervals. The selected traces captured in Chicago consist of
1.16 billion TCP flows (2.63 billion flows in total). The long-
term dataset captured in Chicago includes two significant
periods without traffic, as no captures are available in such
periods: First, 11 months without traces between March 2010
and February 2011 and second, 18 months without traces
between September 2011 and March 2013. To compare our
findings of the introduced long-term dataset to more recent
traffic, we select five traces captured on a Tier-1 ISP back-
bone link in New York between March 2018 and January
2019 [10]. We find significantly larger amounts of traffic in
the New York traces. I.e., the five selected traces carry 1.48
billion TCP flows (2.25 billion flows in total). All selected
traces are listed in Figure 2.

TCP Traffic. As our analysis focuses on characteristics of
TCP flows, we survey how significant TCP is in the sense
of observed flows and transmitted data. Throughout our
datasets, we find significant dominance of bytes transmitted
by TCP. TCP carries over 90 % of bytes in all traces captured
in Chicago, except the three traces taken in 2011. The share
of TCP flows increases from around 40 % up to shares larger
than 70 % in December 2015 and March 2016. Correspond-
ingly, the share of UDP flows shows a significant decrease,
while UDP transmits only a small share of bytes. Regarding
traces captured in New York, we find similar shares of TCP
flows compared to traces captured in Chicago. However, we
find smaller shares, i.e., around 80 %, of bytes transmitted by
TCP. Figure 3 shows the share of TCP flows and correspond-
ing bytes over time.

Pre-filtering. Previous studies of flow rates [2, 11] filter
flows for a minimum duration of 100ms. Such filtering aims
to remove single packet flows, whose duration is zero and,
therefore, make rate calculation unfeasible. Further, all pack-
ets of very short flows might be sent back-to-back, which
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Figure 4: Distributions of flow characteristics for the Chicago dataset.

falsifies the measured rate, too. Therefore, we also filter flows
that are shorter than 100ms. We observe that such filtering
excludes nearly 20 % of TCP flows, while the remaining flows
still carry 99.94 % of total bytes transmitted by TCP in the
long-term Chicago dataset. For traces collected in New York,
nearly 35 % of TCP flows get filtered out, while the remain-
ing flows still carry 99.96 % of bytes. We conclude that such
filtering of short flows still allows representative analysis
of flow characteristics since almost all transferred bytes are
considered for further analysis.

4 RESULTS
This section presents analysis results for the datasets pre-
sented in Section 3 following the methods and taxonomies
described in Section 2.3. We first present results for the long-
term dataset captured in Chicago in Section 4.1 and compare
our findings to results for the more recent dataset captured
in New York in Section 4.2.

4.1 Long-term Analysis
Distributions. To survey the distribution of measured flow

characteristics, we analyze the corresponding cumulative
distribution function, as shown in Figure 4. Regarding flow
rates and sizes, we observe distributions with a very long tail
and an interval of a strong positive gradient that covers the
values for the majority of analyzed flows. However, the CDFs
of rates and sizes do not reveal a significant trend across the
traces of the Chicago dataset. We find that around 85% of
TCP flows carry between 100 B and 10 kB, with maximum
flow sizes near 10GB. Regarding flow rates, over 70 % of flows
transmit payload with an average rate between 1 kbit/s and
100 kbit/s for most traces, while we observe flow rates up
to several Gbit/s. The distributions of TCP flow durations
reveal a slight trend towards smaller shares of short flows,
especially between the 40th and 90th percentile.
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Figure 5: 99th percentiles of flow characteristics.

Heavy hitters. Lan et al. [3] define heavy hitters based on
the average and standard deviation of measured flow charac-
teristics and based on the 99th percentile of a characteristic.
Just as Lan et al., we find similar results for both definitions.
Therefore, we rely on the 99th percentile for further analysis.

Before assessing the relevance of heavy hitter flows, we
are interested in trends regarding the longest, largest, and
fastest flows. Therefore, we calculate the 99th percentiles of
duration, size, and rate, hereafter notated as DP99, SP99, RP99,
for each trace and compare such values over time. Figure 5
shows measured 99th percentiles over time. DP99 shows lit-
tle change between 2008 and 2010. Between June 2013 and
March 2016, DP99 increases for a factor near 1.5, i.e., from
around 400 s for early traces to around 600 s for more re-
cent traces. Flow size shows larger variances between mea-
sured percentiles of different traces. We observe that SP99 for
traces between 2008 and 2009 tendentiously cluster around
250 kB, while SP99 measured for traces between 2013 and
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2016 cluster around 400 kB. However, we do not observe a
particular trend between data points. Regarding flow rates,
we find increasing RP99 over time. For traces before 2013,
RP99 lies between 300 kbit/s and 400 kbit/s, except an outlier
in Dec 2009. After 2013, RP99 varies between 400 kbit/s and
800 kbit/s. For traces taken in 2015 and 2016, RP99 regularly
exceeds 600 kbit/s.
To assess how relevant flows within the 99th percentiles

are, we analyze the corresponding share of bytes. Further, we
are interested in the share of flows and bytes by intersections
of such flow sets to survey relations between different per-
centiles. As we do not find trend-like evolutions within the
share of bytes for the 99th percentiles over time, we calculate
the average of measured byte shares, as shown in Table 1.
We find that flows within the SP99, on average, carry 89 %
of all TCP bytes with a fairly small standard deviation of
2 %. On average, nearly 20 % of bytes are transmitted by the
intersection of all three 99th percentiles DP99 ∩ SP99 ∩ RP99.
Note that these 20 % of TCP bytes are transmitted by only
0.009 % of TCP flows. For the intersection of SP99 and RP99,
we measure the same values as for the intersection of all
three percentiles. This indicates that the biggest and fastest
flows are also part of the 1 % of longest flows. The differ-
ence between bytes transmitted by RP99 and SP99 ∩ RP99 is
relatively small. This observation implies that flows in RP99
are mostly also part of SP99. At the same time, the share of
flows in SP99 ∩RP99 is only a third of the share by RP99 while
both sets nearly transmit the same amount of data. Same
applies for DP99 and DP99∩SP99, indicating that the majority
of very long flows also carries much data. Considering such
observations, our analysis clearly points out the relevance
of such small subsets of analyzed flows.

Relevance of Big-Fast Flows. Next, we apply a two-two tax-
onomy according to Zhang et al. [2] to assess the relevance
of so-called big-fast flows and corresponding bytes. The tax-
onomy is based on two thresholds regarding flow size and
flow rate and classifies flows into four groups, considering
small or big flow sizes and slow or fast flow rates. We select

Table 1: Relevance of intersections of 99th percentiles.

Chicago New York
Flow set Share Bytes Share Bytes

DP99 1.000 % 40.5 % 1.000 % 43.1 %
SP99 1.000 % 89.2 % 1.000 % 88.4 %
RP99 1.000 % 55.9 % 1.000 % 68.0 %
DP99 ∩ SP99 0.185 % 39.9 % 0.142 % 42.6 %
DP99 ∩ RP99 0.009 % 19.9 % 0.005 % 31.4 %
SP99 ∩ RP99 0.337 % 54.8 % 0.332 % 67.2 %
DP99 ∩ SP99 ∩ R99 0.009 % 19.9 % 0.005 % 31.4 %
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Figure 6: Share of bytes transmitted by big-fast flows.

three pairs of thresholds. First, we rely on the thresholds
chosen by Zhang et al. [2], who use 100 kB as a threshold
between small and big flows and 10 kB/s as a threshold be-
tween slow and fast flows. We find that the share of big-fast
flows is below 2% for all traces. The most common flow
type is small-slow which represent 90 % to 95 % of flows. As
shown in Figure 6, big-fast flows carry between 70% up to
over 80 % of bytes transmitted by TCP. Analysis over time
shows a slight increase of such byte shares between 2008 and
2013, as shown in Figure 6. The increase of bytes by big-fast
flows correlates to a decrease of bytes by big-slow flows. For
early traces, around 20% of TCP bytes are transmitted by
big-slow flows, decreasing to around 10% for more recent
traces. This indicates that the rates of big flows increase
with time, which we also observe for the 99th percentile of
TCP flow rates. As the second pair of thresholds, we select
significantly larger values to survey the relevance of very
big and very fast flows. We set the threshold regarding size
to 1MB and the threshold for flow rates to 100 kB/s. The
shares of bytes transferred by very big and very fast TCP
flows are significantly smaller than bytes by big-fast flows.
However, such shares show a significant increase across all
traces of the dataset from around 30% up to over 50 %. Last,
we apply even larger thresholds, i.e., 10MB for flow size and
1MB/s for flow rates. We only find very small shares of bytes
transmitted by these extreme big and fast flows while we
also observe a slight increase of bytes transmitted by such
flows. Note that the shares of big-fast flows for the second
and third threshold set are by far smaller than 0.5 %.

Correlations. Zhang et al. [2] restrict correlation analysis
to longer flows, i.e., flows longer than 1 second, 5 seconds,
and 30 seconds, and observe slight differences between dif-
ferent flow lengths. We apply the same filters to our dataset
to compare results, while we describe results for flows longer
than 5 seconds in the following. We observe that correlation
coefficients do not indicate specific trends over time. There-
fore, we calculate the average of correlation coefficients and
calculate standard deviation as a measure for dispersion. On
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Table 2: Correlations of flow characteristics.

5 seconds 30 seconds
Traces Corr. Avg. Std. Avg. Std.

Chicago
D & R -0.0943 0.116 -0.1058 0.075
D & S 0.2947 0.117 0.1798 0.092
S & R 0.8847 0.0169 0.8783 0.014

average, we find a weak negative correlation between du-
ration and rate (avg.: -0.09) and a weak positive correlation
between duration and size (avg.: 0.29). We measure a rela-
tively large standard deviation for both combinations. We
find a very strong correlation between size and rate, with an
average coefficient of 0.88 and small standard deviation. Such
a strong correlation of size and rate was observed by earlier
studies of correlations between flow characteristics [2, 3].
We find slightly less significant correlation between dura-
tion and size, respectively, size and rate, for flows longer 30
seconds, as shown in Table 2.

4.2 Comparison to Recent Traces
As our dataset for long-term analysis of flow characteris-
tics ends in 2016, we compare our findings to a more recent
dataset taken in 2018 and 2019 as described in Section 3. In
the following, we focus on the differences and similarities be-
tween the findings for both datasets. CDFs of measured flow
characteristics show similar distribution patterns between
both datasets. CDFs for New York traces indicate larger
shares of slower TCP flows and larger shares of small TCP
flows. This observation is confirmed by the 99th percentiles
of size and rate, which are nearly a magnitude smaller than
99th percentiles measured for the Chicago dataset. We ob-
serve more bytes transmitted by RP99. For example, flows in
RP99 for the more recent dataset on average transmit 68.0%
of bytes (55.9% for Chicago traces). Flows in the intersec-
tion of the 99th percentiles of all characteristics averagely
transmit 31.4% of all TCP bytes, while the intersection only
includes 0.005% of all TCP flows. Further relations between
intersections observed for the Chicago dataset, as described
in Section 4.1, also apply to results for the more recent New
York dataset, as shown in Table 1. Regarding the share of
data transmitted by big-fast flows, we find slightly smaller
shares for traces taken in New York than for the more recent
traces within the Chicago dataset, as shown in Figure 6. This
can be traced back to the observed larger shares of small
flows and slow flows in the CDFs of New York traces. Av-
erage correlation coefficients only show minor differences
between both datasets. The correlation between size and rate
of TCP flows decreases from 0.88 to 0.83 for flows longer
than 5 seconds, and from 0.87 to 0.80 for flows longer than
30 seconds. Further correlation coefficients of the New York

dataset are almost within the range of one standard deviation
measured accordingly for Chicago traces.

5 RELATEDWORK
The field of traffic characterization and classification is a
frequently addressed topic. However, detailed analysis of
the evolution of flow characteristics is lacking. Our work
is closely related to Zhang et al. [2], who analyzed Internet
flow rates and their root causes in 2002. We confirm signifi-
cantly dominating transmission of bytes by big-fast flows and
approve findings regarding the correlation of TCP character-
istics. Lan et al. [3] use the flow characteristics considered
in this paper and consider burstiness of flows as a further
characteristic. Authors classify flows as heavy hitters for du-
ration, size, and rate based on threshold values, respectively
based on the 99th percentiles of flow characteristics, which
we also survey in this paper. As Zhang et al. [2] and our anal-
ysis of correlations, Lan et al. find strong correlation between
TCP size and rate. Beside their characterization, Heavy Hit-
ters are object of study regarding their identification and
detection [12–14]. Burstiness of CAIDA traces is studied by
Lazarou et al. [15]. A long-term study of Internet flow rate
limitations was conducted by Araujo et al. in 2014 [16]. Flow
rates are studied in details for cellular networks by Zhang
et al. [11], considering duration, size, and rate of flows and
the limiting factor behind such rates. Further studies focus
on the characterization of networks [17], traffic patterns re-
garding daytimes [1, 18], and the deployment of network
protocols and their characteristics [19]. An extensive study
of residential broadband Internet traffic characteristics is
presented by Maier et al. [20].

6 CONCLUSION
This paper presented a long-term study of Internet flow
characteristics and introduced a tool for highly scalable flow
analysis, which is published as free and open source [5].

We find that the 99th percentiles of TCP flow duration and
TCP flow rate show significant change between 2008 and
2016, while different intersections between 99th percentiles
show significant relevance of such heavy hitters. The share
of bytes transmitted by big-fast flows and very big-very
fast flows increases over time, while the share of such flows
remains very small. Measured correlations stay constant over
time and confirm findings from former studies.
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