
Towards Carrier Grade SDNs

Syed Naveed Rizvia, Daniel Raumera, Florian Wohlfarta, Georg Carlea

aTechnische Universität München, Department of Computer Science,
Network Architectures and Services, Boltzmannstr. 3, 85748 Garching, Germany

Abstract

Driven by the expected benefits, SDN techniques prepare to dare the leap
from datacenter- and small area networks to larger networks. SDN becomes
more and more interesting in ISP networks, where new concerns about scala-
bility, resilience and legacy functionality arise. Therefore, we analyze Route-
Flow, a promising approach to SDN, that allows to gradually transition from
conventional networks to SDNs. Based on the requirements for future ISP
networks, we perform an experimental case study to validate the applicability
of SDN techniques in carrier grade networks.

Keywords: SDN, ISP networks, carrier grade SDN, RouteFlow

1. Introduction

Network operators face challenges as the network traffic is expected to
double each 2 to 3 years [1]. In addition, the unprecedented growth of virtu-
alization and applications require frequent changes in network configuration.
Therefore, automation and fine-granular control of the network infrastruc-
ture is required to cope with the demands of applications and services us-
ing it. Originally, researchers at Stanford and UC Berkeley invented Open-
Flow to open their campus networks for research [2]. Today, their concept
evolved into Software-Defined Networking (SDN), which promises to make
networks more flexible and easier to operate. Successful SDN deployments
have evolved from special purpose networks [3] over data center networks [4]
to wide area networks [5].

Email addresses: naveed.rizvi@tum.de (Syed Naveed Rizvi),
raumer@net.in.tum.de (Daniel Raumer), wohlfart@net.in.tum.de (Florian
Wohlfart), carle@net.in.tum.de (Georg Carle)

Preprint submitted to Computer Networks September 15, 2015



In this paper we make an intellectual journey into possible future ISP
networks and evaluate the SDN concept from the perspective of ISPs. We
discuss the main challenges in future ISP networks in section 2 and present
background information on RouteFlow, an SDN solution that mimics conven-
tional routing protocols, in section 3. In section 4, we analyze and experiment
with RouteFlow to assess the suitability of this approach for future ISP net-
works. We summarize our case study and conclude whether RouteFlow is
able to approach the identified problems in ISP networks in section 5.

2. Challenges in ISP Networks

SDN deployments first emerged in data center networks, which are differ-
ent from ISP networks in size, topology, geographical distribution, provided
services, and the relationship with customers. ISPs offer services that range
from simple IP connectivity to sophisticated services like VPN, VPLS, leased
lines, DSL, or IPTV [6].

To provide these services, the network operator has to support configura-
tion and chaining of internal functions including content caching, subscriber
management, QoS provisioning, routing, traffic engineering, DNS, DHCP,
AAA, DPI, firewalls, and monitoring. According to the Open Networking
Foundation (ONF) – an organization formed to promote SDN – convention-
ally operated networks face the following challenges [7]:

1. Device configuration costs. The individual and often manual con-
figuration of network devices impedes the swift provisioning of dynamic
services. The configuration process cannot keep up with on-the-fly
changes required by modern applications and does not scale with the
requirements.

2. Vendor lock-in. When providing new services, ISPs are dependent
on the development life-cycle of hardware vendors that introduce new
capabilities. This vendor lock-in may also increase the cost to make
changes to the current setup.

3. Configuration complexity. The complexity increases the risk of
implementing inconsistent policies, as configuration tools are device-
centric and require network operators to configure a large number of
network nodes.

4. Customization costs. It is difficult to achieve individual customiza-
tion with manual configuration in large-scale service provider networks.

2



5. Labor costs. Customized solutions for network configuration require
a significant number of engineers to run these systems. This large
scale human intervention in the manual configuration process results
in higher OPEX.

6. Overprovisioning. Inefficient use of network resources requires over-
provisioning which leads to higher CAPEX to meet customer demands.

Future SDN solutions promise to solve these problems by simplifying
network administration, increasing bandwidth utilization, and enabling the
rapid deployment of new services in the network.

3. Background

After looking at current and future problems in ISP networks, this section
gives an overview of a specific SDN implementation.

3.1. RouteFlow

We study RouteFlow [8, 9], an approach that implements conventional IP
routing on top of an OpenFlow network. Using existing distributed routing
protocols (OSPF, BGP, etc.), RouteFlow can seamlessly integrate OpenFlow
switches into conventional networks and reuse stable, well-tested code, while
being able to benefit from increased scalability and vendor-neutrality. In
comparison to progressive clean-slate approaches [10, 11], RouteFlow follows
a more conservative approach with focus on backwards compatibility.

The case study targets RouteFlow, because it allows the gradual intro-
duction of OpenFlow into an existing network, in contrast to clean-slate
approaches that require rebuilding a new network from scratch. Migrating
a large ISP network to SDN will only be feasible using a step-by-step ap-
proach, since replacing the whole network at once is too costly. RouteFlow
is actually deployed in real networks [12, 13] and its source code is freely
available under the terms of the Apache Public License, which gives us the
opportunity to study it in detail.

As depicted in Figure 1, RouteFlow implements a virtual control plane
by using virtual machines (VMs). Each VM represents the control unit of a
logical node. These VMs run any Linux-based routing engine to update their
forwarding information base (FIB). A RouteFlow daemon running in each
VM listens to updates in the OS routing table and translates the routing
table entries into OpenFlow rules that control the forwarding behavior of

3



the switches. It is possible to configure the virtual control plane to either
exactly replicate the physical topology of the OpenFlow switches or to define
an arbitrary mapping between the router VMs and switches. Separating
the logical topology (VMs) from the physical topology (OpenFlow switches)
allows to simplify the logical network. The virtual routers exchange the
reachability information with each other through the OpenFlow switches
in the underlying network. In turn RouteFlow collects the routing tables
from these routers and instructs the OpenFlow controller to translate the
routing table entries into corresponding OpenFlow rules for installation into
the OpenFlow switches. The installation of specific flow table entries in
switches enable the control traffic (for example OSPF, BGP, ICMP packets,
etc.) to traverse the data plane and reach the desired virtual router.

Figure 1: RouteFlow system overview

RouteFlow consists of multiple components which play different roles.
They facilitate the collection of routing tables from virtual routers, conversion
to flows, installation of flows in the switches, and manage the mappings
between routing engines and OpenFlow switches. RouteFlow’s architecture
aims for the following goals:

• Compatibility with conventional networks by using existing routing
protocols in the control plane

4



• Decoupling of the control and data plane topologies to enable network
virtualization

• Utilization of open source routing software

• Capability to work without a global view of the network, i.e. each
router makes locally optimized decisions

RouteFlow does not make routing decisions by itself. Instead, it relies
on the routing protocols running in the emulated nodes. The routing per-
formance of RouteFlow is therefore limited by the performance of these con-
ventional routing protocols.

The controller implementation can take form of either a monolithic entity
or a modular system consisting of constituent control functions for example
topology discovery, event manager, state collector, routing etc. These mod-
ules aid the controller in creating a global network view. The controller
exposes this view to external applications for implementing network ser-
vices [14].

Control functions can also be implemented as external applications using
the northbound interface or more appropriately the Application-Controller
interface of the controller. The external application can both invoke the
services exposed by the controller and provide its services to the controller.
RouteFlow is implemented as an application that utilizes a northbound Open-
Flow controller interface.

RouteFlow implements OpenFlow Version 1.0, which provides only lim-
ited match fields and operations on packet headers. Since RouteFlow only
requires matching the destination IP address for routing, OpenFlow Version
1.0 provides sufficient match fields but lacks support for operations like TTL
decrement or support for IPv6. While these are substantial shortcomings,
they are not inherent to the RouteFlow design and can be solved by migrating
RouteFlow to recent versions of OpenFlow.

3.2. SDN Criteria

Jarschel et al. [15] define four requirements for a network architecture
to fully benefit from all advantages connected to SDN: separation of con-
trol and data plane (1), logically centralized control (2), open interfaces (3)
and programmability (4). In this section we evaluate RouteFlow using the
requirements defined by Jarschel et al.

5



1. RouteFlow provides separation between the control and data plane.
It uses the OpenFlow protocol to connect OpenFlow switches to the
control plane consisting of an SDN controller and multiple VMs.

2. The use of distributed routing protocols running inside VMs does not
conform to the notion of a logically centralized control plane. Rather
than having a central application that has a global view of the network,
control is spread throughout multiple VMs, each running a distributed
routing protocol as a separate process.

3. RouteFlow implements open interfaces. These are northbound, south-
bound, east-, and westbound interfaces. RouteFlow utilizes OpenFlow
as southbound interface, distributed routing protocols (e.g. OSPF,
BGP) as the east/westbound interface to communicate with conven-
tional networks and with other SDN domains.

4. Finally, RouteFlow cannot satisfy the programmability requirement.
Like conventional networks, RouteFlow is controlled by distributed in-
dependently operating subprocesses. This means RouteFlow does not
offer the possibility to program the whole network as a single entity
instead it is only able to control individual nodes in the network.

In summary, RouteFlow provides only partial conformance to the SDN
definition presented in [15]. This is not surprising considering the conser-
vative approach of RouteFlow. Nevertheless, RouteFlow is able to provide
the elasticity of control plane resources and protocol independence because
of the use of virtualization, while the features like network programmability,
flow granularity, and dynamic configuration are not present.

4. Case Study: RouteFlow

After presenting the theoretical background in section 3, this section pro-
vides the findings of our hands-on evaluation of RouteFlow, the main con-
tribution of this paper. Our case study is based on multiple tests designed
to analyze the suitability of RouteFlow for future ISP networks: we perform
data- and control-traffic forwarding, build a model for the relation between
routing and flow tables, estimate the flow table size and memory require-
ments, and finally test the reaction to failure in the data plane, control plane
or OpenFlow connection.

6



4.1. Data Traffic Forwarding
To emulate the forwarding behavior of a conventional router on top of

OpenFlow switches, RouteFlow programs the switches with flow table rules,
that approximate routing behavior. An OpenFlow switch matches incoming
packets against the ruleset in its flow table. Each rule specifies actions such as
forward the packet to an outgoing port, drop the packet, forward the packet
to the controller, or more advanced actions. The non-matching packets are
either dropped or forwarded to the controller.

The controller faces a trade-off between performance and flexibility when
installing flow rules in the switches. Handling packet flows autonomously on
the OpenFlow switches increases the data plane performance, but limits the
packet processing to the OpenFlow actions supported by the switch. For-
warding a packet flow to the controller introduces a performance penalty, but
allows arbitrary packet processing on the controller. Forwarding IP packets
based on their destination IP addresses can be achieved with the features
that are readily available in all OpenFlow switches. Therefore, IP packets
can be forwarded by OpenFlow switches without involving the controller.

RouteFlow makes use of proactive, reactive, and interpreted forwarding
rules. It installs proactive and reactive rules for IPv4 traffic addressed to a
remote network destination that can either be a host or a virtual router. A
proactive rule is installed in an OpenFlow switch beforehand and it is used for
all the reachable network destinations learned by the routers. Reactive rules
are installed in an OpenFlow switch in reaction to a received packet for which
no matching rule was present. They are used for directly connected hosts
and next hop routers. The reactive flows have IP address level granularity
while the proactive flows are for the whole subnet. The third category –
interpreted flows – means that each packet in the flow is forwarded to the
controller, for example ICMP packets. Interpreted forwarding is only used
for out-of-band control traffic. Table 1 presents a summary of different types
of flow table rules, installation methods and their granularity levels.

Figure 2 shows the path of an IP packet (solid line: steps 2,3,4,6) through
a RouteFlow controlled network with proactive rules already installed on the
intermediate nodes A and C and reactive rules installed after an ARP request
to get the next hop (dashed line: step 5) on node B. Preliminary to the initial
transmission of the IP packet on host H1 was an ARP request (dashed line:
step 1). The use of proactive flows results in only one OpenFlow Packet-in
message from the egress switch at the start of the first flow to a particular
destination. Therefore, reactive installation for the hosts in edge switches can

7



Packet type Destination Flow installation Flow granularity
IPv4 remote router proactive coarse
IPv4 neighbor router reactive fine-grained
IPv4 remote host proactive coarse
IPv4 neighbor host reactive fine-grained
ARP, ICMP,
routing protocols any interpreted -

Table 1: Types of flow rules installed by RouteFlow.

happen in two ways: if the host initiates a packet flow or if it is the destination
of a packet flow. Similarly, the reactive flows for neighboring routers are
installed. The overall effect is that the IPv4 data traffic is forwarded in the
data plane without interacting with the OpenFlow controller. Therefore, we
do not expect an effect on the forwarding performance.

Figure 2: IP Packet flow through a RouteFlow controlled network.

4.2. Control Traffic Forwarding

The virtual routers running in the control plane need to exchange con-
trol traffic via protocols like OSPF, BGP, ICMP, ARP, etc. Control traffic
needs to be forwarded to the virtual destination router. RouteFlow uses in-
terpreted flows to forward these packets to the virtual routers. In RouteFlow

8



the control traffic is forwarded via the control plane at each hop, even if it
is destined for another virtual router. This behavior does not affect the con-
trol traffic between neighbors (e.g. OSPF or ARP), but it adds extra delays
for the control protocol packets (e.g. ICMP or BGP), that need to transit
through multiple OpenFlow switches before reaching their intended destina-
tion. As shown in Figure 3, an ICMP packet from host H1 to host H2 is
sent to the first hop switch A (1), encapsulated into OpenFlow packets (2,3)
for transmission to the virtually abstracted topology, treated and forwarded
by the first hop VM (4), and sent back via OpenFlow packets to the first hop
switch A. The same happens at switch B until the ICMP packet reaches its
destination host H2.

Figure 3: ICMP Packet flow through a RouteFlow controlled network.

Similarly, in a non-MPLS core, multiple internal BGP sessions are created
between the routers to exchange reachability information learned via external
domains. In a RouteFlow controlled network these BGP packets will traverse
through the controller at each hop to reach the intended destination router.
For a network with an MPLS enabled core the edge routers still need to form
internal BGP sessions that will be forwarded through virtual routers.

The control traffic handling in RouteFlow leads to another issue in addi-
tion to extra delays which is the use of four OpenFlow Packet-in and Packet-
out messages per packet at each hop. These messages on the link between

9



the controller and OpenFlow switches along with packet handling is an ad-
ditional load on the controller. We propose to decrease the priority value of
the interpreted flows for multiple hop control traffic below the proactive and
reactive flow rules. Therefore, the control packets can be forwarded entirely
in the data plane and are only sent to the intended virtual router through
its controlled OpenFlow switch.

Another important issue is the lack of the TTL decrement action in Open-
Flow Version 1.0, which leads to the inability to use traceroute and measure
delays in a RouteFlow controlled network. If packets are not sent to the
router VMs at each hop, these hops are not visible in a traceroute. Also
any measured delays are a false estimate if packets are sent to the control
plane. It can deviate from the real values if the controller is placed at a
distance comparable to the distance of the next hop switch. This way la-
tency measurements in the network will show large differences. So RouteFlow
should support newer OpenFlow versions with a TTL decrement feature in
the switch specifications to solve this issue.

4.3. Priority Levels of the Flow Table Entries

Flow table entries in OpenFlow are matched from high to low priority.
Then the first matching rule is applied. This is different from conventional
routing, where longest prefix matching is used. Therefore, RouteFlow im-
plements a priority level calculation mechanism based on the subnet mask
length so that the more specific flows are used before generic flow rules.
RouteFlow defines a base priority level, drop priority level, a high priority
level for control traffic, and a multiplier for each bit in the subnet mask for
proactive and reactive flow rules. Trying to match more fine grained subnets
in the data plane increases the multiplication factor.

Priority = Base Priority + Offset (1)

Offset = Multiplying Factor × Subnet Prefix Length (2)

RouteFlow uses a predefined priority level for the interpreted flow rules
used for RIP, ICMP, ARP, IPv6, BGP, LDP, and OSPF. The priority of
these flows is higher than any other flows. Therefore, these packets are
always forwarded to the controller and incur forwarding delays while being
processed in the control plane. In section 4.2, we propose a modification of
the predefined priority to achieve line rate forwarding for control traffic.

10



4.4. Flow Table Size and Memory Requirements

This section addresses the issue of using OpenFlow switches instead of
legacy routers and their capability to hold flows with equivalent forwarding
behavior as routers. The size of the routing table depends on the role of a
router in the network (i.e access, edge, core, etc.) and the network topology.

We have found that RouteFlow translates a single route in a virtual router
to multiple flow rules in an OpenFlow switch. The reason for this one-to-
many relation is the use of the input port number of received packets and the
MAC address of the destination node as match fields in the flow table rules.
The impact of this relationship has effects on replacing all types of routers in
different roles. Usually, the access routers have high port density while the
core routers have large routing tables. The available OpenFlow switches are
capable of holding only a few thousand flows, while the routers used in the
core or the edge of a service provider network hold a few hundred thousand
routes [16]. In addition to large memory requirements for flow tables it is
also potentially problematic to add a new switch in a running network. It
can be predicted that the introduction of a new switch will suddenly increase
the OpenFlow Flow Mod messages which will put stress on the link between
the controller and OpenFlow switches.

We derived Equations 3 and 4 to estimate the number of flow rules that
are installed in an OpenFlow switch. The total number of flow table entries
(TF) is the sum of fixed flows (FF) and variable flows (VF). The fixed flow
rules represent the interpreted flows for control traffic and their number is
fixed for all the OpenFlow switches therefore the term fixed flows (FF).
The number of variable flow rules (VF) is dependent on multiple parameters
specific to a switch and represent both the reactive and the proactive flows.
It depends upon the following parameters: 1. Number of ports in OpenFlow
switch (NP) controlled by RouteFlow, 2. Number of directly connected nodes
(DC), 3. Number of indirectly connected subnets (IC).

TF = FF + V F (3)

TF = FF + (NP − 1)×(DC + IC) (4)

Using the simple example networks in Figure 4 and 5, we have calculated
the number TF for switch A. In these diagrams, circles represent OpenFlow
switches controlled by RouteFlow and rectangles represent hosts or simple

11



Ethernet switches not controlled by RouteFlow. The values of different pa-
rameters are shown in Table 2.

	  

Host	  1	  

Host	  2	  

Host	  N	  

L2	  Switch	   Switch	  
A	  

Switch	  
C	  

Switch	  
B	  

	  

	  

	  

	  

Figure 4: Switch A with DC = N+2 and IC = 1

	  

Host	  1	  

Host	  2	  

Host	  N	  

L2	  Switch	   Switch	  
A	  

Switch	  
C	  

Switch	  
B	  

Switch	  
D	  

	  

	  

	  

	  

Figure 5: Switch A with DC = 3 and IC = 2

Network NP DC IC TF
Figure 4 3 N+2 1 FF + (3-1)(N+2 + 1)
Figure 5 3 3 2 FF + (3-1)(3 + 2)

Table 2: Total Number of Flows in OpenFlow Switch A for Networks in Figures 4 and 5

In Figure 4, OpenFlow switch A is connected to N hosts via a Layer 2
switch and with the OpenFlow switches B and C, therefore switch A has a
value of DC equal to N+2. IC is 1 as the subnet between switches B and
C is the only indirectly connected subnet. In Figure 5, OpenFlow switch A
is now connected to three directly connected switches B, C and D, so DC
equals 3. Now the value of IC equals 2 as all the N hosts are now advertised
as a single subnet plus the subnet between switches B and C.

12



Therefore, switch A has an IC value that depends on neighboring switches.
The switches B, C, and D can be connected to multiple subnets directly or via
other switches, therefore increasing the value of IC for switch A. In general,
for a large service provider the value of IC will be large, as neighbor switches
will advertise thousands of routes.

The issue of large memory requirement and the unavailability of Open-
Flow switches that can hold such a number of flows is going to hamper the
adoption of RouteFlow as a SDN solution. We propose, instead of installing
multiple flows for each route, to use only two flows per route. One low prior-
ity flow for all the possible input ports and the other flow with higher priority
to block IP packet received through the outgoing port to avoid loops. In this
way, the flow table size can be limited to twice the size of the routing table
and not dependent on the number of ports in the switch. It is necessary
to mention that this approach cannot be used with the router multiplexing
mode of operation available in RouteFlow to divide a physical switch between
multiple virtual routers.

4.5. Resilience

To evaluate the resilience of RouteFlow and its ability to recover from
faults we derive multiple test cases. These test cases deal with the failures
in data plane, control plane and the OpenFlow connection between them.

In the data plane, link failure between two OpenFlow switches or port
failure on an OpenFlow switch may occur. We observed that RouteFlow is
unable to differentiate between failures that are explicitly reported by the
switches to the controller and the ones that are not reported, since Route-
Flow exclusively relies on routing updates to detect changes or failures in
the network. The recovery time from both types of failure is similar and in
the range of multiple routing updates. In our case the routing updates are
sent at an interval of 4 seconds and the recovery times are about 10 seconds.
The routing update interval can be reduced to shorten the recovery time
but it has its own negative impacts on the network stability. These recov-
ery times are obviously too large for production service provider networks
where 50 ms recovery time is already achievable using the MPLS fast reroute
mechanism [17].

The router VMs can fail unexpectedly resulting in route modifications
in neighboring routers and flow modifications in the switches. Our analysis
revealed that RouteFlow is unable to recover from such failures in an auto-
mated way and it requires manual intervention and configuration to recover

13



failed router VMs. We froze and unfroze the running VMs to analyze how
RouteFlow reacts to maintenance or migration of VMs. In this case Route-
Flow was able to automatically reintegrate the router VMs. The only effect
were the temporary changes in the routes in neighboring routers and flows
in their controlled switches. The use of virtualization is beneficial in a sense
that it can be used to migrate an active router to another server for scaling
the processing resources on demand or planned maintenance.

Another test showed that a failure of communication between the Open-
Flow controller and the switches stops data forwarding even if there are flow
table entries that are still intact in the effected switches. The main cause is
the unsuccessful ARP requests from the end hosts that can only be answered
by the routers controlling the edge switches. If the communication failure
occurs only between core switches and the OpenFlow controller, it is possible
to support data traffic via alternative paths available in the core.

To increase its reliability RouteFlow needs to incorporate the automated
router VM recovery and OpenFlow event reporting mechanisms. The depen-
dence on routing protocols to recover from failures in the data plane is an
unsuitable option for service providers. It was shown [18] that it is possible
to achieve less than 50 ms recovery time using OpenFlow event reporting
mechanism and BFD protocol by the OpenFlow controller. This requires
RouteFlow to support OpenFlow specification version 1.1 or above and pre-
calculate multiple independent paths for each route. The OpenFlow Version
1.3 specification [19] includes the option for OpenFlow switches to connect
to backup controllers in addition to a primary controller. This feature will
help in providing redundancy for the control plane and reduce the number
of interruptions in the network.

4.6. Migration and Communication with Conventional Networks

The challenge of replacing the conventional networks with SDNs is mul-
tifaceted, for example the ISPs have a large installed network infrastructure
which they rely on for their business. Their network infrastructure is a large
investment, that cannot be replaced at once. Also the network operators are
trained to deploy vendor-specific solutions over the years. At the moment,
some OpenFlow switches do not execute all actions in line rate, thus lacking
performance compared to hardware routers. Therefore, economic, technolog-
ical, and human resource constraints should be properly addressed to achieve
a transition to an all software defined network.

14



Autonomous Systems (ASes) use BGP to exchange global routing in-
formation and announce their reachable IP address space. Therefore, it is
necessary to support BGP to establish connectivity with other ASes. Route-
Flow supports a gradual approach to transform conventional networks to
SDN enabled networks by supporting the isolation between the edge and core
routing functions through router aggregation mode. In our study, we evalu-
ate this feature of RouteFlow by controlling all the external BGP-speaking
edge switches using a single router VM.

RouteFlow supports an aggregation mode, where multiple OpenFlow
switches in the data plane can be aggregated into one virtual router in the
control plane. One possible use-case would be to use one central routing func-
tion for a core network, since aggregating all switches into one virtual router
results in a logically centralized control plane. The single router would then
set the received routes and in turn install flows in core OpenFlow switches.
Then, the core network does not require BGP support. Another advantage
that can be achieved by this approach is to install flow entries in only those
switches that will be used to route the traffic, thus limiting the growth of
flow tables in core switches. It is similar to using MPLS which also makes the
core network BGP free. Although the current distributed implementations
of MPLS still require per-node configuration there has been some effort on
centralized MPLS [20, 21] and centralized routing functionality [22].

The current RouteFlow implementation only supports proper aggregation
for fully meshed OpenFlow switches. In other topologies, RouteFlow relies
on the aggregated virtual router to forward transit traffic. This approach is
inefficient and requires further development of RouteFlow to accommodate
non-meshed topologies.

In the transitioning phase to SDN the use of available solutions to enable
the compatibility and the idea of isolating the core network by using edge
router aggregation functionality seems to be most promising. The aggregated
network will appear to the outside world as a single router therefore hiding
the internal details of the network. The use of a centralized SDN routing
solution eliminates the need for distributed routing protocols in the network
core. It is also possible to implement MPLS-like functionality inside the core
network in a centralized way or any form of routing or switching in general.
To efficiently manage the core switches, we can utilize the approach presented
in [23], where multiple controllers can control a specific portion of the core
network. These controllers can cooperatively make routing decisions, provide
easier management, and better resilience in the event of controller failure.

15



5. Summary

The RouteFlow project provides a proof of concept to gradually deploy
SDN in real world scenarios. The use of well-tested routing protocols along
with the flexibility of network virtualization makes it a commendable start-
ing point. However, our case study revealed numerous problems that the
RouteFlow implementation faces in practice.

Out of the six challenges in ISP networks we discussed in section 2, Route-
Flow is only able to address vendor lock-in. RouteFlow relies on switches
implementing the OpenFlow protocol and Linux VMs, so it does not re-
quire buying from a specific vendor. Moreover, it enables network opera-
tors to gradually replace vendor-specific routers with commodity OpenFlow
switches. It remains unclear whether RouteFlow will reduce device con-
figuration costs, customization costs and, as a result, labor costs. On
one hand, RouteFlow facilitates the network configuration by virtualizing the
control plane, so it can run on a single machine. This makes it easy to track
the global configuration state and troubleshoot problems. On the other hand,
RouteFlow does not deploy a logically centralized control plane. Control is
split among multiple cooperating VMs. This means device configuration
does not improve. In fact, the deployment of RouteFlow requires additional
work to setup all necessary components. The deployment of RouteFlow adds
additional complexity to an existing network. Finally, RouteFlow even
aggravates the problem of overprovisioning by adding additional control
traffic on top of the traffic carrying actual payload.

Some of these problems can be addressed with some effort. We proposed
possible solutions in our case study. RouteFlow would benefit greatly from an
update to support OpenFlow Version 1.3 or later, since OpenFlow Version 1.3
allows decrementing the TTL value, and supports IPv6 [19]. It also improves
network resilience through a new feature to configure multiple controllers in
a switch [19]. If the primary controller is not reachable, the switch can use
another controller as a fall-back option. Additionally, the resilience can be
improved by utilizing the OpenFlow link failure reporting mechanism instead
of waiting for the routing protocol to converge. As far as the control plane
is concerned, an automated virtual router recovery mechanism could restore
VMs without manual intervention. RouteFlow stores a large number of flow
table entries on the OpenFlow switches. Removing the matching on incoming
ports can help reduce the number of flow table entries in typical scenarios.

Other problems are inherent to the design of RouteFlow and therefore

16



hard to fix. This includes its lack of a logically centralized path selection and
its limited performance. Instead of making control plane decisions in the
controller, RouteFlow relies on decentralized routing protocols. RouteFlow
runs a whole network of virtualized routers with full featured OSes, although
it needs only a small fraction of their functionality. Therefore, compared to a
logically centralized control plane, the RouteFlow control plane is complex,
limits performance, and complicates the network configuration.

Acknowledgments

This research has been supported by the DFG (German Research Foun-
dation) as part of the MEMPHIS project (CA 595/5-2), the EU as part of
KIC EIT ICT Labs on SDN, and the BMBF (German Federal Ministry of
Education and Research) under EUREKA-Project SASER (01BP12300A).

References

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2012–
2017, Whitepaper, Cisco (May 2013).

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, Openflow: Enabling innovation in
campus networks, SIGCOMM Comput. Commun. Rev. 38 (2) (2008)
69–74.

[3] Big Switch Networks Inc, Big tap monitoring fabric, Datasheet.

[4] OpenStack, http://www.openstack.org/, last visited 2014-10-15.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
A. Vahdat, B4: Experience with a globally-deployed software defined
wan, SIGCOMM Comput. Commun. Rev. 43 (4) (2013) 3–14.

[6] O. M. Heckmann, The Competitive Internet Service Provider: Network
Architecture, Interconnection, Traffic Engineering and Network Design,
Wiley Series on Communications Networking and Distributed Systems
Ser., John Wiley & Sons, Ltd., 2006.

17



[7] ONF, Software-Defined Networking: The New Norm for Networks,
White Paper.

[8] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Corrêa,
S. C. de Lucena, M. F. Magalhães, Virtual Routers As a Service: The
RouteFlow Approach Leveraging Software-defined Networks, in: Pro-
ceedings of the 6th International Conference on Future Internet Tech-
nologies, CFI ’11, ACM, New York, NY, USA, 2011, pp. 34–37.

[9] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa,
S. Cunha de Lucena, R. Raszuk, Revisiting routing control platforms
with the eyes and muscles of software-defined networking, in: Proceed-
ings of the First Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12, ACM, ACM, New York, NY, USA, 2012, pp. 13–18.

[10] M. Casado, T. Koponen, S. Shenker, A. Tootoonchian, Fabric: a retro-
spective on evolving sdn, in: Proceedings of the first workshop on Hot
topics in software defined networks, ACM, 2012, pp. 85–90.

[11] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
S. Shenker, Software-defined internet architecture: decoupling architec-
ture from infrastructure, in: Proceedings of the 11th ACM Workshop
on Hot Topics in Networks, ACM, 2012, pp. 43–48.

[12] J. P. Stringer, Q. Fu, C. Lorier, R. Nelson, C. E. Rothenberg, Cardigan:
Deploying a distributed routing fabric, in: Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined network-
ing, ACM, 2013, pp. 169–170.

[13] A. Vidal, F. Verdi, E. L. Fernandes, C. E. Rothenberg, M. R. Salvador,
Building upon RouteFlow: a SDN development experience, in: XXXI
Simpósio Brasileiro de Redes de Computadores, SBRC’2013, 2013.

[14] Open Networking Foundation, SDN architecture,
https://www.opennetworking.org, last visited 2014-10-15.

[15] M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, W. Kellerer, Inter-
faces, attributes, and use cases: A compass for SDN, Communications
Magazine, IEEE 52 (6) (2014) 210–217.

18



[16] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
S. Uhlig, Software-Defined Networking: A Comprehensive Survey, arXiv
preprint arXiv:1406.0440.

[17] C. R. Kalmanek, S. Misra, Y. R. Yang (Eds.), Guide to Reliable Internet
Services and Applications, Computer Communications and Networks,
Springer, 2010.

[18] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, Enabling
fast failure recovery in OpenFlow networks, in: Design of Reliable Com-
munication Networks (DRCN), 2011 8th International Workshop on the,
IEEE, 2011, pp. 164–171.

[19] ONF, OpenFlow Switch Specification 1.3.0,
https://www.opennetworking.org, last visited 2014-10-15.

[20] A. R. Sharafat, S. Das, G. Parulkar, N. McKeown, MPLS-TE and MPLS
VPNs with Openflow, in: ACM SIGCOMM Computer Communication
Review, Vol. 41, ACM, 2011, pp. 452–453.

[21] S. Das, A. Sharafat, G. Parulkar, N. McKeown, MPLS with a simple
OPEN control plane, in: Optical Fiber Communication Conference, Op-
tical Society of America, 2011.

[22] G. Khetrapal, S. K. Sharma, Demystifying Routing Services in Software
Defined Networking, White Paper.

[23] X. T. Phan, N. Thoai, P. Kuonen, A collaborative model for routing in
multi-domains OpenFlow networks, in: Computing, Management and
Telecommunications (ComManTel), 2013 International Conference on,
IEEE, 2013, pp. 278–283.

Abbreviations

AAA – Authentication Authorization Accounting

ARP – Address Resolution Protocol

AS – Autonomous System

BFD – Bidirectional Forwarding Detection

BGP – Border Gateway Protocol

19



CAPEX – capital expenditures

DC – directly connected nodes

DHCP – Dynamic Host Configuration Protocol

DNS – Domain Name System

DPI – Deep Packet Inspection

DSL – Digital Subscriber Line

FF – sum of fixed flows

IC – indirectly connected nodes

ICMP – Internet Control Message Protocol

IPTV – IP based TV streaming

IP/IPv4/IPv6 – Internet Protocol

LDP – Label Distribution Protocol

NP – number of ports

MPLS – Multiprotocol Label Switching

OPEX – operating expenditure

OS – Operating System

OSPF – Open Shortest Path First

QoS – Quality of Service

RIP – Routing Information Protocol

SDN – Software Defined Network

TF – flow table entries

TTL – Time To Live

VF – sum of variable flows

VM - virtual machine

VPLS – Virtual Private LAN Service

VPN – Virtual Private Network

20


