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Abstract—With virtual switching, a chain of virtual
network functions can be realized on a single physical
host. This promises higher flexibility and reduction
of costs for network operators due to the usage of
commodity hardware instead of expensive hardware
appliances. On the down side this may cause interfer-
ences that affect the performance. Therefore, we survey
the performance impact of intra-node placement of net-
work functions. The applied metrics include through-
put, latency, and CPU utilization. Our analyzed setups
include Open vSwitch, Linux network namespaces, and
the DPDK IP Pipeline as different chaining technolo-
gies. We introduce a model to estimate the maximum
achievable throughput with respect to placement of
network functions considering chaining across several
computational resources.

I. Introduction

Network function virtualization (NFV) is designed
to replace hardware appliances, which provide a spe-
cific network function, by virtualized network functions
(VNF). NFV enables network operators to implement
network functions in software, with the ability to run
on commodity hardware that is less expensive compared
to specialized hardware appliances. Next to lower asset-
and operating costs, NFV provides higher flexibility and
scalability, which enables network operators to adapt the
maintained network to their customers’ requirements. Net-
working tends towards differentiated processing chains for
different kind of traffic via flow-specific processing paths
of interconnected VNFs. This is called service or net-
work function chaining (NFC respectively SFC). Network
function chains are a recent research topic, comprising
different research directions and needs of specification and
standardization.

This paper determines performance implications
caused by the placement of network function chains on
a single physical host with limited resources. To deter-
mine implications for the implementation and architecture
of the NFC, we measured chains of network functions
restricted to VNFs performing port-to-port packet for-
warding. It includes novel measurements to show the
influence of intra-node placement of chained network func-
tions regarding throughput, latency, and costs per packet.
The network functions were chained as an ordered set
while each packet is processed by each chain element.
Figure 1 illustrates our baseline performance tests. The

questions to be answered concern the influences of chained
network functions placed on a physical host. We describe
how different resource-to-VNF bindings improve or harm
NFC performance. Modeling of the resource requirements
of NFC and its performance with respect to different
resource-to-VNF bindings is the second aspect.

The remainder of this paper is structured as follows: In
Section II, we discuss related work. Section III describes a
model purposed to approximate maximum throughput of
network function chains, depending on the per packet pro-
cessing costs. Next we analyze our measurement results for
network function chains implemented with Open vSwitch
(OvS) and Linux Namespaces in Section IV. Chains based
on Data Plane Development Kit (DPDK) are measured in
Section V. We sum up our results in Section VI.

II. Related Work

NFC has found its way into carrier-grade networks. In
2015, the conceptual architecture of NFC was specified by
RFC 7665 [1], titled “Service Function Chaining Archi-
tecture”. Since then, different use cases and its individual
benefits as well as research directions of service chaining
have been discussed [2], [3]. Research directions include
optimization strategies for decomposition and aggregation
of services and service blocks, strategies for service in-
stance deployment, continuous network service delivery,
and security aspects [3]. Mehraghdam et al. [4] describe a
context-free language to formalize the chaining of network
functions. They developed a mixed integer quadratically
constrained program, with the purpose to find a high-
performance placement of network functions. The authors
consider data rate, number of network nodes, and latency
as metrics of interest to optimize VNF placement.

Although NFC is a frequently studied topic, perfor-
mance analysis of chains are rare and VNF placement is
analyzed from a rather theoretical point of view.

However, several studies of NFC performance and
relevant methodology for NFC benchmarking exist. In
2009, Dobrescu et al. [5] built a Click router that runs

Figure 1: Illustration of the forwarding chain setups
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Table I: Explanation of model parameters
type of costs (per packet) expression

total costs of a NF chain of length n Ctotal,n

processing costs by i-th VNF CV NFi
processing costs by n VNFs CV NF,n

receiving costs via a physical interface CRX

transmitting costs via a physical interface CT X

costs for passing packets from V NFi to V NFj Clinki,j

costs for chaining between n VNFs Cchaining,n

costs for packets dropped in software CSW drops

costs of other tasks, done by the OS Cother

available computational power per core in cycles
sec fCP U

parallel on several cores and analyzed different strategies
for chaining of the Click modules. Today, measurement
results of their study are overtaken by changed hardware
and software architectures. Emmerich et al. describe a
quantitative and qualitative study on the performance
characteristics of Open vSwitch [6]. They consider the
influence of physical and virtual network interfaces but
did not study the effect of chaining. Livi et al. [7] study
chains of Linux namespaces and different ways to connect
them. They describe the decreasing throughput tout due to
an increasing chain length n and the percentage of packet
loss per chain element l to be similar to the power law
tout = (1 − l)n · tin. Livi et al. [7] measure throughput
with packet sizes up to 70 kB but neglect measurements
with small packet sizes which are known to be demanding
scenarios of packet processing in software [8]. Martins et
al. [9] show the chaining performance of their proposed
NFC framework ClickOS. Panda et al. [10] proposed
NetBricks and compare its chaining performance with
containers and VMs chained with two different switches.
The throughput and latency tests that still apply today
were already defined in 1999 by RFC2544 [11]. In 2016,
Kim et al. [12] proposed a draft to the Benchmarking
Methodology Working Group of the IETF that describes
methodology to benchmark NFC setups. The proposed
performance metrics are end-to-end (E2E) latency, E2E
packet loss rate, and E2E bandwidth. We consider these
in our paper. Additional IETF drafts related to NFC
exist: Kumar [13] describe the use cases of NFC in data
centers. NFC in mobile networks is addressed by Haeffner
et al. [14]. Conveying information between NFC control
elements and data plane functional elements was proposed
by Boucadair [15]. Scalability of NFC was addressed by Ao
and Mirsky [16].

III. Modeling NFC processing costs

To explain the throughput of chained network func-
tions, we introduce a model, based on the processing
costs per packet, expressed as required CPU cycles. The
underlying assumption is that CPU cycles are the main
limiting factor which leads to the following constraint for
maximum throughput: Throughput[pps] ≤ fCP U

Ctotal,n
. All

parameters are listed in Table I.

The total costs Ctotal,n are constituted by different
components: On its way each packet has to be processed
by n VNFs, while each V NFi causes costs CV NFi

. The
processing costs CV NF,n for the first n VNFs are calcu-
lated as: CV NF,n =

∑n
i=1 CV NFi

. To be processed, each
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Figure 2: Composition of total costs per packet

packet has to be received and transmitted via a physical
interface and has to be forwarded via n− 1 links between
the n VNFs. This leads to the following formulas:

Cchaining,n = CRX +
n∑

i=2
Clinki−1,i

+ CT X (1)

Ctotal,n = Cchaining,n + CV NF,n + Cother + CSW drops (2)

Costs that are not clearly related to a certain task or
element, e.g. periodic statistics collection, are expressed
by Cother. These are neither per packet costs nor in-
dependent of the load. The costs for dropped packets
CSW drops are explained in more detail in Section IV. If a
network function chain gets overloaded, i.e., there are not
enough resources to process all received packets, packets
are dropped. Packets are either dropped in hardware, i.e.,
by the NIC without occupying computational resources
or by the software. Software drops require computational
resources as the task of dropping has to be done by the
CPU. Therefore, SW drops increase the costs per packet
for overloaded network function chains significantly.

Figure 2 shows a qualitative visualization of the costs
for increasing chain lengths for an idealized chaining tech-
nology with constant CV NFi

and a fixed offered load. It
shows how the costs to run the VNFs and the costs to
provide the chaining grow linear with the chain length
n. CSW drops occur for longer chains starting from n0
(the point when fCP U

Ctotal,n·T hroughput[pps] = 100%. CSW drops

and the processing costs that are wasted for processing
until the drop at hop ndrop (i.e. the increased costs per
successfully processed packet in CRX ,

∑ndrop−1
i=2 Clinki−1,i

,
and CV NF,ndrop

) consume further CPU cycles. Therefore,
packet drops in software have an amplifying effect that
leads to a decrease in throughput.

IV. Basic Performance Characteristics
The measurements in this section are conducted with

Linux network namespaces, Linux kernel virtual Ethernet
(vEth) interfaces and Open vSwitch (OvS). Although less
efficient in terms of maximum throughput, these classical
technologies are part of the operating system and are con-
sidered technologies for NFC. They are matured, provide
a broad range of functionality and operators are already
familiar with them.

OvS [17] is an open-source virtual switch that is fre-
quently used for NFV or for SDN due to its support
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Figure 4: Correlation between used CPU cycles and Throughput of OvS Chains
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Figure 3: Max. throughput of OvS and namespace chains

for OpenFlow [18]. To implement OvS forwarding chains,
OvS bridges are interconnected by vEth pairs. Two vEth
interfaces are added as ports to each bridge, while the
bridge is configured to forward traffic from the one port
to the other via OpenFlow rules. Livi et al. showed that
the vEth pairs are not a bottleneck when measuring
throughput in terms of Bytes per second [7].

Linux namespaces provide independent network
stacks [19]. Known applications are Linux containers,
like Docker or LXC. Each namespace maintains a
routing table, an ARP table, and network interfaces.
To implement our forwarding chains, each namespace
is connected to one interface of a vEth pair while the
other interface of the pair is connected to the next
namespace. Each namespace is configured to forward
incoming packets via a default route. Therefore, routing
table entries and ARP table entries are created in each
namespace.

A. Test Setup

Our test setup for OvS bridge- and namespace chains
consists of two physical hosts, a load generator and a
device under test (DuT) as shown in Figure 1. The DuT
has an Intel Xeon E3-1230 processor with four physical
cores operating at 3.3 GHz and a dual-port 10 Gbit/s Intel
X520-T2 NIC. Dynamic frequency scaling of the CPU was
disabled to avoid measurement artifacts. Both machines
run a Debian Linux with kernel version 3.16. and Open
vSwitch 2.3.0. Profiling of the DuT is done with perf. The
load is generated with the packet generator MoonGen [20].
All graphs show measurements under constant load of 64B
packets. By testing with bigger packets, we confirmed that
packet size has no effect on the costs per packet. For the
measurements on multi-CPU systems, we use a system

1 2 3 4 5 6 7 8 9
0

20

40

60

80
67

.37

20
.59

8.1
8

2.9
8

0.4
1

0.1
9

0 1.2
2 · 10

−2

0 0

67
.35

20
.62

8.0
7

2.9
7

0.1
3

0 0

67
.66

20
.4

7.5
6

2.5
6

0

Index of vEth pair

SW
dr

op
s/

to
ta

ld
ro

ps
[%

]

Length = 10 Length = 7 Length = 5

Figure 5: Dropped packets in each chain element

with two Xeon E5-2640 processors operating at 2.0 GHz
and two Intel X520-T2 dual-port NICs.

B. Throughput Measurements

First chain lengths from n = 1 up to n = 10 are
measured, for OvS chains and for namespace chains. Fig-
ure 3 shows the maximum throughput determined by our
measurements. OvS bridges and namespace forwarding
cause different per packet costs CV NF,i and accordingly
achieve different throughputs. Emmerich et al. [6] already
found these differences between Linux forwarding and an
OvS for a chain length of 1. While CV NF,i is different for
both kinds of chains, the links are implemented with vEth
pairs in both cases. Therefore, Cchaining,n is equal for the
OvS and for namespace chains of the same length. In the
following we discuss effects at the example of OvS chains
but results also apply to namespaces.

Figure 4 reveals another important aspect of chained
setups. In an OvS setup with a chain of length n = 1
throughput and CPU cycles per packet are not affected
by load above the maximum throughput marked by x0 in
Figure 4(a). Figure 4(b) shows the throughput of an OvS
bridge chain of length n = 5. First, the throughput in-
creases with the offered load until the maximum through-
put, marked with x0, is reached. For rates r0 > x0 the
throughput decreases again until a minimum throughput,
depending on the chain length n, is reached. This effect
occurs for all chain lengths n > 1. It is explained by CPU
cycles consumed by packets that get dropped in software.
Different to drops done by the NIC, these waste CPU
cycles (cf. Section III) and decrease the throughput. Addi-
tionally, drops early in the chain waste fewer cycles, com-
pared to packets dropped later in the chain as ∀n < m :
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Figure 6: Correlation between Latency and (a) Throughput, and (b) Interrupts/sec of OvS Chains

Table II: Placement dependent transmit and receive costs
remote NIC throughput [Mpps] ∆C [cycles]

– 1.18 –
TX 1.08 ∆CT X = 157

RX 1.16 ∆CRX = 29
TX+RX 1.09 ∆(CRX + CT X) = 140

Cchaining,n+
∑n

i=1 CV NF,i << Cchaining,m+
∑m

i=1 CV NF,i.
To investigate this, we analyze drop statistics for chains
of lengths n = 5, n = 7 and n = 10. Figure 5 shows the
distribution of drops in software with an offered load of
1.4Mpps (64B packets); each chain element in Figure 5
drops approx. pSW = 67% of its traffic and only pNIC =
30% were dropped by the NIC. SW drops and their
distribution in the chain depend rather on the offered load
and show no significant difference for the chain length. The
average wasted cycles C∗ per dropped packet is as follows:
pNIC∗(CRX +CSW drops+

∑n−1
i=0 (pSW )i∗pSW ∗C∗

chaining,i),
with pNIC = 1− pNIC .

To analyze the costs for transmitting and receiving
packets, we used the dual CPU server as DuT. We fixed
the OvS chain to length n = 1 and measured the through-
put in four different scenarios. The baseline performance
was measured with the TX and RX NIC connected to
the processing CPU. This was compared to setups where
RX, TX, and both RX+TX is not directly connected to
the processing CPU but remotely via the other CPU.
The performance differences ∆CRX and ∆CT X listed in
Table II are caused by NUMA for receiving or transmit-
ting packets. The difference between ∆(CRX + CT X) and
∆CRX + ∆CT X is caused by computations taken over by
the CPU that is in direct responsibility of the NIC.

C. Latency measurements
Latency changes with the CPU cycles per packet and

its waiting times. While CPU cycles can be measured,
waiting cycles can only be derived indirectly by the knowl-
edge that a full queue leads to packet drops. Figure 6(a) il-
lustrates throughput in Mpps and latency in microseconds
for different loads measured for an OvS chain with length
n = 3. For all OvS and namespace chains with length
n > 1, three ranges of offered loads can be identified.
The boundaries decrease with increased chain lengths. The
first range concerns rates with r0 ∈ [0, x0]. No packet loss
occurs and latency increases moderately with the offered

load until the threshold rate x0 is reached. At x0 buffers fill
up due to overload and latency increases significantly. For
rates r1 ∈ [x0, x1] throughput decreases and packets get
dropped. The moderate increase of latency in that range is
caused by delayed interrupts, i.e., the Interrupt Throttling
Rate (ITR) (cf. [21]). This matches to the increasing
latency for chains stressed with mid loads and correlates
with our measurements of executed interrupts per second.
Figure 6(b) shows the effect of interrupts towards latency.
Last but not least, rates r2 ∈ [x1,∞] overload the NFC
under test. This gets visible via a minimized number of in-
terrupts per second and maximized latency in Figure 6(b).

V. Chaining Strategies

Software for packet processing like the Data Plane
Development Kit (DPDK), Snabb [22], or netmap [8] is
designed for high data and packet processing efficiency.
Therefore, they bypass the networking functionality of
the OS and the driver. NFC frameworks use these, e.g.
Netbricks [10] uses DPDK and ClickOS [9] uses netmap.
In the following, we use the IP pipeline [23] application
that is provided by DPDK. Each DPDK IP pipeline
element can be bound to a computational resource, i.e.,
a CPU socket, CPU core, or virtual CPU core. We use
DPDK pass-through pipelines with various lengths and
CPU core bindings to analyze the linkage costs Clinkij

(cf.
Section III) with respect to the node internal placement of
the network function i and j. The used DPDK IP pipelines
are based on DPDK v16.11.1.

To analyze chaining costs, we use two patterns to
distribute pipeline elements to the available CPU re-
sources. Block-Interleaving (BI) represents the distribu-
tion scheme with the minimal number of core switches,
respectively socket switches. BI distributes blocks of sub-
sequent pipeline elements with evenly distributed length
to each of the CPU resource. The second configuration
is called Pipeline-by-Pipeline-Interleaving (PbP). PbP re-
quires a packet to change its computational resource with
every element of the chain. It implicates highest chaining
costs per packet, the core, respectively socket, is switched
after each processing element. We applied the BI and PbP
pattern to two (d_core) and four (q_core) CPU cores on
the same CPU and to two cores on different CPU sockets
(d_CPU). For comparison we deployed each chain to a single
core (s_core).
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Figure 7: Maximum throughput of DPDK IP Pipeline chains with different lengths

Figure 7 shows the maximum throughput of DPDK
IP pipeline chains with a length of 4 up to a length
of 48, for the s_core, d_core, q_core, and d_CPU setup
with PbP and BI. It shows that link costs differ for three
fundamental configurations:
• Intra-core links connect two chain elements, both

placed on the same physical core.
• Inter-core links connect two chain elements, while

both elements are bound to two different physical
cores, that are located on the same CPU. (Fig-
ure 7(a), Figure 7(b))

• Inter-CPU links, that interconnect chain elements,
while both elements are bound to different CPUs.
(Figure 7(c))

The throughput measured on one single core decreases
exponentially, while the throughput of the other setups
decreases significantly slower for two cores and even slower
for four cores. Commencing with our setups with two
cores on one CPU socket, the influence of core switches on
maximum throughput was quite moderate. The overhead
implicated by switching the CPU socket is significantly
higher as the overhead implicated by switching the core
inside a CPU socket. For short chain lengths, the overhead
of the core switches can not be compensated by the
increase of computational resources. For chain lengths
n ≤ n0, the BI approach achieves higher throughput. For
all chains above the break even point, the computational
demand of the whole chain increases significantly while
the number of core switches does not change. The break
even point for setups with more core switches (PbP) is
reached later, for longer chains that require higher overall
computation. For switches of the CPU socket the break
even point is reached for even longer chains at n0 = 26 as
it can be seen in Figure 7(c). The decision problem of an
optimal NFC configuration is as followed:

max(tps_core
n , tpd_core/CP U

n ) =


fCP U

Cs_core
total,n

for n ≤ n0
2·fCP U

C
d_core/CP U

total,n

for n > n0

(3)
The placement of NFC elements also impacts the

latency. In Figure 9(a) and Figure 9(b) latencies for a
chain of length n = 24 are measured. In case of overload,
latency is dominated by the time that packets have to wait
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Figure 8: Cycles per packet, DPDK IP Pipelines, d_CPU

in buffers to be processed. Depending on the position of
the bottleneck in the chain the congestion only fills up
buffers of previous elements. The second observation is
that each switch of a core adds processing delays by itself.
This delay is orders of magnitude lower then the waiting
delays and gets visible for latencies below overload when
we compare BI with PbP. The numerous core switches
with PbP are nearly as expensive in terms of latency as
the congestion in case of the single core setup. As the load
of core switches in case of the PbP pattern is split across
four inter-core links, the latency decreases compared to the
latency of the two core PbP setup, due to a shorter period
a packet is buffered at the bottleneck. The BI pattern
improves latency compared to the two core setup, too.
The congestion caused by the first bottleneck is already
triggered after n/4 pipeline elements. As the dashed lines
in Figure 9(b) and in Figure 9(c) show the points when
the system is overloaded are recognizable by the latency
as well as by the throughput.

For chain lengths n > 24, the approach with two
CPUs was more performant as the approach with one
single core, because of the distribution of overhead on a
high demand of computational power by a high number
of chain elements. Figure 8 shows the costs per packet
calculated by the cycles offered by the core(s) and the
measured maximum throughput. Comparing the costs
of the single core measurement to the costs of the BI
two socket measurement, the significant overhead can be
determined, caused by one CPU switch.

VI. Conclusion
We have done extensive analysis of NFC with clas-

sical technologies and advanced high-speed packet pro-
cessing frameworks. Discovered limitations are expressed
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Figure 9: Measurements for chain length n = 24

by equations and optimization problems for NFC design.
Analyzed technologies like OvS and Linux namespaces
are used by container technologies, which are seen as a
key component of NFC setups. The innovation potential
shown at the example of DPDK for implementations of
NFC is representative for a zoo of technologies that can
be used for acceleration of NFC like Snabb [22], Net-
bricks [10], or ClickOS [9]. Based on our analysis, we derive
a few guidelines: First, the earlier a bottleneck occurs in a
chain, the lower is the impact of congestion in the buffers.
NFC optimized software helps to avoid negative knock-on
effects: with the wrong chaining technology or configura-
tion the increase in latency and decrease in throughput
caused by a VNF may be amplified by several orders of
magnitude. We also quantified the decision when a VNF
should be placed on a new CPU core. Generally, core
switching within a chain should be avoided if possible,
e.g., in favor of distributing packets equally to multiple
parallel chains.
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