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Abstract—Commodity hardware can be used to build a
software router that is capable of high-speed packet processing
while being programmable and extensible. Therefore, software
routers provide a cost-efficient alternative to expensive, special
hardware routers. The efficiency of packet processing in resource-
constrained nodes (e.g. software routers) can be strongly in-
creased through parallel processing with commodity hardware
based on multi-core processors. However, intra-node resource
contention can have a strong negative impact on the corre-
sponding network node. We describe how multi-core software
routers can be optimized for low latency support by utilizing
the technologies available in commodity PC hardware. For the
analysis we used our approach for modeling of resource con-
tention in resource-constrained nodes which is also implemented
as the resource-management extension module for ns-3. Based on
that, we derived a specific software router model which we used
to optimize the performance. Our measurements show that the
configuration of a software router has significant influence on the
performance. The results can be used for parameter tuning in
such systems.

Keywords — parallel processing, resource contention, latency,
delay, software router, modeling, simulation, ns-3

[. INTRODUCTION

Commodity hardware is capable of high-speed packet
processing [1] while being programmable and extensible. It
can be used to build a software router. Software allows for
rapid deployment of new features that require a more time-
consuming and expensive development in hardware. Therefore,
nowadays software routers become attractive as an alternative
to existing special purpose hardware boxes that networks are
built of [2]. Previous works have shown different bottlenecks
that may limit the achievable throughput of a router in terms
of bits or packets per second [1], [3], [4]. Some of these bottle-
necks can be mitigated by efficient networking software [5]—
[7]. Others require differentiated distribution of operations
to hardware resources [8]. However, the new application of
PCs as routers introduces challenges for packet treatment to
PC-software development: The software should differentiate
packets and consider that some packet flows are more critical
in terms of Quality of Service (QoS) parameters like delay,
packet drops, jitter, or connection establishment time [9].

In this paper we investigate differentiated packet treatment
in software routers by making use of the low latency support by
the underlying hardware. Therefore, we analyze the usage of
specific Rx rings for low latency packets and selective packet
drops in case of exhausted packet processing capacities. In
Section II, we discuss the related work. Section III explains

the hardware architecture and its implications for packet pro-
cessing in a software router. Section IV derives a QoS-aware
software router architecture. In Section V, we apply a general
approach for modeling of resource contention in resource-
constrained nodes to evaluate our concept. This software router
model is used in a case study in Section VI to show how
software router performance can be tuned. We summarize the
paper and highlight our contributions in Section VII.

II. RELATED WORK

With Netmap [5], PF_Ring [6], and Intel DPDK [7] three
techniques exist that focus on the optimization of the software
side of PC-based packet processing. They achieve a significant
performance increase by melting driver, kernel, and even
application parts of the processing chain. Mostly driven by
hardware vendors similar efforts are made on the hardware
side; e.g. DCA [10] has already developed into a standard
technique in servers.

Know-how on measurement practice was described in
2005 by Tedesco etal. who published a technique to measure
different parts of PC based packet processing systems with
commodity hardware [11] based on a simple understanding
of software router internal queueing: They measured 5 us,
20 us, and 5 ps for input queueing, processing, and output
queueing. Carlsson etal. presented a delay measurement setup
for IP routers as black boxes that follows the specifications of
RFC 2679 [12]. The single hop hardware router delays that
they measured were slightly higher than those obtained by
Tedesco et al. They especially described a long tail distribution
for packet delay. In [13], the authors utilized FPGAs for
accurate software switch delay measurements. In 2007, Bolla
and Bruschi presented a detailed study of a single core software
router based on Linux kernel 2.6 and performed RFC 2544
conform tests on behalf of a special network device testing
box [14]. The dedicated device testing box allowed to measure
delay with microsecond accuracy. Depending on the type of
software router, the configuration, and the packet size they
measured delays from 14 ps to hundreds of us. In scenarios
where the CPU was the bottleneck, the delay increased to over
16 ms. In 2008, Bolla and Bruschi presented a study of archi-
tectural bottlenecks in software and hardware. They described
and evaluated different uses of multiple Rx and Tx rings as
these have been available [3]. A newer study of software router
performance [1] and a study of performance based on different
router workloads were published by Dobrescu etal [4]. The
performance of software routers with a growing number of
cores was analyzed in [15].



In [4], an analytical cache model for cache misses with
multiple but well defined parallel packet flows on a multi-core
software router was proposed. In the simulation community
queueing systems with finite capacity are seen as more precise
than those with infinite queues. These outperform analytical
models in combination with traffic bursts. Chertov et al.
presented a device-independent router model that takes into
account the queue size and the number of servers inside a
router [16]. With specific parameters, the model can be used
for different router types. Bursty traffic, different packet sizes,
and service times can be modeled on behalf of discrete event
simulators like ns-3. In the nsclick project the Click Modular
Router [17] was combined with ns-3 [18] providing the benefit
of easy transfer of code from the simulation to software router
deployments on real hardware. Kristiansen etal. [19] proposed
a model for considering the packet processing overhead result-
ing from software. A model for resource-constrained network
nodes which considers multi-core CPUs and other system
internal components was presented in [20].

ITI. PACKET PROCESSING IN SOFTWARE ROUTERS

The initial requirements to the Internet infrastructure have
extremely grown with the increasing amount of use cases [21].
In the beginning, packets exchanged via the Internet Protocol
(IP) contained text for asynchronous exchange of information.
Today, Internet routers need to handle almost any type of traffic
with diverse demands regarding available bandwidth, delay
tolerance, or jitter. Some protocols require a certain percentage
of dropped packets to adjust their higher-level communication
channel (e.g. TCP), others are very sensitive to dropped packets
(e.g. UDP). If the one-way delay in a telephone conference
becomes greater than 150 ms the user experience is perceived
as unacceptable [9], [22]; but the same delay for a file transfer
is unproblematic. Especially traffic with real-time constraints
(e.g. VoIP, online gaming) is very sensitive to delays but may
be able to handle a certain percentage of packet drops due to
failure correction mechanisms on higher layers.

A. Packet Processing in Software Routers

Software routers can perform all packet processing steps
in software, so they work on any general purpose machine.
In contrast, hardware routers implement performance-critical
packet forwarding functions in special purpose hardware, while
other more complex tasks (e.g routing protocols) are also
processed on a general purpose CPU. Usually these tasks are
not required in line rate and in most cases are synthetically
limited to avoid overloading of the hardware. This ensures
that a router can still process an ICMP ping even if it would
be overloaded with SNMP requests by limiting the number of
SNMP messages per second.

Off-the-shelf hardware has received features to cope with
the growing number of cores and network speed. The CPU
received an integrated memory controller (IMC) which pro-
vides a Direct Memory Access (DMA) engine to the PCle
connected components. Even preemptive copying of data to
the caches [10] is common today. The network interface cards
(NICs) provide features like receive side scaling (RSS) and
segmentation offloading to shift tasks from the CPU to the NIC
controller to distribute the tasks efficiently among the CPU
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Fig. 1. Hardware resources in a software router

cores. Since Linux kernel 2.5 the New API (NAPI) defines
how network packets are received and transmitted.

Fig. 1 shows resources that are relevant for software
routers and their connections. Packets arriving at the ingoing
interface are stored in the Rx NIC Buffer. NIC controllers
like the Intel 82599 support programmable hardware filters and
hash-based RSS [23]. These technologies enable the efficient
distribution of network receive processing tasks across multiple
CPU cores. Hardware filters allow to match header fields like
IP/MAC addresses, ports, VLAN tags, or protocols to assign
packets to a specific Rx ring, while standard RSS uses a static
hash for the assignment. Modern NICs support configuration
of numerous rings as destinations. Packets get transferred on
behalf of the DMA engine via PCle to the main memory. A
DMA client can access a DMA provider (software) and the
related DMA engine (hardware) to write and read data from
DMA channels. This allows the NIC as DMA client to copy
data to the main memory without involvement of a CPU core.

The DMA engine triggers a hardware interrupt for the core
assigned to the Rx ring after the packet was copied to the Rx
ring in the main memory. The Rx rings store pointers, which
are called frame descriptors, to the actual packets that reside
in an unordered manner in an extra memory area. Interrupts
related to the different Rx rings can be assigned to certain CPU
core interrupt queues. An interrupt triggered by the NIC due
to an incoming packet is enqueued in the net_rx_softirqg
to avoid disruption of a busy CPU core. If the core is already
processing the last batch of packets it may have deactivated
interrupts and have switched to the polling mode. In polling
mode the CPU cores fetch packets from the Rx rings. Polling
mode ends when all tasks have been completed. To avoid
blocking of a core polling mode also ends when a certain
processing budget was reached. With the end of the polling
mode the core is released and interrupts are reactivated. With
interrupts activated the hardware interrupt entails different
software interrupt routines of the kernel. These routines which
process open tasks are stored in related SoftIRQs like the
net_rx_softirg. The described process ensures that each
packet of a specific flow is served by the same CPU core which
avoids packet reordering and context switches between CPU
cores. If more than one Rx ring is assigned to one core batches
of packets are usually polled with a round robin strategy by
the driver.

The CPU core processes packets according to the software



routines. Depending on the context of the application (user or
kernel space) further copy overhead can be necessary for each
context switch. In order to forward a packet, the router always
needs to perform a lookup in the forwarding table, update
the TTL (or hop count) field in the IP header, and trigger
the sending process on the outgoing interface. If a packet is
addressed to the router itself, such as routing protocol updates
handled by XORP [24] or Quagga [25], the packet processing
is more complex, however not as time-critical as in the case of
packet forwarding. After the packet was processed the frame
descriptor is placed in a Tx queue of the outgoing interface
and the next processing steps are done by the egress NIC.
The packet itself was not even copied once by the processing
core but only pointers were copied and only relevant header
information has been touched during this process.

B. QoS in the Linux Kernel

Linux kernel 3.3.0 introduced Byte Queue Limits (BQL),
which allow to put a limit on the number of Bytes in an Rx
ring, in addition to the existing packet count limit. Without
BQL a full Rx ring would contain an unknown amount of
data ranging from Sizerx X Pkt_Sizemin Up to Sizerx X
Pkt_Size 4., where Pkt_Size,,q, can be a multiple of the
MTU due to the TSO/RSO mechanism which allows to offload
splitting and merging to the NICs and therefore to send packets
bigger than the MTU. By limiting the Bytes in the Rx rings
the application of differentiated packet treatment is delayed to
the different queueing disciplines (qdisc). In difference to the
BQL the qdiscs are more powerful as they are implemented in
the kernel only and do not require any support by the driver.

TABLE L QDISC STRATEGIES IN LINUX

| classful reordering haping
pfifo_fast No No No
Token Bucket Filter (TBF) No No No
Stochastic Fair Queueing (SFQ) No fair No
Extended SFQ (ESFQ) No fair No
Random Early Detection (RED) No No dynamic
Hierarch. Token Bucket (HTB) Yes implicit implicit
Hierarch. Fair Service Curve (HFSC) Yes fair implicit
Priority scheduler (PRIO) Yes explicit implicit
Class Based Queueing (CBQ) Yes implicit implicit

Qdiscs are techniques for differentiated packet treatment
in the Linux kernel. Filtering can be applied to ingress traffic
of the Linux kernel and even more complex mechanisms
which also include reordering to the egress or parts of the
egress traffic of the Linux kernel. Table I shows existing
queueing disciplines in Linux. All classful qdiscs can be
applied to selected classes of traffic. Depending on the applied
qdisc some packets are transmitted earlier as they would be
transmitted with the standard first-come-first-served (FCFS)
queueing behavior. Which techniques may change the order of
packets when applied can be seen in Table I. Some algorithms
cause packet reordering due to the goal of a fair bandwidth
distribution to more competitors. The HTB and the CBQ qdisc
implicitly reorder packets depending on the configuration as
these are classful. PRIO explicitly reorders packets due to
different prioritization. However, to have the best effect on the
QoS of traffic passing a component each of these mechanisms
must be applied before the bottleneck. Thus, with the described
techniques, traffic shaping on a software router can avoid
congestion of the outgoing Internet connection but not avoid
service degradation due to an overloaded software router CPU.

IV. QOS AWARE SOFTWARE ROUTER ARCHITECTURE

Previous work described how software routers have to
be configured to performantly utilize numerous Tx and Rx
rings for efficient load balancing to different cores, but did
not consider QoS differentiation [3]. Implementations of state-
of-the-art QoS differentiation techniques in the Linux kernel
(and other software routers) are well-suited for home routers
and other scenarios where the link capacity is the bottleneck.
However, we argue that these implementations do not work
in scenarios where the software router is the bottleneck rather
than the egress link. Previous work has demonstrated that the
CPU is the main bottleneck in software routers [1], [4], [15],
as other components such as the main memory and system
buses usually handle significantly higher bandwidths than the
CPU can process. In case the incoming traffic is overwhelming
the CPU, such that it can not process all incoming packets, as
soon as the Rx ring is filled some of the incoming packets
are already dropped before being processed by the CPU. In
this scenario, the approach to add traffic classification as just
another step during the general packet processing does not
work, because high-priority packets might have already been
dropped before this processing step. This means, incoming
packets need to be classified before being processed in the
CPU, in order to provide QoS differentiation (e.g. upper bound
for packet latency).

There are two possible approaches to solve this problem:
First, one can dedicate one or more cores (as many cores as
necessary to classify any type of incoming traffic at line speed)
to receiving, classifying and forwarding the incoming traffic
to the other cores for actual packet processing. This approach
can be realized using PF_RING DNA clusters [26] (where
the library libzero implements clusters to distribute incoming
packets to multiple applications or threads) or Receive Packet
Steering (RPS) [27] (which is a software implementation of
RSS). The second and more efficient option is to offload traffic
classification into a multiqueue NIC, which allocates different
Rx rings for different priority classes. In this paper we opt
for the latter approach, because it promises to be much more
efficient and is easier to implement with today’s soft- and
hardware. For its implementation, we need to take care of
two key points: We need to configure the NIC controller, that
it recognizes and enqueues prioritized traffic into special Rx
rings, and we need to find a strategy to assign and process
these queues by CPU cores. Fig. 2 visualizes our approach. The
receiving NIC (a) classifies incoming traffic into multiple Rx
rings with different priorities (b) per core (c), which enqueues
the processed packets into a Tx ring (d) of the transmitting
NIC (e). An exclusive Tx ring for each combination of NIC
and core allows to omit existing locking mechanisms.

A. Utilizing the Existing Hardware Capabilities

Fig. 2 shows a generic form of classifying traffic at the
receiving NIC into multiple Rx rings with different priorities
per core; Rx, gt relates to non real-time (n-RT) rings and
Rxpr; to high priority real-time (RT) traffic rings with i
denoting the core the ring is pinned to. The concept may also
be used to configure more than two priority classes. In the
following we refer to the specific features of the Intel 82599
Ethernet controller [23] as an example. This Ethernet controller
offers more than one feature that can be used to implement
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Fig. 2. Software router with support for differentiated packet treatment

our strategy, however each of them has a different application
scenario. If the incoming traffic already comes with priority
labels in their IEEE 802.1Q VLAN tags, a combination of the
data center bridging (DCB) feature with receive side scaling
(RSS) can automatically classify received packets into multiple
Rx ring queues per core. If the incoming traffic does not carry
priority tags, prioritized packets need to be identified using
header information, such as IP addresses or port numbers.
The Intel 82599 Ethernet controller supports various types of
hardware filter rules, which can be used to match packet header
fields and explicitly sort matching packets into a specified Rx
ring. The packets that do not match any of these filter rules
are put into the default Rx rings and thus can be distributed
among all cores using RSS. For instance, the Intel 82599
Ethernet controller can match the following header fields:
VLAN header, IP version (IPv4, IPv6), source and destination
IP address, Transport layer protocol (UDP, TCP, SCTP), source
and destination port number, or a flexible 2-Byte tuple within
the first 64 Bytes of the packet.

B. Changes in the Software

Finally, we propose to extend the NIC driver, so that it
supports different scheduling strategies to process packets from
multiple Rx rings per core. By default the NIC driver applies
a round robin strategy to poll multiple Rx rings, which means
it iterates over all Rx rings, each time processing a batch of
packets from an Rx ring. If a ring is empty it is skipped and
the driver polls a batch of packets from the next Rx ring.
In addition to this default scheduling behavior, we propose to
modify the NIC driver and add other scheduling strategies, that
prefer specific queues over others and meet QoS requirements.
Without any significant computational overhead it is possible
to implement a priority that only pulls packets from a ring if
all higher prioritized rings are empty. Therefore, this approach
is more flexible than dedicating one or more cores exclusively
to prioritized traffic, which results in wasted clock cycles if
the prioritized traffic does not fully utilize all dedicated cores.
Other scheduling strategies, such as weighted fair queueing
(WFQ) can also be implemented in the NIC driver with min-
imal overhead, so we do not expect a measurable decrease of
performance from its implementation. The configured weight
guarantees a worst case share of high priority traffic in the
maximum throughput 7'P,,,, of a software router of at least

T Pryae Xweight s s st e . ..
Fooresxy, . — incase of skewed distribution of high priority

traffic and I PmasXweight ¢ e ocime high priority traffic that

weights

is evenly distributed to all cores.

V. MODELING SOFTWARE ROUTERS

In this section, we investigate how the performance of off-
the-shelf software routers can be improved with respect to low
latency traffic. Therefore, we introduce a model of a software
router based on a standard Linux networking stack that is opti-
mized for low latency packet treatment. This model is derived
from our general modeling approach for resource management
in resource-constrained nodes which was published in [20].

As it was already shown by us [15] and other re-
searchers [1], the CPU cores represent the main performance
bottleneck of a multi-core software router based on commodity
hardware. Therefore, the cores’ efficiency constitutes the main
performance limiting factor and therefore has to be taken into
account in great detail when evaluating such a system. Besides,
there are usually one or multiple Rx rings per CPU core. In
case of multiple Rx rings per core, the rings are served in a
round robin manner. There is no support for prioritized packet
treatment before reaching the CPU core bottleneck. However,
this is important for software routers in high load situations
(cf. Section III). Therefore, we extend our model of a standard
software router based on our proposal for low latency traffic
support. This is done by introducing dedicated Rx rings for
low latency packets which will be served based on a specific
resource management strategy (cf. Section V-C). For instance,
this can be used to process packets faster with low latency
constraints like real-time communications (e.g. VoIP, video
conferencing, online gaming).

A. Model of a Software Router with Low Latency Support

According to the understandings of a real software router
(cf. Section III), a model of an extended software router is
derived which is depicted in Fig. 3. According to the general
modeling approach [20], this specific software router model
consists of three planes: the resource management plane, the
resource plane, and the processing plane.

In our software router model, the resource pool RPce of
the CPU cores contains k& CPU core resources C1,...,Cy.
The packet processing is modeled based on the task units
TU prem, TUq, ..., TUg, in the processing plane where
TU; (1 <4 < 2k) requires the resource CPU core Cj/ if
i is even (as in the case of non real-time traffic), or core
C(i+1) /2 if @ is odd (real-time traffic). The T'U prepm abstracts
NIC functionalities like RSS (cf. Section III) whereas the task
units TU;, ..., TUq, represent processes or threads of the
operating system in the modeled system. The limited resources
of the software router are modeled as resource objects which
are located in specific resource pools in the resource plane.
Furthermore, the Rx rings are represented as the task unit
queues @ ...Q9x which are located in the resource pool
RPprem. The size of each task unit queue corresponds to
the Rx ring size of the modeled system. Thus, a task unit
queue can only store a limited number of packets. If not stated
otherwise, we assume 4 cores and Rx ring sizes of 512 packets.
These resource pools are administered by the (local) resource
managers RM core and RM prep,, whereas a global resource
manager as introduced in [20] can be omitted because there
are no dependencies between the two resource types.
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latency support

When a new packet is received, the T'U 4., distributes
the incoming packet into a specific task unit queue depending
on its packet attributes. Each packet belongs to a specific
packet flow which is characterized by a source IP address,
a destination IP address, a source port, and a destination port.
Based on that, the TU psen maps each flow to a specific
incoming queue @; of a task unit TU; (1 < i < 2k). In
consequence, every packet of a specific flow is served by
the same task unit corresponding to a specific CPU core.
Furthermore, we distinguish between the packet attributes real-
time (RT) and non real-time (n-RT). Based on that, the packets
are enqueued in the corresponding task unit queues of the task
units which process real-time or non real-time packets. For
instance, a task unit that processes real-time packets may have
a higher task unit priority than a task unit which processes
non real-time packets. Thus, the processing of specific packets
can be prioritized. The replicated task units TUq, ..., TUs
model the actual parallel packet processing (e.g. IP table
lookup, firewall) in multi-core software routers. To process a
packet, a task unit requires a resource of the type CPU core.
Therefore, it has to request to the RM ¢, for allocating a
core resource.

To give an example, the task unit 7U; (which processes
real-time packets) could require a CPU core from the R Pcype,
namely C;. However, it is possible that this core resource
is currently not available because it could be allocated to
TU 5 (which processes non real-time packets). Hence, resource
contention occurs. Thus, the RM ¢, has to schedule the re-
source allocation of the core resource(s) between the task units
TU; and TU,. After having been allocated the shared core
resource, T'U; is able to process packets from its incoming

queue @;. The task unit functionality Process RT respectively
Process n-RT consumes simulation time corresponding to the
required service time depending on the packet size and type
of packet processing (e.g. IP routing, IPsec).

B. Model Calibration

The packet latency represents the delay of a packet during
its traversal through the software router. It consists of waiting
and services times in several system internal components,
where it is dominated by the waiting and service time at the
bottleneck component, i.e. here the set of CPU cores. The
waiting time of a packet depends on the number of packets
prior to that packet in the task unit queue where the service
time depends on the type of packet processing (e.g. IPsec,
Routing, Firewall) and its packet attributes (e.g. packet size .S,
real-time or non real-time). For the service time x, we assume
a variable part a per Byte and a constant part b, according
to z = a- S+ b. We model the most practice-relevant type
of packet processing, namely IP routing. Here, the packet is
relayed from the incoming port to the outgoing port which
is packet size dependent where a ~ 2% and b =~ 272ns.
Furthermore, every packet is subjected to IP routing including
routing table lookup, checksum calculation, etc. The effort for
updating the IP header is equal for small and large packet
sizes [28]. Thus, the effort for IP routing is represented with a
constant overhead of ¢ =~ 225 ns. Therefore, the service time x
for IP routing of a packet can be modeled as z = a-S+b+c.

We also have to estimate the additional latencies from
other system internal components. In modern NIC drivers, NIC
batching reduces the overhead of interrupt handling through
processing packets in a “bulk” from and to the NIC. According
to [1], NIC batching and DMA transfer times lead to an
increase of the packet latency. Based on that, we estimate that
NIC batching introduces a delay for up to 16 packets before
DMA transmission which implies 8 packets on average (if we
assume uniformly distributed load). Besides, the processing of
a packet in total requires four DMA transfers: Two transfers
from the NIC to the memory (one for the packet and one for
its descriptor) and vice versa. We estimate a DMA transfer at
Tprpra = 2.56 us. Based on [1], we assume that NIC-driven
batching from and to the NIC adds Tv;c = 2 x 8 X  where
z represents the service time in the core. Thus, we estimate
an additional packet latency from other non-bottleneck com-
ponents with Tt =4x Toyva+Tnic.

For instance, in the case of routing a 1518 B packet,
the service time is z = 4.04 pus. Additionally, we assume
that NIC-driven batching from and to the NIC adds 64.64 us
(2%x8x%4.04 us) on average. Based on that, we estimate an
additional packet latency from other non-bottleneck compo-
nents at 74.88 us (4x2.56 us + 64.64 us). This means that at
offered loads below the maximum throughput of ca. 1 Mpps
(0.25 Mpps/core) the packet latency refers to the sojourn time
at the core bottleneck plus 74.88 us to take into account
the additional latency resulting from other system internal
components. All used calibration parameters are derived from
real testbed measurements (cf. Table 3 of [1]).



C. Resource Management Strategies

Each task unit possesses a task unit priority TUP;,
i € {1,2,..,n} which is used by a resource manager to
arbiter between task units which compete for the same shared
resource(s). Corresponding to the resource manager strategy,
the resource manager prefers a task unit with a higher pri-
ority where T'UP; is the highest priority. Therefore, in case
of resource contention, the resource manager may revoke a
shared resource from a task unit based on a specific resource
management strategy because another task unit is requesting
the resource at the same time. We model the following resource
management strategies.

e  Priority (Prio): The task unit with the highest task
unit priority gets the resource immediately. This strat-
egy is non-preemptive which implies that a low prior-
ity task unit is not interrupted during the processing
of the current packet.

e Round Robin (RR): The task unit gets the resource(s)
for processing for a time slice. The time slice length
At is equal for all task units.

e Prioritized Weighted Fair Queueing (PrioWFQ):
The task unit with the highest task unit priority gets
the resource immediately if there was previously no
resource contention. In case of contention, a task unit
gets the resource(s) for processing for a specific time
slice corresponding to the task unit priority which
means that the time slice Atrr of the high-priority
task unit is longer than the time slice At,,_rr of the
low-priority task unit.

VI. CASE STUDY: LOW LATENCY PACKET PROCESSING
IN SOFTWARE ROUTERS

In this section, we evaluate and optimize the packet pro-
cessing performance of an off-the-shelf quad-core software
router with respect to low packet latency. Therefore, we aim
to find optimal resource management strategies for software
routers based on the software router model of Section V.

A. Simulation Scenario

The ns-3 simulation scenario consists of multiple load
generators and sinks acting as end systems and a router serving
as device under test (Fig. 4). The load generators and the sinks
have no resource constraints, but the router possesses limited
resources, namely 4 CPU cores, and a limited size of Rx rings
of 512 packets. The ns-3 resource management extension [20]
is applied to model the router under test.

The load generators and the sinks are connected via
10 Gbps point-to-point links to the router which are con-
sciously chosen as high-speed data rates to ensure that the
links themselves will not become the bottleneck when applying
data transmissions at a high level of offered load. All of
the applied traffic is a composition of RT and non real-
time packet flows corresponding to the mixing proportion
(e.g. 30% RT traffic). The RT and n-RT traffic is separated
by the software router based on the TOS (Type of Service)
field of the IP header. The packet flows are uni-directional
traffic from the load generators to the sinks. A specific packet
flow is modeled as a video-conferencing flow which requires
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Fig. 4. Case study simulation scenario

ca. 5 Mbit/s respectively ca. 410 packets/s at a frame size of
1518 B. The frame size is constant for all traffic corresponding
to the maximum transmission unit (MTU) of the Ethernet
protocol. We apply a basic load of background traffic based
on a Poisson arrival process which causes ca. 50 % utilization
in the software router. Additionally, we inject packet flows
which cause traffic bursts at normally distributed interarrival
times. These bursts overload the software router for a short
period of time. However, these bursts are short enough that no
packet loss occurs due to an overflow of the Rx rings. Thus,
the bursts lead to an increase of the number of packets in the
corresponding Rx rings.

B. Simulation Results

We analyzed the mean packet latency for RT and n-RT
traffic of the modeled software router with respect to different
resource management strategies. As a point of reference to the
state of the art, the single queue (SQ) and round robin (RR)
configurations represent the mean packet latency behavior
when using a software router based on the standard Linux
networking stack. In the case of SQ, only one Rx ring is
mapped to a specific core. Thus, no resource management
strategy is applied. All incoming packets are enqueued in the
same Rx ring and served according to FCFS service discipline
without any prioritization of RT packets. In contrast to the state
of the art, within the RR configuration a dedicated Rx ring for
the RT packets and another one for the n-RT packets are used
per core as it is illustrated by Fig. 3.

Besides, the resource management strategy of prioritization
(Prio) represents borderline cases with respect to the mean
packet latency for all resource management strategies. It rep-
resents a lower-bound for the RT packets whereas it depicts
an upper-bound for the n-RT packets.

1) Real-Time Percentage: The real-time percentage is a
mixing proportion between RT and n-RT traffic. For instance,
a value of 10 % means that on average every tenth packet is
a RT packet and all other packets are n-RT packets. Fig. 5
shows the percentage of RT traffic of the total traffic on the
x-axis and the mean packet latency in microseconds on the
y-axis, stated with 95 % confidence intervals which are too
small to be visible in the graphs. Each of the lines represents
a different resource management strategy with respect to RT or
n-RT traffic. The router utilization of 80 % as well as the time



slice sizes for RR (At = 1.5 us) and PrioWFQ (Atrr = 6 us,
At,.grr = 1.5 us) are kept constant in all experiments.

In the case of SQ, the RT and n-RT packets incur the
same mean latency because no resource management strategy
is used. When applying the Prio strategy, then an incoming
high-priority RT packet is always served before a n-RT packet.
Thus, with the Prio strategy RT packets are served faster at the
expense of the n-RT packets. This effect is stronger the less
are the percentages of RT traffic. With higher percentages of
RT traffic, there are many RT packets in the same Rx ring
which are served in a FCFS manner. Thus, the mean packet
latency of the RT packets increases. The mean packet latency
of RT respectively n-RT packets equals the SQ case, if the RT
percentage is 100 % respectively 0 %. With the RR strategy, the
mean packet latency of RT respectively n-RT traffic is smaller
the less the percentage of the corresponding traffic is because
the time slice sizes for both types of traffic are equal. When the
percentage of RT traffic is 50 %, the RT and n-RT traffic suffer
the same mean packet latency. On the one hand, the PrioWFQ
strategy shows similar behavior as the Prio strategy at low
RT percentages because in most cases no resource contention
occurs. This implies that when a RT packet is received the
high-prio RT task unit immediately gets the resource (after
the processing of the current packet of the low-prio n-RT
task unit). On the other hand, PrioWFQ becomes more similar
to RR at high RT percentages because it is more likely that
resource contention occurs and each task gets its corresponding
time slice.

In general, even at a moderate CPU utilization of 80 %, the
RT packets strongly benefit from the introduction of a resource
management strategy like Prio. This effect is strengthened at
higher values of utilization.

2) Utilization: The utilization is a metric for the degree
of the resource occupation. It is defined as the relationship
between the busy time of the resource and the total time
of observation. It refers to the bottleneck resource which is
here the set of CPU cores. Fig. 6 shows the utilization of the
software router on the x-axis and the mean packet latency in
microseconds on the y-axis. The mean packet latency is stated
with 95 % confidence intervals which are again too small to
be visible. The RT percentage of ca. 30 % as well as the time
slice sizes for RR (At = 1.5 us) and PrioWFQ (Atrr = 6 us,
At,.grr = 1.5 us) are kept constant in all experiments.

At values less than 50 % utilization, the resource CPU core
is often idle. Here, the mean packet latency is nearly equal
for all resource management strategies. However, in case of
a high-speed software router, we assume utilization values of
50 % and above. Thus, we focus on these cases. When the CPU
core is busy, the corresponding task unit (and also the packets)
has to wait until the resource becomes available which leads to
an increase of the packet latency. If the utilization increases up
to 100 % then the mean packet latency increases exponentially
up to a maximum which is determined by the Rx ring size. The
mean packet latency is no longer well-defined because arriving
packets often come up with a full queue (aka. Rx ring) and
must be dropped. Hence, the stated mean packet latency refers
only to the successfully served packets.
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The SQ case shows the default behavior as a reference to
the state of the art when no resource management strategy is
applied. In the case of RR, the mean packet latency of RT
traffic is always smaller because the time slice sizes are equal
for RT and n-RT packets but only 30% of all packets are
RT packets. In case of PrioWFQ, the mean packet latency
of RT traffic is close to the Prio strategy for low values of
utilization because it is likely that no resource contention
occurs. However, if the utilization increases then in most cases
there is resource contention which causes a rise of the mean
packet latency of RT traffic similar to the RR strategy. When
applying the Prio strategy, the mean packet latency of n-RT
packets exponentially increases whereas it only linearly rises
for the RT packets because the RT traffic is always served prior
to the n-RT traffic. Thus, the RT packets show a significantly
lower mean packet latency in comparison to the n-RT packets,
even at high values of utilization. This is very helpful for a
resource-constrained node to satisfy low latency constraints.



VII. SUMMARY AND OUTLOOK

In this paper we proposed dedicated Rx rings to achieve
low packet latency in packet processing systems. Thus, packets
(e.g. with real-time constraints) can be prioritized before
reaching the CPU core bottleneck. This enhancement has the
focus on but is not restricted to software routers. We described
how PC-based multi-core packet processing systems can be
optimized to provide best effort for other parts of traffic in case
of an overloaded software router just by utilizing technology
that is already available in commodity servers. We used our
approach for modeling of resource contention in resource-
constrained nodes which is also implemented as the resource-
management extension module for ns-3. Based on that, we
derived a specific software router model which we used to
optimize the performance of a software router. Our simulation
studies showed that the configuration of a software router has
significant influence on the performance. Therefore our results
can be used for parameter tuning in such systems.

In future research, we plan to carry out more fine-grained
testbed measurements to refine our resource-constrained soft-
ware router model in terms of further performance-relevant
details. For instance, a more accurate modeling of the effects
on the intra-node latency resulting from other system inter-
nal components (e.g. driver) will be one of the next steps.
Moreover, we will investigate further resource management
strategies with the help of our ns-3 extension. Additionally, we
want to look into the routing software using code inspection
and profiling. Finally, we hope to be able to identify further
performance-limiting factors and bottlenecks of existing soft-
ware routers as well as to predict effects caused by changes
and optimizations in the router software.
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