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ABSTRACT
Ever growing demand for network bandwidth makes com-
puter networks an area of constant development and fast ad-
justments. The steady change makes good performance as-
sessments equally necessary and challenging. This develop-
ment motivated us to revisit the established benchmarking
methodology. We provide an overview of the state-of-the-
art in router benchmarking, the currently available bench-
marking tools, and challenges for benchmarks. A discussion
of benchmarking results for three different devices (routers
based on Linux and FreeBSD, and a MikroTik router) re-
veal different properties currently not covered by standard-
ized benchmarks. We conclude by adding tests to the com-
mon benchmarking methodology reflecting these properties
to make the results more valuable.

The prototype software implementation of our own bench-
marking tool and its measurement reports are publicly avail-
able [26].
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•Networks → Network measurement;

Keywords
Benchmarking methodology, RFC 2544

1. INTRODUCTION
Networks face increasing traffic caused by a growing num-

ber of connected devices and data intensive applications. To
keep up with this demand, computer networks develop fast
and change constantly. In recent years, we have seen trends
such as the increase of general purpose hardware in net-
working and the transition from single-purpose machines to
devices with multiple capabilities. These changes require re-
considering the traditional ways to assess the performance of
networking equipment. Besides specifications and promises
by the vendors, independent benchmarks are an important
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way to rate and compare the performance of different de-
vices. RFC 2544 is a standardized test to benchmark a wide
range of networking appliances. Although finalized in 1999,
it is still of relevance today as it is the foundation for many
benchmarks in the area.

In this paper, we revisit benchmarking methodology for
interconnect devices. We conduct several measurements and
show the properties of different interconnect devices. More-
over, we present challenges and suggestions how to reflect
those effects with relevant benchmarks.

We provide a short history of benchmarking methodology
and tools that are fundamental to current best practice in
Section 2. Further, we present our own benchmarking solu-
tion based on inexpensive commercial-of-the-shelf (COTS)
hardware and measurement results from state-of-the-art and
above-standard benchmarking discussing their expressive-
ness and shortcomings in Section 3. After that, we suggest
changes to the currently established benchmarking method-
ology in Section 4.

2. METHODOLOGY
In the following, we look at approaches to benchmark in-

terconnect devices, investigating relevant standards and so-
lutions. We discuss shortcomings and derive our require-
ments for an improved benchmarking tool.

2.1 Relevant Benchmarking Standards
The IETF started its standardization activities on bench-

marking of network devices with the foundation of the bench-
marking methodology working group (bmwg) in 1989 [5].
Performance indicators were defined in RFC 1242 [8] in 1991.
In 1999, the bmwg published RFC 2544 [9] which has de-
veloped into the de facto standard for router benchmark-
ing [38]. Since then, the bmwg has provided further doc-
uments that define additions for IPv6 benchmarking [31],
benchmarks to determine the “reset time” [3], and other
benchmarking tests for recovery [3] and FIB-dependent (For-
warding Information Base) performance [39]. The bmwg
initiated drafts extending FIB-dependent performance mea-
surements in 2005 or standardizing IPsec performance mea-
surements in 2009 which were both never published as RFCs.
Not all issues discussed inside the bmwg are released as an
RFC, e.g., the extension of FIB-dependent performance tests
to take the router internal instantiating into account in 2005
or the discussions about IPsec performance in 2009 never left
draft level. Documents from other organizations, such as the
ITU-T Y.1564 [22] (EtherSAM) or the MEF 14 [25], give ad-
ditional comments or partially redefine the benchmarks of
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RFC 2544. The following key performance indicators (KPI)
are the most important defined by RFC 2544:

• Throughput: The highest rate that the device under
test (DuT) can serve without loss.

• Back-to-Back frame burst size: The longest duration
(in frames) the DuT forwards bursts without loss.

• Frame loss rate: The percentage of dropped frames un-
der a given load.

• Latency: The average duration a packet needs to be pro-
cessed within the DuT.

After the most basic test run, the test should be repeated
under each available condition separately including different
frame sizes, bursty traffic, and number of rule entries. If
the number of conditions or combination of conditions is
feasible, the tests may also be performed while successively
adding conditions. Thus, other metrics, e.g., for the FIB-
dependent performance comparison [39] can be derived.

As RFC 2544 is the de facto standard for benchmark-
ing networking devices, many vendors release RFC 2544-
compliant measurements to promote their products [29, 11].

2.2 Available Benchmarking Solutions
The available tools for RFC 2544 conformant tests can be

divided into two groups: Hardware-based devices, a powerful
but costly approach, and software-based solutions with high
flexibility, lower costs but moderate traffic rates and less
precision.

Hardware-based benchmarking devices can accurately
control the sending rate and can perform precise latency
measurements. Such devices are available from different ven-
dors such as Ixia [2], Spirent [37], and Xena [41] providing a
collection of predefined benchmarks, which are either com-
plex to adapt, or cannot be extended. Although they pro-
vide well-defined and reproducible performance tests, the
high costs prevent widespread utilization [7].

In 2007, Bolla and Bruschi [6] published an in-depth per-
formance study of software-based routers, including an RFC
2544 test with such a hardware-based benchmarking device
and additional router internal performance counters for their
analysis. Although the insights from internally gathered per-
formance statistics may be helpful, the use of these counters
may influence the performance or they may not be accessible
for proprietary devices.

A less expensive and more flexible hardware benchmark-
ing device is NetFPGA which is an open source FPGA-
based network card that can be used for implementing device
benchmarks [27]. NetFPGA-based traffic generators [12, 20]
provide accurate inter-packet delays and capabilities to mea-
sure precise latencies. Rotsos et al. [34] use a NetFPGA for
OFLOPS – an evaluation framework for OpenFlow devices
– and are able to provide latency measurements in the sub-
millisecond range.

Basic software-based packet generators can be used for
performing RFC 2544 conform tests. These tools rely on
cheap commodity hardware but suffer from comparatively
low performance and inaccuracies caused by COTS systems’
architectures [7]. In fact, most software packet generators
can only handle packet rates that are not sufficient to satu-
rate a single 10 GbE link with minimum-sized packets. This
is valid for most traffic generators that emulate realistic traf-
fic, e.g., Harpoon [36], but also for network benchmarking

tools such as iperf [21] that promise to measure network
bandwidth, jitter, packet loss, etc. Even commercial so-
lutions like Candela LANforge fail to achieve such packet
rates [10].

High-speed packet processing software does not rely on
the OS network functionality but replaces it with special-
ized frameworks for efficient packet transmission. Examples
are zsend on PF RING ZC [28], packetblaster on Snabb [35],
Pktgen-dpdk [30] on DPDK [1], or pkt-gen on netmap [32].
These tools are able to send simple packets or replay a PCAP
file at millions of packets per second. However, none of
these solutions is able to generate accurate inter-packet de-
lays and to measure precise latencies - a fact that leads to
uncontrolled micro-bursts and jitter hence influencing the
results [7, 14, 12].

2.3 Benchmarking Requirements
Device benchmarks need to be (i) valid, i.e., the bench-

mark outcome reflects real-world device behavior, (ii) re-
producible, i.e., other organizations can reproduce and ver-
ify published benchmarks, and (iii) comparable, i.e., we can
directly compare the benchmarks executed by different orga-
nizations. With packet processing becoming more software-
based, current benchmarking methodologies cannot satisfy
these requirements. We identify three key shortcomings of
existing benchmarking solutions that are challenging to im-
plement.

Validity: Existing benchmarking approaches often rely
on simplistic traffic patterns that do not represent realistic
use cases of network interconnect devices. Even the most
basic interconnect devices such as switches or routers show
non-trivial worst-case performance (depending on the traf-
fic applied) when implemented in software. First, the inter
arrival times between incoming packets influence the batch-
ing behavior [15]. Second, the ordering and diversity of in-
coming packets stresses the cache and thus impacts packet
processing performance. More complex interconnect devices
exhibit completely non-trivial performance properties, e.g.,
Snabb [35] – a framework for implementing network func-
tions – relies on just-in-time compilation leading to unpre-
dictable side-effects. Therefore, test traffic for valid bench-
marking requires packet diversity and needs to consider rel-
evant performance limiting factors present in a multitude of
devices. The relevant factors have to be reconsidered and
updated as the tested systems evolve.

Reproducibility: Due to the increasing number of op-
tions to configure and implement tested devices, benchmark-
ing needs to document the DuT configuration. Software-
based packet processing is not an isolated component, it re-
quires an operating system, device drivers, and an execution
platform, all of them offering plenty of choices for configura-
tion. Choices include settings directly related to the tested
functionality (e.g., routing table), to the operating system or
device drivers (e.g., scheduling, CPU core binding, network
stack version or fast packet processing framework), and to
the underlying platform. The choice of an execution plat-
form offers many degrees of freedom, with numerous choices
for CPU (differing in instruction set, optimizations, clock
rate, number of cores, cache hierarchy, etc.), network inter-
face card (offloading features), system buses, RAM, and vir-
tualization solutions. Even many proprietary off-the-shelf
devices, that come bundled with specific hardware, allow
updating components and installing add-ons to extend the



functionality of a device. Minor changes to device config-
uration, for instance, the batch size [18] can have a large
impact on performance. Therefore, a mere specification of
the tested topology and test traffic is not sufficient to re-
produce results. To enable others to verify benchmarking
results of software-based packet processing applications, the
tested device must be documented in detail including all
applied settings, the operating system, virtualization if ap-
plicable, and a description of the underlying hardware. Ide-
ally, the description of a tested device is given in form of an
OS image and scripts that automate all necessary steps to
configure the device into the precise state which was bench-
marked. Automation also minimizes configuration errors.
If the benchmark requires multiple test cycles of a recon-
figured tested device (for instance, exchanging the routing
table), the load generator and device reconfiguration should
be coupled and automated to further narrow the chance of
misconfiguration.

Comparability: As the diversity of hardware platforms
is almost unlimited, virtually every published benchmark
of software-based packet processing applications uses a dif-
ferent combination of hardware, rendering the benchmarks
incomparable. While the CPU is the prevalent performance-
limiting factor in software-based packet processing, other
components such as the network interface cards and PCI
buses also need to be considered [17]. Even on the same
hardware, comparative studies can be challenging as the
required software components also need to be configured
in a comparable manner [18]. We consider the definition
of a standardized benchmarking hardware platform unfea-
sible. Therefore, we need to look for abstractions of the
packet processing performance from the underlying hard-
ware. This means determining and describing only those
hardware properties that have a significant impact on the re-
sulting packet processing performance. Modeling the packet
processing performance is a topic of ongoing research.

These problems in device benchmarking methodology also
affect benchmarking solutions. In addition to their tradi-
tional requirements of fast and accurate packet generation
and measurement, benchmarking solutions should also be
able to generate application-specific traffic and handle the
configuration of the tested device.

3. SELECTED MEASUREMENTS
In the following, we show different device behavior and

how to measure it. Therefore, we perform RFC 2544 bench-
marks of three DuTs: Linux routing, FreeBSD routing, and
an off-the-shelf MikroTik router. Although there have been
numerous efforts to improve performance, we rather selected
representative DuTs, than highly optimized and specialized
software which we consider unsuitable for argumentation
about benchmarking methodology. All three DuTs process
packets in software, which was not common when RFC 2544
was defined. For the discussion of special effects, we also re-
vert to other results that have been published and reviewed
as part of studies on high throughput [13] and traffic gener-
ation [14].

The test setups consist of two separate machines – one for
benchmarking and one DuT (see Figure 1). The egress ports
are connected to the ingress ports of the other device respec-
tively. For testing the DuT forwards traffic from its ingress
port to its egress port which allows the benchmarking device
to determine the DuT’s precise forwarding capabilities.

DuT MoonGen
J

I

J

I

Figure 1: Setup

3.1 RFC 2544 Software Implementation
Benchmarking data are generated with our own software

solution for automated RFC 2544 benchmarking that sup-
ports high traffic rates, precise latency measurements, and
the generation of different traffic patterns. It is based on
MoonGen [14] which is easy to extend due to its modular
architecture. Prior to each benchmarking test the Moon-
Gen RFC 2544 module automatically configures the DuT
according to the guidelines from RFC 2544. All performance
benchmarking tests run without altering the configuration
other than specified by the benchmarking tool itself. Au-
tomatic configuration creates reproducible test results and
prevents manipulations that could enhance the test results.

In the following, we only point to measurement results
that show special effects. We provide the prototypic bench-
mark tool and the full benchmarking reports generated by
our framework on our website [26].

3.2 Results of RFC 2544 Benchmarks
Throughput tests determine the maximum throughput in

Mpps and Mbit/s. For software-based packet processing sys-
tems the throughput is either limited by link capacity or
by the processing unit. The memory bandwidth is usually
not limiting [17]. Packet processing costs mainly depend
on the number of packets (i.e., the number of headers to
process) rather than packet size. Therefore, the process-
ing unit typically limits throughput when many small-sized
packets are to be processed, the link capacity limits through-
put for larger-sized packets. Figure 2 shows the results of
the throughput benchmark for different frame sizes. The
throughput measured in bit per second on the wire (Fig. 2b)
shows linear behavior while the goodput which is not shown
here further profits from the decreased per byte overhead of
increased data units.

Note that this is not a fair comparison – and not meant
to be – between Linux and FreeBSD since Linux was config-
ured with a firewall and FreeBSD without. We previously
benchmarked the same Linux system without firewall rules
and achieved 1.58 Mpps [17]. Nevertheless, the unfair com-
parison fully complies with the guidelines, as we did not
deactivate any features while we violated the guidelines in
the fair case.

RFC 2544 demands to perform the tests in a manner that
all processing paths are covered. Therefore, the comparison
between MikroTik and the other devices is flawed due to the
used traffic pattern and default device configuration: The
MikroTik router reports the utilization of all 36 cores via
SNMP. The processing load is independent of the number of
flows, indicating that per-packet load balancing is used when
a single large flow is applied. Linux and FreeBSD routers
only use one core as they load balance via hashing over layer
3 and 4 addresses. RFC 2544 suggests to use 256 differ-
ent flows in a second test run after establishing a baseline
with a single flow but internal load balancing mechanisms
still may require explicit activation, be undocumented, or
unknown. For our DuTs we tested the effects of multiple
flows: Linux scales linearly with the number of flows up to
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the four available CPU cores, FreeBSD only increased from
1.3 Mpps to 2.9 Mpps. The number of flows had no effect
on the MikroTik throughput, providing further evidence of
per-packet load balancing.

RFC 2544 conformant latencies are measured under the
previously determined maximum load without frame loss.
Our benchmark found that FreeBSD has a lower latency
compared to Linux that is explained by the polling and
batch-processing technique used in Linux. Linux in opposite
achieves a higher throughput with the same configuration.

The MikroTik router achieves an average forwarding la-
tency of 60µs with 64-byte packets at 95% line rate. How-
ever, MikroTik achieves line rate with most packet sizes and
the RFC 2544 compliant latency measurements for bigger
packets were therefore executed at full line rate. Fill levels
of buffers can never decrease with a line rate load as the
incoming traffic is the same rate as the maximum rate by
which the buffer can be drained. For software routers whose
network card or CPU is in a sleep state, their buffers are
filled up to some degree while the system is processing the
first packets of a stream. The resulting latency is then ran-
domly depending on the warm-up characteristics and varies
between independent test runs, but not within a single un-
broken stream. This effect is visible with all latencies mea-
sured at line rate for all three test devices.
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Figure 4: FIB-dependent performance of a Linux router

The frame loss rate states the percentage of lost frames.
Figure 3 displays the results of the frame loss benchmark
for our DuTs. Frame losses occur as soon as the devices
are overloaded. The actual throughput may still increase or
decrease beyond the maximum throughput point. For the
three devices here, such a behavior does not occur as traffic
is dropped at the network card due to the lack of memory
descriptors. This does not influence the bottleneck compo-
nent, the CPU core. In general, effects due to increasing the
load beyond the maximum throughput are atypical and the
test not generally relevant. However, these effects can be
measured for virtual machine scenarios [16].

For certain devices tests like the RFC 2544 frame loss rate
test may be omitted. Following this argumentation, we have
to add tests for certain device properties. Figure 4 shows
how routing table size influences the maximum throughput
of our Linux router without a configured firewall. The cache
misses that we added for explanation have been determined
with the Linux tool perf stat in 10 30-second runs for each
packet rate and FIB size. We plotted the 95% confidence
interval where the error bars were bigger than the mark in-
dicating the average. The throughput is neither constant
like with routers that store their routing table in content-
addressable memory (CAM), nor decreasing according to
the algorithmic complexity of the lookup data structure in
Linux. In Figure 4, the throughput decrease is directly re-
lated to the increase of cache misses on each cache level. The
lower rates for 1 and 2 flows are caused by postprocessing
routines and not by the FIB.

3.3 Meaningful KPIs for Latency
In comparison to throughput, latency varies even under

unchanged conditions (like a benchmark). Therefore, we
went beyond the requirements of RFC 2544 and took 10 000
measurements while the RFC requires only 20. This large
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Figure 5: Forwarding latency of MikroTik, Linux, and FreeBSD

number is used to visualize the results in histograms and to
demonstrate why latency should not just be reported as an
average value. We prefer to use histograms over CDFs as
we think that these allow for a easier recognition of long tail
distributions. The histograms aid our discussion where the
average latency can be misleading.

The first one is a long-tail distribution that is often en-
countered in software systems, especially ones that are vir-
tualized [40]. Both our FreeBSD and Linux results exhibit
such distributions as shown in Figure 5b and 5c. The high-
est 99.9th percentile in relation to the average was observed
for 128-byte packets. Linux has a 99.9th percentile of 142µs
(22 times the average) and FreeBSD 38µs (5.5 times the
average).

The second example are multimodal distributions that can
happen if packets pass through different pathways in a sys-
tem. One example where this occurs is when packets from
multiple incoming ports are forwarded to a single outgoing
port. We have encountered the phenomenon of a bimodal la-
tency distribution in previous work while benchmarking an
AS5712-54X switch running PicOS with OpenFlow (Fig.3
in [13]). The switch forwarded most of the packets in either
∼0.9µs or ∼3.6µs. Both the average and median latency
are meaningless in such a case.

3.4 Measuring Latency at the Right Load
RFC 2544 requires measuring the latency at the maxi-

mum load of the DuT determined earlier. Such a load is
not a realistic scenario for a DuT as any forwarding device
running under full load is overdue for a replacement. For ex-
ample, the ITU-T Y.1564 [22] defines latency measurements
at the committed information rate (CIR), the bandwidth at
which a device claims to hold certain performance guaran-
tees which may be below the maximum throughput that the
device can achieve.

One argument for latency measurements at the maximum
packet rate is that such a measurement represents the ab-
solute worst case for the latency. However, this is false.
Devices may actually perform worse at lower packet rates
due to power saving features. One example is the ixgbe dri-
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Figure 6: Latency response of a Linux packet forwarder un-
der CBR and Poisson traffic [14]

ver in combination with Linux which can exhibit the worst
performance at medium packet rates in the default config-
uration as the driver heavily throttles interrupts. We have
discussed this effect in detail in a previous publication [15].

The second problem with this methodology affects devices
that achieve full line rate (cf. Section 3.2). The impossibility
to drain filled buffers is particularly problematic with soft-
ware routers. Any processing delay can fill up the buffers.
Such a delay might be imposed by initial sleep states of the
network card or the processing unit, short interruptions due
to scheduling, or when the outgoing port is slightly slower
than the incoming port, e.g., due to clock drift between inde-
pendent ports. The latency is then increased by the serving
time of the preceding packets. A packet rate that is slightly
lower than full line rate solves this measurement artifact.

For example, the MikroTik software router achieves an
average forwarding latency of 60µs with 64-byte packets
at 95% line rate in Figure 5a. However, as soon as the
packet rate is increased to full line rate with a frame size
of 128 bytes, the average latency jumps to 500µs in Fig-
ure 5d. Similar effects can be seen for Linux and FreeBSD
in Figure 5 that show a uniform distribution due to batch
processing. We suppose that the different distribution of the
MikroTik router is an effect of the per-packet load balancing
across the 36 cores via the on-chip mesh network.



3.5 Traffic Patterns Matter
One important aspect of the test traffic is the traffic pat-

tern, i.e., the distribution of the inter-packet gaps in the
test traffic. This distribution affects the buffers of the DuT
and therefore the latency. As benchmarks have to be repro-
ducible, a precise definition and exact reproducibility of the
generated traffic is required. Therefore, RFC 2544 calls for
constant bit-rate (CBR) by default and recommends to run
“some” of the tests with bursty traffic as well [9]. It does
not specify which of the tests should also be run with bursty
traffic.

CBR is an unrealistic type of traffic and so is bursty traf-
fic. Real traffic follows more complicated distributions: over
long timescales (hours to days) the traffic exhibits a self-
similar pattern [23]. Such traffic can be approximated over
short time scales with a Poisson process [33] which is simpler
to implement than the aforementioned patterns.

We compared the impact of traffic patterns on the be-
havior of Linux in previous work [14]. Figure 6 shows the
latency of Linux under increasing load, providing more in-
sight than an RFC 2544 conformant test. The latency differs
with CBR and with Poisson traffic before the system over-
loads. We have analyzed this behavior which is an artifact of
the interaction between network interrupt handling in Linux
and the ixgbe driver [15]. This effect disappears when using
Poisson traffic, so it likely does not appear in the real world,
but only when being tested under unrealistic circumstances.

4. IMPROVING BENCHMARKS
Based on the identified shortcomings of current bench-

marking methodologies (Section 2.3), the shown measure-
ments (Section 3), and previous research [16, 14, 17, 18,
4], we derive specific recommendations to improve intercon-
nect device benchmarking. Our proposals aim to extend
RFC 2544 and similar guidelines to improve the validity and
reproducibility of benchmarking. Improving the compara-
bility is out of scope for this study.

We propose to enhance current best practices for device
benchmarking in three ways: (i) extended latency report-
ing, (ii) additional test traffic patterns, (iii) a fixed set
of tests per device class, and (iv) automated configuration.
These proposals are specifically important for software de-
vices, however also apply to hardware devices.

Meaningful Latency As we have argued in Section 3.3,
the average latency should not be the only metric for latency.
Latency can be compared visually through a histogram or
cumulative distribution function (CDF). However, a com-
plex reporting format is not preferred for a benchmark as
this report cannot be translated into a few KPI numbers [19].
We propose to add a further KPIs for latency: 25th, 50th,
75th, 95th, 99th, and the 99.9th percentile enrich the re-
port with information about the latency distribution and
still keep reporting comparable.

Test Traffic Patterns Section 3.5 shows that the traf-
fic pattern, consisting of packet inter arrival time and packet
contents, has an influence on the behavior of a DuT. We pro-
pose to extend tests based on constant-bitrate traffic to also
run with Poisson traffic as it approximates real world traf-
fic more closely than CBR traffic but can still be generated
by hardware and software load generators. For meaningful
performance comparison, the traffic should be based on mul-
tiple flows to test multi-core scaling of software forwarding

devices. We propose to conduct throughput benchmarks
with both a single flow and randomized traffic and report
results for both experiments. This provides insight into the
behavior under different traffic and is an important metric
for multi-core scaling of software forwarding devices.

Functionality-dependent tests Benchmarks need to
be adapted to reflect suitable traffic and device configura-
tions for a tested functionality such as switching, routing, or
packet filtering. In this study, we showcase routing as one
class of network interconnect functionality. The key process-
ing step for software routers is the lookup in the FIB, which
is required for each packet. Software routers have charac-
teristic FIB lookup times, depending on the underlying data
structures that do not always follow a constant, linear, or
logarithmic distribution. While RFC 3222 [39] defines ter-
minology for benchmarking software routers, specific guide-
lines for router benchmarking never made it beyond draft
status in the IETF. We propose, in dependence of the exist-
ing metrics for switch forwarding tables [34, 24], to include
FIB-dependent performance benchmarking results.

Automation Automating the configuration (and recon-
figuration between test cycles) of tested devices removes
error-prone manual device configuration and simplifies the
reproducibility of benchmarks. We, therefore, propose that
benchmarks should come with a setup script that estab-
lishes the benchmarked state in the tested device. In case
of software-based packet processing we furthermore require
the OS image and a detailed specification of the underlying
hardware.

5. CONCLUSION
We provide arguments for reconsidering device benchmark-

ing methodology for routers that has been valid for more
than a decade. Our discussion shows that more detailed la-
tency measurements and more realistic traffic patterns can
describe device behavior more realistically. Further, func-
tionality specific tests also can add valuable information.
Documenting and automating configuration of test devices
ensures reproducibility and minimizes misconfiguration.

Although the proposed changes make benchmark tools
more complex, a solution purely relying on inexpensive com-
modity hardware is possible. As part of ongoing work, we
provide a preliminary RFC 2544 benchmarking tool based
on the packet generator MoonGen including the extended
latency measurements. Furthermore, we release the full
benchmark reports of the three investigated routers [0].
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