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Abstract—Network support for Unmanned Aerial Vehicles
(UAVs) is raising an interest among researchers due to the strong
potential applications. However, current knowledge on UAV data
traffic is mainly based on conceptual studies and does not provide
an in-depth insight on the data traffic properties. To close this
gap, we present a measurement-based study analyzing in detail
the Control and Non-payload Communication (CNPC) traffic
produced by three different UAVs when communicating with
their remote controller over 802.11 protocol. We analyze the
traffic in terms of data rate, inter-packet interval and packet
length distributions, and identify their main influencing factors.
The data traffic appears neither deterministic nor periodic but
bursty, with a tendency towards Poisson traffic. We further create
an understanding on how the traffic of the investigated UAVs
are internally generated and propose a model to analytically
capture their traffic processes, which provides an explanation
for the observed behavior. We implemented a publicly available
UAV traffic generator “AVIATOR” based on the proposed traffic
model and verified the model by comparing the simulated traces
with the experimental results.

Index Terms—UAV, data traffic modeling, UAV measurements,
UAV traffic, network performance analysis,

I. INTRODUCTION

Recent advancements in aerial industry toward small-scale
Unmanned Aerial Vehicles (UAVs) paved the way for a set of
novel use cases in the sky. The diversity in size and shape, as
well as the cost efficiency of UAVs enable new opportunities
such as package delivery, public safety, and medical support.
We can classify UAVs mainly as fixed-wing, rotary-wing and
chopper drones [1]. Depending on the level of autonomy, these
vehicles can perform fully-autonomous operations or under the
control of a remote pilot. In general, the operation of UAVs
can take place between 90 and 150 m altitude, according to
the corresponding national regulations [2].

UAVs produce two types of communication traffic: 1) Com-
mand and Non-Payload Communications (CNPC), UAV and
Remote Control (RC) exchanges control-related data [3]; 2)
Payload communications, which enables mission-related sen-
sory data transfer [3]. CNPC holds stringent communication
requirements to ensure the safe operation of UAVs. Therefore,
reliable and robust communication schemes are in demand to
ensure flawless operations and public safety.

Although a number of research investigations studied UAV
communication requirements on a conceptual level [4], [5]
and the flight effects on the communication performance
[6], [7], studies did not empirically assess the properties of
the data traffic between UAV and RC. This paper provides
a measurement-based analysis on the CNPC of commercial
UAVs. Our aim is to determine the communication demands
and to characterize the data traffic produced by the CNPC. This
way, we can identify and model the individual contributors
to the data traffic of the CNPC, and anticipate the require-
ments to design reliable UAV communications. Our particular
contributions are that we characterize the CNPC traffic of
three different UAVs towards their RC in terms of data rate,
inter-packet interval and packet length distributions and study
the end-to-end data rate, latency and transmission reliability
performance. We identify the influencing factors on the traffic
generation and CNPC performance, and study their effects.
We model the data traffic of the UAVs and provide an open
source data traffic generator for future UAV studies in [8].

We organized the rest of the paper as follows: Section II
presents a review of the state-of-the-art literature in this topic.
In Section III, we describe the measurement setup in detail.
Afterwards, we discuss the CNPC performance analysis and
the communication demands in Section IV. Section V presents
the influencing factors on the data rate performance of UAV
data traffic. In Section VI, we describe the data generation
process on the investigated UAVs, and perform the data traffic
modeling for data rate, inter-packet interval and packet length
distributions. Finally, we discuss the limitations regarding our
traffic model in Section VII and provide the outcome of this
study as well as potential future works in Section VIII.

II. PREVIOUS WORK

In this section, we investigate state-of-the-art work re-
garding the data traffic and the communication requirements
of UAVs. Existing works analyze the UAV communica-
tion requirements on a conceptual level but mostly neglect
measurement-based analysis and traffic properties beyond av-
erage rates and maximum delay bounds.

The International Telecommunication Union Radiocommu-
nication Sector (ITU-R) analyzes the technical characteristics
of CNPC links [9] and found out 7 kbps for Downlink (DL)



and 44 kbps data rate demands for Uplink (UL)1 channel per
UAV when controlled over satellite networks. Hayat et al. [5]
reviewed the literature for the communication requirements
and their expectations for data rate demands are 24 kbps for
telemetry and 5 kbps for control data exchange. Similarly,
authors of [10], [11] mention that UAVs produce between 20
and 24 kbps. Technical reports from the Telecom Engineering
Centre (TEC) and 3rd Generation Partnership Project (3GPP),
[12], [4], state the data rate demands to range from 60 kbps
up to several hundreds of kbps per UAV for CNPC.

Concerning latency, the studies, [13], [5], [14], estimate
40 − 100 ms demand to control UAVs in real-time. Com-
parably, authors of [15] measured the latency ca. 60 ms
in an experiment for Beyond Visual Line-Of-Sight (BVLoS)
operations of UAVs and robots. In another experiment regard-
ing network performance measurement of swarm UAVs [16],
authors measured the end-to-end latency between 2.4 and 30
ms with varying data traffic load. Contrarily, according to [17],
the latency demand ranges from 100 ms to 3 s depending on
the application type.

As for reliability, 3GPP analyzes the requirements with
respect to the types of communication traffic and the level of
autonomy [13]. While the majority of the operations hold 10−3

Packet Error Rate (PER) demand, navigation messages that
originate from UAV during take-off and landing require 10−4

PER. Similarly, Radio Technical Commission for Aeronautics
(RTCA) specifies > 99.976% communication availability and
> 99.9% communication continuity for CNPC [18].

Regarding the video traffic, authors of [19] propose a
methodology to predict the link quality in fast moving UAVs
for adaptive video streaming. They conduct real flight tests
showing that their method is useful to avoid network conges-
tion for video streaming during the movement of UAVs. When
the UAV conducts video transmission, a network architecture
for real-time video surveillance applications of UAVs is pre-
sented in [20]. It is based on Long Term Evolution (LTE)
infrastructure with the combination of outdoor macro and in-
door femto cells. The authors of [21] develop a learning-based
UAV simulation framework that can test various UAV video
properties using different network protocols. The trace-based
measurements compare the simulation accuracy of the video
quality delivery to the real-world measurements. Another study
in [22] proposes an algorithm for dynamic computation off-
loading and control scheme to avoid video impairments on
UAVs. Their experiments show improved tracking accuracy
with a UAV-based video streaming.

Summarizing the presented studies anticipate the data rate
requirements between 20 and 200 kbps for DL and up to
50 Mbps for UL, while the latency demand can be as low
as 40 ms for CNPC. However, current studies do little to
characterize drone traffic beyond average rate, latency and
reliability requirements. We aim to take a step toward closing
this gap in this work.

1Throughout this article, DL channel refers to the data traffic from Remote
Control to UAV and UL channel is from UAV to Remote Control.
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Fig. 1. Flown Trajectory in the Measurements

III. MEASUREMENT SETUP

We set up a measurement campaign to obtain real data from
UAV communication, with which we analyzed and modeled
the UAV traffic. We compared three different UAVs from
different vendors, namely the DJI Spark [23], DJI Mavic Air
[24] and Parrot AR 2.0 [25], with specifications given in Table
I. We selected these UAVs because they can be controlled
using a smartphone, which can also be used to capture the
produced data. Apart from this, all UAVs can be considered
as typical representatives of their type.

We show the overall setup in Figure 1. All the UAVs use
the 802.11g protocol for communication, and we took the
measurements at 2.4 GHz. However, capturing the data traffic
on the UAVs themselves is not possible as DJI UAVs have
proprietary software. Therefore, we utilized an Android phone
as Remote Control and as data sniffer to record CNPC UL and
DL data on the transport layer. Concurrently, we also used a
laptop with Wireless Fidelity (WiFi) card in monitor mode for
data capturing on Medium Access Control (MAC) layer. We
ran Kismet [26] and tcpdump [27] to capture the traffic on the
phone and laptop, respectively.

We performed two types of measurements, one in the
laboratory and one in-flight. We completed the in-flight mea-
surements for network performance analysis in an outside
environment, where we flew the UAVs with a pre-defined
trajectory. We selected an open space, where Line-Of-Sight
(LoS) condition is dominant with minor obstacles such as
trees. Figure 1 shows the trajectory of the measurements taken
outside. We designed this trajectory to represent all the basic
movements of a UAV at varying altitudes in order to maintain
our findings as general as possible. 50 m is the maximum
flight altitude allowed by the software of UAVs [23]. We also
flew the UAV randomly without following a trajectory but kept
them outside the scope of this study. We share a sample data
trace of one of those flights in [8] for interested readers.

We collected multiple measurements with each UAV to in-



TABLE I
SPECIFICATIONS OF THE UAVS USED IN THE MEASUREMENT

UAVs/Specs DJI Spark
[23]

DJI Mavic Air
[24]

Parrot AR 2.0
[25]

Sensors GPS/GLONASS
2 x 3D Infrared Module

GPS/GLONASS
Altitude Sensor

Fwd. & Bwd. Distance
Meas. Sensor

Gyroscope
Accelerometer
Magnetometer
Press. & Altit.

Camera

Vertical Camera
Gimbal Camera -

1080p 30 fps
24 Mbps

Gimbal Camera -
4K Ultra HD

100 Mbps

Vertical Camera -
QVGA 60 fps
HD Camera
720p 30 fps

Max. Tx.
Power 18 dBm 19 dBm N/A

crease the confidence level of the captured data. The captured
CNPC traffic comprises: 1) The control commands on the DL
channel; 2) Real-time video stream; and 3) Telemetry data
on the UL channel. Therefore, this measurement campaign
adequately represents a remote-piloting scenario, where the
remote-pilot requires a real-time video stream to maneuver the
UAV. We performed both manual control and waypoint-based
flights during the outside measurements for network perfor-
mance analysis. This way, we could measure the effects of
the autonomy level of UAVs on the communication demands.

We conducted the in-lab measurements to capture the traffic
generation characteristics with minimal external effects such
as wireless channel influence. During these measurements, we
kept each UAV stationary in the lab and in close proximity
of around 50 cm to the RC. This distance is sufficiently
larger than the near-field distance of 16 cm, within which
the channel can produce disturbing effects, but small enough
to avoid significant impact of channel attenuation. To create
comparable situations for the video stream in the in-lab and
outside measurements, we set the camera of the UAV to watch
a video recorded during an outside flight.

We captured User Datagram Protocol (UDP) and 802.11g
packets using the Android phone and the WiFi card of the
laptop in monitor mode, respectively. 802.11g packets contain
the Radio Signal Strength Information (RSSI) information
on UL channel, and we can analyze PER as these packets
contain Packet Sequence Number (PSN) information in the
data header. On the other hand, capturing UDP packets right
at the interface of the RC is favorable to observe the actual
packet generation rates on DL as well as the packet lengths
without WiFi overhead. On UL, Radio Frequency (RF) channel
conditions, MAC back-off mechanism, retransmissions and
similar factors influence the packet arrival rates.

Beside the collected data, the RCs generate a log file per
flight based on the telemetry data received from the UAV.
The file contains the localization data from Global Positioning
System (GPS) as well as Inertial Measurement Unit (IMU)
sensor information such as altitude, speed, and UAV-RC
distance. We also utilize this data in relating the data traffic
performance to the flight status of the UAVs.

IV. NETWORK PERFORMANCE ANALYSIS

In this section, we present the CNPC performance analysis
on the captured data traffic between UAV and RC. We per-
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Fig. 2. Data rate results. While DL performance is stable at every altitude,
performance degradation can be observed on the UL channel due to limited
capacity at higher altitudes.

formed the measurements in an outside environment with the
pre-defined trajectory described in Section III. Parrot AR 2.0
is not included as it cannot complete the trajectory at 50 m
altitude. We provide the results in terms of end-to-end data
rate, inter-packet interval and transmission reliability. As we
collected the data traces at the network interface of the RC,
only the results of the UL channel include the effects of the RF
channel conditions. Also, we captured the data for computing
transmission reliability and RSSI on the laptop.

We flew DJI Mavic Air manually and DJI Spark manually
as well as with waypoints. Although the increased level of
autonomy with waypoints already implies less communication
[28], we wanted to verify this expectation with an already-
available UAV on the market. In the box graphs, we rounded
the height measurements to the nearest 10 m.

A. Measurement Results

We computed the data rates and inter-packet intervals rates
using the timestamps of the UDP packets, and we estimated
the PERs based on the PSNs of 802.11g packets. We reordered
the captured packets according to their PSNs and detected
the lost packets. Although PER calculations may be prone to
errors with this method due to late arrivals, it still provides a
useful analysis to assess the reliability performance. Finally,
we repeated the measurements multiple times to increase the
confidence level on the captured data. We presented the results
from the most stable flying conditions.



Fig. 3. Inter-packet interval results. Similar to the data rate performance,
inter-packet interval rates increase at higher altitudes on the DL channels.

1) Data Rate Analysis: Figure 2 shows the results of the
data rate performance. On DL, the rate is usually constant
since the control commands are sent over periodic intervals.
The data rate can vary between 60 and 120 kbps.

In UL, the average data rate is within 2 − 3 Mbps range.
It is negatively correlated with the flight altitude, especially
for DJI Mavic Air. At 50 m height, the data rate drops down
to 1 Mbps. The negative correlation is due to the degraded
RF channel quality at higher altitudes. We observe that the
average RSSI of DJI Spark reduces below −80 dBm at 50 m
height. Concerning waypoint-based control, the data rate on
the UL is lower compared to the manual control. The average
data rate decreases from 2.4 Mbps to 1 Mbps due to the less
number of video packets during waypoint-based control.

2) Inter-Packet Interval Analysis: Inter-packet interval is
the elapsed time between the generation or arrival of two
consecutive packets at the RC. It can give an insight on traffic
intensity, packet latency and the generation rate of the source
application. Figure 3 presents the inter-packet interval results.
On DL, it stays approximately between 10 and 20 ms for both
UAVs. At 50 m altitude, inter-packet intervals go up to 258
ms, which is due to poor channel performance.

As for UL, the intervals are less stable and larger compared
to the DL. This effect is caused by varying delays when
exceeding the channel capacity with large data rates on the UL,
as RF conditions are worsened at higher altitudes. Maximum
inter-packet interval goes up to 3 s on DJI Mavic. When the
packet arrival exceeds a certain threshold, the RC application
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Fig. 4. Packet error rate results during manual control. Such large rates imply
that lower transmission reliability levels than what is required in [13], [18]
can still be sufficient to maintain the control of the UAVs.

TABLE II
OVERALL RESULTS IN DL CHANNEL WITH MANUAL CONTROL

Median/Maximum DJI Spark DJI Mavic Air

Data Rate (kbps) 64.35 ‖ 80.19 77.67 ‖ 127.87

Inter-packet Interval (ms) 20.27 ‖ 177.33 10.26 ‖ 223.22

PER (%) 0 ‖ 32.39 0 ‖ 17.36

x‖y: x and y represent the median and maximum rates of the measurements,
respectively.

considers a loss of communication and notifies the pilot.
However, the UAV maintains its current position. While the
average inter-packet interval is 3.3 ms on UL with manual
control, it increases to 8.34 ms in waypoint control, since the
frequency of the video packets decreases.

3) Packet Error Rate Analysis: For PER measurements, we
present the portion of the captured data when the communi-
cation link is not lost. Figure 4 shows the PER results only
for manual control since we did not capture 802.11g packets
to compute PER during flights with waypoint-based control.
For DL, the average PER is 0.72% for both UAVs, while the
maximum PER is 32.39%. As for UL, PER is worse due to
the increased number of packets and consequently the larger
capacity demand. Nonetheless, the average PER is 3.37%.

We present the overall results of DL and UL channels in
Table II and Table III, respectively. The maximum data rate
is recorded to be 128 kbps while the maximum inter-packet
interval is 223 ms on DL. As for UL, the maximum data rate
is 3.47 Mbps using HD video stream. Although the maximum
inter-packet interval is 2.89 s, it includes the period when there
is a loss of communication. Excluding the outlier inter-packet
intervals on UL, we can consider ca. 250 ms from DL as the
upper latency threshold for both channels.

Overall, these results provide a broad analysis regarding
the communication demands and performance of the tested
UAVs. The results may naturally vary for other UAVs with
the number of cameras, video quality, video compression rate,
computational power and so forth. Another influencing factor
is the UAV level of autonomy. Fully autonomous UAVs may
not require video streaming, as the they send only periodic



TABLE III
OVERALL RESULTS IN UL CHANNEL WITH MANUAL CONTROL

Median/Maximum DJI Spark DJI Mavic Air

Data Rate (kbps) 2302.65 ‖ 3362.84 2116.83 ‖ 3470.85

Inter-packet Interval (ms) 0.38 ‖ 730.44 0.26 ‖ 2899.89

PER (%) 0 ‖ 49.58 1.35 ‖ 37.14

x‖y: x and y represent the median and maximum rates of the measurements,
respectively.

updates to the ground station to verify their mission. Therefore,
the data traffic pattern on UL may become symmetric to DL.
Also, increasing the the level of UAV autonomy can relax the
latency demands since onboard processors can handle flight-
related tasks. The next section will further extend the network
analysis to study the individual effects of the influencing
elements on the CNPC performance.

V. INFLUENCING FACTORS ON NETWORK PERFORMANCE

The data traffic and network performance on the investigated
UAVs is generally be influenced by several external factors.
Firstly, the RF channel conditions fluctuate depending on
the motion of UAVs as well as the physical environment.
Secondly, the amount of video information on the UL channel
varies based on the video encoder type, UAV movement, the
lighting condition, and so on. Thirdly, the interaction with the
RC might also influence the control traffic but does not show
any observable effect on the investigated UAVs. All of these
factors are highly situation- and implementation-dependent,
and often not known, e.g., the exact settings of the video
encoder may vary among different UAVs and are in general
not revealed to the end user. However, we can gain a higher-
level insight on the typical influence as observed on a state-
of-the-art UAV in various scenarios. We use only DJI Spark in
the measurements for simplicity. We show the measurement
results for the UL channel to observe the effects of both the
video encoder and the RF channel.

A. Effects of RF Channel and the Video Encoder

In this part, we aim at separating the effects of RF channel
and the video encoder to individually analyze their influence
on the data rate performance. We set up the first measurement
to observe the effects of only the RF channel. As the DJI
software does not allow the UAV camera to be turned off,
we covered the camera to minimize the video encoder effects
on the data traffic. We flew the UAV outside following the
pre-defined trajectory. Afterwards, we conducted the second
measurement in the lab to analyze the effects of only the video
encoder as described in Section III.

Figure 5 presents the data rate performance of both inves-
tigations. Although RF channel conditions produce outliers
at very low rates at 50 m height, the fluctuations are less
compared to the the ones from the video encoder. DJI Spark
has H.264 variable bit-rate encoder [23] and consequently, the
data rate largely varies at every height below 50 m due to the
constant motion of the UAV. Hence, these results show that
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Fig. 5. Analysis of RF and video encoder effects on data rate performance.
While the variable bit rate encoder causes large fluctuations, RF channel
strongly affects the data rate performance, especially at 50 m.
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Fig. 6. Analysis of the camera scene on data rate performance, which shows
the lower and upper bounds on observed data rate performance on the UL
channel of DJI Spark

while RF channel can majorly affect the data rate performance
under poor conditions, the variable bit-rate encoder is in fact
the main cause of the large fluctuations on the data rate.

B. Effects of the Video Scenery

We performed two sets of measurements to determine the
lower and upper bounds of video data rate based on the
recorded scenery. For this, we used the fact that the transmitted
data rate is correlated with the information level of the image
scenery itself. To determine a lower bound on video traffic, we
placed the UAV in a completely dark room, where the camera
recorded only black pixels. This reduces the traffic sent by
the encoder to a value below that one encountered in real
world. For the upper bound, we set the UAV camera to watch
a television noise effect, where the pixel values constantly alter
and thus information level of the images is very high. As both
measurements can point to the upper and lower bound of video
rates, we analyze their maximum variations.

Figure 6 shows the results. The data rate has repetitive drops
approximately every 40 s, which we could not fully clarify but
which most probably is related to the video encoder itself. The
rate varies between 1.8 and 3.3 Mbps indicating that the data
rate performance can vary up to a factor of 1.8 depending on
the camera scenery of the tested UAV. Moreover, the data rate



is more constant when the UAV records only black pixels.
This result verifies that the change in the video scenery is the
main reason of large fluctuations on the video rate.

VI. MODELING THE UAV-RC DATA TRAFFIC

We present our intuition of the traffic generation process
on the UAVs, which we obtained by testing different imple-
mentation options and observing the impact on the produced
traffic. We propose an analytical model based on our best
estimation, which can derive the data rates on DL and UL
channels. Afterwards, we matched the Probability Density
Function (PDF) distributions of data rate, inter-packet interval
and packet length parameters of the collected data with the
statistical models obtained from our analysis. As the data
distributions of all UAVs have similar characteristics, which
we later show in Figure 9, we present the PDF results of
only DJI Spark for the sake of brevity. Based on the proposed
packet generation model, we set up a Monte-Carlo simulation
to validate the model against the collected data from the UAV.

A. Overview of the Packet Generation Process

Understanding the packet generation process is essential to
correctly formulate and model the data traffic of UAVs. DJI
UAVs have proprietary software and thus, it is not possible to
access their operating systems to analyze the data generation
flow. Instead, we gather an intuitive understanding on the way
the traffic is generated, propose a model and verify the model
by conducting a Monte-Carlo simulation study.

The overall UAV set-up and the collected traces indicate
that the traffic consists mainly of control commands on DL
and of a video stream along with telemetry data on UL.
According to [29], each control/telemetry parameter is updated
at a fixed rate and five different update rates (1, 10, 50 and
100 Hz) are possible for DJI UAVs. Although this leads
to the assumption that the traffic is very deterministic and
periodic, our analysis shown later in Figure 8 indicates that we
cannot model the aggregate UAV traffic with a simple periodic
generation process. To understand the underlying process, we
implemented several options on how periodic the traffic can
be generated. We present the one that leads to traffic patterns
closest to the collected data from the UAV.

We model the underlying process in terms of a discrete-time
system with time t ∈ {0, 1, ...}, where each instant refers to
a small time step of fixed separation, e.g., a CPU cycle. As
depicted in Figure 7, we consider a set of captured parameters
I, with parameter i ∈ I, that are transmitted. A parameter may
correspond to telemetry information such as position or status,
or control commands. Each parameter i is read with a fixed
frequency fi and for each read, a binary value of length li is
generated on the application layer. After generation, the value
is placed into a transport layer transmission buffer. The status
of the buffer is checked regularly with a fixed rate fu, and for
each value that is in the buffer, a UDP packet is created and
sent to the buffer of the MAC layer for wireless transmission.

...

...

...

{

Fig. 7. Overview of the packet generation process of UAVs from the
application layer down to the network interface.

With this procedure, we can model the transmissions by a
combination of mathematical processes. In each time step t,
parameter i ∈ I generates data ri[t] according to the equation:

ri[t] =

∞∑
k=−∞

δ[t−∆i − kTi] · li, (1)

where k ∈ N is an integer, ∆i is an offset, Ti = 1/fi is the
transmission period of parameter i and δ[x] is the Kronecker
delta, which is one for x = 0 and zero otherwise. As can be
seen, the data produced by parameter i is corresponds to a
strictly periodic signal with fixed rate fi and a “phase” offset
∆i, where each signal peak as the same height li.

B. Data Rate Formulation

Using Equation 1, we model the DL and UL data rates in
the following sections.

1) DL Channel: On DL, the data traffic consists only of
control-related packets. Let Idl be the set of parameters sent
in DL. Then, the traffic stream aggregates their values over
a time interval of Tdl steps and sends an own packet for
each parameter of Idl that has been generated in this interval.
We model this by considering a UDP transmission buffer that
holds an amount of data Bdl[t] in step t. The buffer evolves
from step to step according to the Lindleys’ recursion:

Bdl[t] = max{Bdl[t− 1] +
∑
i∈Idl

ri[t]−Rdl[t], 0}, (2)

where Rdl[t] is the amount of transmitted data via the UDP
socket in step t and the max{·} operation ensures only positive
values for the buffer status. Rdl[t] is given by:

Rdl[t] =

∞∑
k=−∞

δ[t−∆dl − dk − k · Tdl]Bdl[t], (3)



where dk ≥ 0 is a sequence of processing delays according
to a random distribution. That is, the application space scans
the buffer status regularly, at time instants that are Tdl apart,
processes them and then sends the entire buffer content to its
peers. Together, Bdl[t] and Rdl[t] model that Bdl[t] aggregates
the send data within a scan interval of Tdl steps. After these
steps, the entire data is flushed toward the MAC layer in a
burst. This creates the effect that although each parameter
is read with a strict periodicity by itself, the overall traffic
distribution below application layer becomes more complex
and in particular more bursty. Finally, the time-averaged rate
Rdl can be verified to be:

Rdl = lim
T→∞

1

2T

T∑
t=−T

Rdl[t] =
∑
i∈Idl

lifi. (4)

2) UL Channel: The UL in the tested UAVs consists of both
telemetry and video streams. We model the telemetry data as
set of data parameters Iul, similar to the DL parameters. In
addition, we consider a video stream that creates data accord-
ing to a time-dependent process rv[t]. Our traces indicate that
all UAVs create video streams with variable bit-rate but fixed
frame-rate. The exact number of bytes per frame then may
vary and is subject to various factors including the recorded
scenery itself as shown. We therefore can model the rv[t] by
a fixed-rate process with variable data per sample [30]:

rv[t] =

∞∑
k=−∞

δ[t−∆v − k · Tv] · lv[t], (5)

where the data per frame lv[t] changes in time and is a
function of the encoded scenery, the number Nv of pixels
processed by the video encoder, the color depth Dv of the
camera, the frame rate Fv and the compression rate Xv of
the encoder. Various models for the evolution of lv[t] exist
[30], which may be well adopted into our model assumption.
However, the full analysis of the time dependence of lv[t] seen
on the UAVs is out of the scope of this work. Altogether, we
can model the UL data by a buffer process Bul[t] that evolves
according to:

Bul[t] = max{Bul[t− 1] + rv[t] +
∑
i∈Iul

ri[t]−Rul[t], 0}, (6)

where Rul[t] is the amount of data that is transmitted via the
UDP socket and is given by:

Rul[t] =

∞∑
k=−∞

δ[t−∆ul − dk − k · Tul]Bul[t]. (7)

Analog to (4), the average rate simplifies to:

Rul =
∑
i∈Iul

lifi + fvlv(Nv, Dv, Fv, Xv), (8)

where lv(Nv, Dv, Fv, Xv) and fv are the average packet
length and frame rate of the video stream, respectively.

Algorithm 1 Simulative Data Generation Flow
1: Consider traffic direction d ∈ {ul, dl}
2: for every t do
3: // Update parameter & control values
4: for i ∈ Id do
5: if (t−∆i)%Ti == 0 then
6: parameter[i] ← current value i

7: // In uplink add video stream
8: if (d == ul) and (t−∆v)%Tv == 0 then
9: rv ← current video frame

10: // Push data out from buffer
11: if (t−∆d)%Td == 0 then
12: for i ∈ Id do
13: if !empty(parameter[i]) then
14: send from buffer(parameter[i])
15: parameter[i] ← ∅
16: if !empty(rv) then
17: send from buffer(rv)
18: rv ← ∅

C. Verification of the Formulation

To verify the correctness of the data rate models, we created
a data generator using Python [8]. Algorithm 1 shows the
pseudo-code of our generation flow. Note that in Algorithm
1, we used a ”switch” variable d ∈ {ul, dl} to group UL
and DL direction into one code, i.e., Id is either Iul or Idl
and Td is either Tul or Tdl. In words, Algorithm 1 states
that for each parameter i, data values are added to a local
variable in regular time intervals and if the direction is UL
(d == ul), the same happens for the video frames. Also
at regular time intervals but with different frequencies, the
variables are checked for their status and if new values are
present, these are sent out through the socket to the lower
layer. Our implementation also includes packet fragmentation
if the values exceed the maximum transmission unit, which is
the case for video frames. As our data generation code is run
in real-time on the user-space of a Linux machine, random
processing delay is automatically added to the process, such
that we did not explicitly account for it in the generation loop.

D. Data Traffic Model Estimation

In this part, we present the data distribution and fitting
statistical models of the UAV data traffic. We also compare
the distribution results from our simulation with the collected
UAV data. We present the PDF distributions of data rate, inter-
packet interval and packet length. We used the Mean Squared
Error (MSE) to measure the similarity of the simulated data to
that of the collected UAV data. We present the PDF results of
only DJI Spark as the data distribution of the tested UAVs are
alike, which can be observed in their Cumulative Distribution
Function (CDF) distributions in Figure 9.

1) Data Rate: Figure 8 (a,e) presents the PDF results.
We can describe the data rate distributions of DL and UL
with a compound Poisson model. This is mainly due to the
exponential distribution of the inter-packet intervals, which
causes the generated packets to follow compound Poisson
process over distinct time intervals. Therefore, we can describe
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Fig. 9. CDF of DL and UL data of all the tested UAVs. The CDF patterns
in each graph except (e) are related to one another, which indicates that the
data traffic distributions of all the UAVs are alike.

our packet generation model with M/G/1 queue model, where
the packet arrival is Poisson [31].

We observe the Poisson process with the long tails in the
graphs. On DL, the data rate only consists of independently
generated control parameters. On UL, the data rate is mainly
determined by the motion-dependent and bursty video traffic.

As for the simulation results, the distribution pattern has

similar characteristics to that of the collected data from the
UAVs on the DL channel. On UL, although the distribution
is Poisson, the median rate is larger than that of the collected
data. Nevertheless, the MSE of the PDFs is lower on UL since
the density values are lower in the magnitude of 100 compared
to that of DL.

2) Inter-packet Interval: Figure 8 (b,f) presents the results.
Different parameter generation rates, fi, and the packet gen-
eration rate, fu from Figure 7 causes packets to appear as
independently and uniformly distributed in a pseudo-random
manner. Because, the inter-packet intervals follow the pattern
of a Linear Congruential Generator (LCG) [32], which is
known to produce pseudo-random numbers with uniform
distribution. Therefore, the inter-packet interval follows ex-
ponential distribution. This model is widely inherited for the
time-interval analysis of discrete events [33].

On DL, two peaks are present around 1 and 20 ms, and the
distribution density then gradually decreases. The first peak
around 1 ms is due to the bursty packet generation of the
values that are accumulated at the buffer of the transport layer.
The consecutive generation can occur when the parameter
generation rate, fi, is faster than the traffic generation rate,
fdl = 1/Tdl, or when values from different processes arrive
within one scan interval Tdl. As for the second peak at 20
ms, it is the time interval between the last generated packet of
the previous buffer scan and the first packet of the new buffer



scan, i.e., it is Tdl. The smaller peaks between 0 and 20 ms in
the graph appear mainly due to the random processing times
of the packets in the hardware. The intervals > 40 ms can
imply the random occurrences of empty buffer scans.

With regard to UL, the majority of the packets are sep-
arated within 1 ms interval since large video information
is partitioned into multiple segments in the buffer and sent
consecutively. Afterwards, the density decreases and spreads,
which is mainly produced by the telemetry packets.

We observe similar distributions in our simulation results.
On DL, the bursty packet generation can be observed around 5
ms, which is slightly shifted compared to that of the collected
UAV data. Also, the processing delay is not as widespread.
On the other hand, the second peak in the simulated data
is well-aligned with the actual UAV data. As for UL, the
exponential decay can also be observed on the simulation but
wider compared to the actual UAV data. The MSE is lower
on the DL channel than that of UL.

3) Packet Length: In Figure 8 (c,g), the packet lengths
are discretely separated on DL. The particular distribution
shown by the measurement is due to the different generation
frequency of each data parameter. The simulation result con-
firms this behavior in general, albeit with a different particular
pattern. As for the UL, over 73% of the packets are 1514 bytes,
which are the partitioned video packets. Such pattern is also
observed in the data distribution of the simulation.

Figure 8 (d,h) shows the correlation between the inter-packet
interval and packet lengths, and thus creates a relation to the
two middle columns of the figure, identifying which packet
length dominates at which inter-packet interval time. In Figure
8 (d), the distribution is spread, but the density is higher around
100 and 140 bytes ca. at 20 ms, and around 70 bytes at 0 ms.
In (h), the density is concentrated on 1514 bytes at 0 ms.

We present the CDF of the collected data from all the
tested UAVs in Figure 9 to show the similarities in their data
distributions. In (a-d,f), the data of all the UAVs have the same
pattern but the median rates of Parrot AR are different than
that of DJI UAVs. In (e), the packet length distribution of
Parrot AR is Bernoulli: 65.6% of packets are 66 bytes and
the rest are 97 bytes. DJI Spark and Mavic Air have distinct
packet length distributions between 75 and 154 bytes.

We share our UAV data traffic generator AVIATOR for public
use in [8] along some of the collected data traces from the
UAV. Future research investigations can utilize AVIATOR
to generate realistic UAV data traffic in their simulation,
emulation as well as hardware-based studies.

VII. DISCUSSION ON THE LIMITATIONS OF THE RESULTS

In this study, we used three well-known UAVs available on
the market to analyze, model and generalize their generated
traffic. However, although the UAVs can be seen as typical
representatives of their type, there are various ways how they
can be built and how their software can be structured, which
also influences the produced traffic. On UL, the encoders of
the UAV cameras significantly influence the generated traffic.
A simple switch of the used encoder may change the induced

data rates and traffic behavior, in which case our analysis might
loose validity. On DL, our model is based on the assumption
that packets are generated with independent but fixed periodic-
ity for different parameters. A change to, e.g., an event-based
packet generation would change the properties and hence the
model. Finally, also the network type itself has an impact on
the observed traffic. Current UAVs mainly communicate over
random access channels, similar to WiFi standards. The back-
off mechanism alone strongly influences the traffic pattern.
On the other hand, a UAV that communicates over a cellular
network might well produce a different behavior from the RC
point-of-view.

The generated traffic from our simulation model well
matches to the collected UAV traffic, as depicted in Figure 8.
The model can further be improved to better align, especially
the subplots (b, c, e). Nevertheless, this model approximates
the main effects of the actual UAV traffic. As result, our
proposed models represent typical traffic of typical UAVs that
are currently available, with uncertainty whether they will be
valid for future products.

Our main conclusion, however, is that the traffic generated
by UAVs follows complex patterns and may have a diverse
nature. The most significant insight probably is that due
to the sheer number of exchanged parameters, the created
traffic tends to assume known properties such as exponential
inter-arrival times and exhibits bursty behavior, even if each
value itself is updated in a periodic manner. This overall
effect is in contrast to assumptions made in literature, which
mainly consider UAV traffic to be well-behaved, according to
deterministic and periodic patterns.

VIII. CONCLUSION

In this study, we present the results of a measurement
campaign, where we analyze the data traffic between various
UAVs and the RC. The network performance analysis shows
that the remotely-piloted UAV operations can demand up to
130 kbps and 3.5 Mbps with the tested UAVs for DL and UL
channels, respectively. Furthermore, 250 ms can be considered
as the upper-bound latency threshold.

We also study how the camera scenery with H.264 encoder
as well as the RF channel conditions influence the data rate
performance. The constant motion of UAV causes fluctuations
on the data rate and the poor RF channel conditions at high
altitudes can limit the channel capacity.

Finally, we model the data rate, inter-packet interval and
packet length distributions of the collected data. Our results
show that the inter-packet interval is exponentially distributed
and consequently, the data rate follows compound Poisson
process. Packet lengths cannot be modeled as they are discrete
and dependent on the number of different data parameter
generation rates. The modeling results and the UAV traffic
generator can be beneficial for future works to estimate the
data traffic between UAV and RC. These results reflect the
capabilities of only the tested UAVs. Therefore, a future study
should extend this work with other types of UAVs to further
evaluate their data traffic.
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