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Abstract—Virtual switches, like Open vSwitch, have emerged
as an important part of cloud networking architectures. They
connect interfaces of virtual machines and establish the connec-
tion to the outer network via physical network interface cards.
Today, all important cloud frameworks support Open vSwitch
as the default virtual switch. However, general understanding
about the performance implications of Open vSwitch in different
usage scenarios is missing. In this work we provide insights into
the performance properties by systematically conducting mea-
surements in virtual switching setups. We present quantitative
and qualitative performance results of Open vSwitch in scenarios
involving physical and virtual network interfaces.

I. INTRODUCTION

Software switches form an integral part of any virtualized
computing setup. They provide network access for virtual
machines (VMs) by linking virtual and also physical network
interfaces. The deployment of software switches in virtualized
environments has lead to the term virtual switches and paved
the way for the mainstream adoption of software switches [1],
which did not receive much attention before. In order to meet
the requirements in a virtualized environment, new virtual
switches have been developed that focus on performance
and provide advanced features in addition to the traditional
benefits of software switches: high flexibility, vendor inde-
pendence, low costs, and conceptual benefits for switching
without Ethernet limitations. The most popular virtual switch
implementation – Open vSwitch (OvS) – is heavily used in
cloud computing frameworks like OpenStack [2] and Open-
Nebula [3]. OvS is an open source project that is backed by
an active community, and supports common standards such as
OpenFlow, SNMP, and IPFIX.

Efficiency of packet processing in software has multi-
ple dependencies, and each factor can significantly hurt the
performance, which gives motivation to perform systematic
experiments to study the performance of virtual switching.
We carry out experiments to quantify performance influencing
factors and describe the overhead that is introduced by the
network stack of virtual machines, using Open vSwitch in
representative scenarios.

The remainder of this paper is structured as follows: Sec-
tion II provides an overview on software switching. We explain
recent developments in hardware and software that enables
sufficient performance in general purpose PC systems based
on commodity hardware, highlight challenges, and provide an
overview of Open vSwitch. We then present related work on
performance measurements in Section III. Section IV describes
our study on the performance of software switches. Section V
sums up our results and gives advice for the deployment of
software switches.

II. SOFTWARE SWITCHES

A software switch is the combination of commodity PC
hardware and software for packet switching and manipulation.
Packet switching in software grew in importance with the
increasing deployment of host virtualization. Virtual machines
(VMs) running on the same host system must be intercon-
nected and connected to the physical network. If the focus lies
on switching between virtual machines, software switches are
referred to as virtual switches. Compared to the default VM
bridging solutions, virtual switches like OvS are more flexible
and provide a whole range of additional features.
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Fig. 1. Application scenario of a virtual switch

Figure 1 illustrates the typical application scenario of
virtual switches. The switch connects the virtual network
interface cards (NIC) vNIC and the physical NICs pNIC.
Typical applications in virtual host environments include traffic
switching from pNIC to vNIC, vNIC to pNIC, and vNIC to
vNIC. As components of future network architectures packet
flows traversing a chain of VMs are also discussed [4]. The
performance of virtual data plane forwarding capabilities is
a key issue for migrating existing services into VMs when
moving from a traditional data center to a cloud system
like OpenStack. This is especially important for applications
like web services which make extensive use of the VM’s
networking capabilities.

Although hardware switches are still the dominant way
to inter-connect physical machines, software switches come
with a broad support of OpenFlow features and were the first
to support new versions. Therefore pNIC to pNIC switching
allows software switches to be an attractive alternative to
hardware switches. The size of flow tables in software switches
is just a matter of their configuration while it is limited to a
few thousand in hardware switches [29].

A. State of the Art

Multiple changes in the system and CPU architectures
significantly increase the packet processing performance of
modern commodity hardware: integrated memory controllers
in CPUs, efficient handling of interrupts, and offloading mech-
anisms implemented in the NICs. Important support mecha-
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nisms are built into the network adapters: checksum calcu-
lations and distribution of packets directly to the addressed
VM [5]. NICs can transfer packets into memory (DMA) and
even into the CPU caches (DCA) [6] without involving the
CPU. These techniques can eliminate workloads of hundreds
of CPU cycles per packet. Further methods such as interrupt
coalescence aim at allowing batch style processing of packets.
These features mitigate the effects of interrupt storms and
therefore reduce the number of in-kernel context switches.
Network cards support modern hardware architecture princi-
ples such as multi-core setups: Receive Side Scaling (RSS)
distributes incoming packets among queues that are attached
to individual CPU cores to maintain cache locality on each
packet processing core.

These features are available in commodity hardware and
software needs to support them. These considerations apply
for packet switching in virtual host environments as well as
between physical interfaces. As the CPU proves to be the main
bottleneck [7], [8], [9], [10] features like RSS and offloading
are important to reduce CPU load and help to distribute load
among the available cores.

Packet forwarding applications like Open vSwitch [11], the
Linux router, or Click Modular Router [12] avoid copying
packets when forwarding between interfaces by performing the
actual forwarding in a kernel module. However, forwarding
a packet to a user space application like a VM requires a
copy operation with the standard Linux network stack. There
are several techniques based on memory mapping that can
avoid this by giving a user space application direct access to
the memory used by the DMA transfer. Prominent examples
of frameworks that implement this are PF RING DNA [13],
Netmap [14], and DPDK [15], [16]. E.g. with DPDK the
L3 forwarding performance on an Intel Xeon E5645 (6x
2.4 GHz cores) achieves 35.2 Mpps [15]. Virtual switches like
VALE [17] achieve over 17 Mpps vNIC to vNIC bridging
performance by utilizing shared memory between VMs and the
hypervisor. Similar prototypes to VALE exist [18], [4]. Virtual
switches in combination with guest OSes like ClickOS [4]
achieve notable performance of packet processing in VMs.
All these techniques rely on modified drivers, VM environ-
ments, and network stacks, and only work with certain NICs.
Experiments which combine OvS with the described high
speed packet processing frameworks [19], [20] demonstrate
performance improvements. In our experiments we encoun-
tered a high instability of these high speed packet processing
frameworks when VMs are involved. We do not consider
these frameworks production-ready for virtual switches. We
therefore focus our measurements on virtual switches which
are used in real-world scenarios – e.g. in cloud frameworks.

B. Open vSwitch

Open vSwitch [11], [21], [22] is an OpenFlow switch
implementation that can be used both as a pure virtual switch
in virtualized environments and as a general purpose software
switch that connect physically separated nodes.

Figure 2 illustrates the different processing paths in OvS.
The two most important components are the switch daemon
ovs-vswitchd that controls the switch and implements the
OpenFlow protocol, and the datapath, a kernel module that
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Fig. 2. Open vSwitch architecture representing the data processing flows

implements the actual packet forwarding. The datapath kernel
module processes packets with a rule-based system: It keeps
a flow table in memory which associates flows with actions.
An example for such a rule is forwarding all packets with
a certain destination MAC address to a specific physical or
virtual port or dropping all packets from or to a specific IP
address. These rules are called flows but they are different from
OpenFlow rules as one design choice of the kernel module
was to keep it as simple as possible in order to achieve a high
performance [22].

A packet that can be processed by a rule in the datapath
takes the fast path and is directly processed in the kernel
module without invoking any other parts of OvS. Figure 2
highlights this fast path with a solid red line. Packets that
do not match any flow in the flow table are forced on the
slow path (dotted line), which copies the packet to the user
space and forwards it to the OvS daemon. This is similar to
the encapsulate action in OpenFlow which forwards a packet
that cannot be processed directly on a switch to an OpenFlow
controller. The slow path is implemented by the vswitchd
daemon which operates on OpenFlow rules. Packets that take
this path are matched against OpenFlow rules which can be
added by an external OpenFlow controller or via a command
line interface. The daemon derives datapath rules for packets
based on the OpenFlow rules and installs them in the kernel
module so that future packets of this flow can take the fast
path. All rules in the datapath are associated with an inactivity
timeout. The flow table in the datapath therefore only contains
the required rules to handle the currently active flows, so it acts
like a cache for the bigger and more complicated OpenFlow
flow table in the slow path.

III. RELATED WORK

Detailed performance analysis of PC-based packet process-
ing systems have been continuously addressed in the past. In
2007, Bolla and Bruschi [9] applied both external and internal
measurements for an analysis of a Linux 2.61 software router.
The RouteBricks project [7] revealed performance influences
of multi-core PC systems and of different workloads [23].

In the context of different modifications to the guest and
host OS network stack (cf. Section II-A), virtual switching
performance was measured [17], [4], [24], [19], [20] but
provides only limited possibility for direct comparison. Other

1The “New API” network interface was introduced with this kernel version.
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studies addressed the performance of virtual switching within
a performance analysis of cloud datacenters [25], but provide
less detailed information on virtual switching performance.

Both papers of the OvS developers [21], [22] only provide
coarse measurements of throughput performance in bits per
second in vNIC to vNIC switching scenarios. Neither frame
lengths nor measurement results in pps are provided. In [26]
the authors measured a software OpenFlow implementation in
the Linux kernel that is similar to OvS. They compared the
performance of the data plane of the Linux bridge-utils soft-
ware, the IP forwarding of the Linux kernel and the software
implementation of OpenFlow and studied the influence of the
size of the used lookup tables. A basic study on the influence of
QoS treatment and network separation on OvS can be found
in [27]. The authors of [28] measured the sojourn time of
different OpenFlow switches. Although the main focus was
on hardware switches, they measured a delay between 35 and
100 microseconds for the OvS datapath. In [29] OFLOPS, a
framework for OpenFlow switch evaluation is presented and
amongst others applied to OvS. Deployed on systems with
a NetFPGA the framework measures accurate time delay of
OpenFlow table updates but not the data plane performance.
Their study revealed actions that can be performed faster by
software switches than by hardware switches - e.g. requesting
statistics.

IV. SOFTWARE SWITCHING PERFORMANCE

We ran tests to quantify the performance of several soft-
ware switches with a focus on OvS in scenarios involving both
physical and virtual network interfaces.

A. Test Methodology

Our test setup is shown in Fig. 3. Servers A and B are
used as load generators and packet counters, the DuT (Device
under Test) runs the software under test. In black-box tests
we avoid any overhead on the DuT through measurements, so
we measure the offered load and the throughput on A and B.
The DuT runs the Linux tool perf for white-box tests; this
overhead reduces the maximum throughput by ∼ 1%.

The DuT runs the Debian-based live Linux distribu-
tion Grml with a 3.7 kernel, the ixgbe 3.14.5 NIC driver
with interrupts statically assigned to CPU cores, OvS 2.0.0
and DPDK vSwitch 0.10 with manually created OpenFlow
rules, and qemu-kvm 1.1.2 with VirtIO network adapters
unless mentioned otherwise. Our load generator uses the
PF RING DNA [13] framework and is able to generate min-
imally sized UDP packets at line rate on 10 GBit interfaces
(14.88 Mpps). The sink periodically samples the statistics
registers of the NIC to measure the throughput.

The DuT uses an Intel X520-SR2 dual 10 GbE network
interface card (NIC) which is based on the Intel 82599 Ethernet
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Fig. 4. Test setups with virtual machines

controller. All servers use 3.3 GHz Intel Xeon E3-1230 V2
CPUs. We disabled Hyper-Threading, Turbo Boost, and power
saving features that scale the frequency with the CPU load
because we observed measurement artifacts caused by these
features.

Fig. 4 shows the setups for tests involving VMs on the DuT.
Generating traffic efficiently directly inside a VM proved to be
a challenging problem because our load generator is based on
the PF RING DNA framework which only works with certain
physical NICs and not with virtual interfaces. Porting it to
a VM by using vPF RING [24], a framework for efficient
packet processing in virtual machines, would circumvent the
VM-hypervisor barrier which we are trying to measure.

The performance of other load generators was found to be
insufficient, e.g. the iperf utility only managed to generate
0.1 Mpps. Therefore we generate traffic externally and send it
through a VM. A similar approach to load generation in VMs
can be found in [30]. Running profiling in the VM shows that
about half of the time is spent receiving traffic and half of
it is spent sending traffic out. We therefore assume that the
maximum possible throughput for a scenario in which a VM
internally generates traffic is twice the value we measured in
the scenario where traffic is sent through a VM.

B. Performance Comparison

Table I compares the performance of several forwarding
techniques with a single CPU core per VM and switch. DPDK
vSwitch is a port of OvS to the user space packet processing
framework DPDK [31]. It relies on a modified version of
qemu-kvm which proved to be too unstable for tests in our
testbed for tests involving VMs. The likely explanation for
this instability is that our testbed is based on Debian and
DPDK vSwitch is experimental software which is only tested
on Fedora [30].

TABLE I. SINGLE CORE DATA PLANE PERFORMANCE COMPARISON

pNIC-pNIC pNIC-vNIC pNIC-vNIC-pNIC pNIC-vNIC-vNIC
Application [Mpps] [Mpps] [Mpps] [Mpps]
Open vSwitch 1.88 0.85 0.3 0.27
IP forwarding 1.58 0.78 0.19 0.16
Linux bridge 1.11 0.74 0.2 0.19
DPDK vSwitch 11.31 - 10.5* 6.5*

*) These values were taken from [30]

DPDK vSwitch is the fastest forwarding technique but it
is still experimental and not yet ready for real-world use; we
include it here to show possible improvements for the next
generation of virtual switches. Open vSwitch proves to be
the fastest Linux kernel packet forwarding application. The
Linux bridge is slightly faster than IP forwarding when it is
used as a virtual switch. IP forwarding is faster when used
between pNICs. This shows that OvS is a good general purpose
software switch for all scenarios. The rest of this section will
present more detailed measurements of OvS.
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Fig. 5. Throughput with various packet sizes and flows
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Fig. 6. Throughput of different Open vSwitch versions, 1 to 4 flows

C. Open vSwitch Throughput with pNIC to pNIC Forwarding

Fig. 5 shows the basic performance characteristics of OvS
in an unidirectional forwarding scenario between two physical
NICs with various packet sizes and flows. Flow refers to a
combination of source and destination IP addresses and ports.
The packet size is irrelevant until the bandwidth is limited
by the 10 GBit/s line rate. We ran further tests in which we
incremented the packet size in steps of 1 Byte and found no
impact of packet sizes that are not multiples of the CPU’s
word or cache line size. The throughput scales sub-linearly
with the number of flows as the NIC distributes the flows to
different CPU cores. Adding an additional flow increases the
performance by about 90% until all four cores of the CPU are
utilized.

As we observed linear scaling with earlier versions of OvS
we investigated further. Fig. 6 compares the throughput and
scaling with flows of all recent versions of OvS that are
compatible with Linux kernel 3.7. Versions prior to 1.11.0
scale linearly while later versions only scale sub-linearly, i.e.
adding an additional core does not increase the throughput by
100% of the single flow throughput. Profiling reveals that this
is due to a contended spin lock that is used to synchronize
access to statistics counters for the flows. Later versions
support wild card flows in the kernel and match the whole
synthetic test traffic to a single wild carded datapath rule in
this scenario. So all packets of the different flows use the same
statistics counters, this leads to a lock contention. A realistic
scenario with multiple rules or more (virtual) network ports
would not exhibit this behavior. Linear scaling with the number
of CPU cores can therefore be assumed and further tests are
restricted to a single CPU core. The throughput per core is
1.88 Mpps.

0 500 1000 1500
0

0.5

1

1.5

2

number of active flows

th
ro

u
gh

p
u
t

[M
p
p
s]

throughput
L1 misses
L2 misses

0

0.5

1

ca
ch

e
m

is
se

s
p

er
se

co
n
d

[·1
0
7
]

Fig. 7. Flow table entries vs. cache misses

1 2 3 4 5 6 7 8 9 10
0

1

2

output streams

p
ac
ke
t
ra
te

p
er

st
re
am

[M
p
p
s]

Fig. 8. Effects of cloning a flow

We derive a test case from the OvS architecture described
in Section II-B: Testing more than four flows exercises the flow
table lookup and update mechanism in the kernel module due
to increased flow table size. The generated flows for this test
use different layer 2 addresses to avoid the generation of wild
card rules in the OvS datapath kernel module. This simulates
a switch with multiple attached devices.

Fig. 7 shows that the total throughput is affected by the
number of flows due to increased cache misses during the
flow table lookup. The total throughput drops from about
1.87 Mpps2 with a single flow to 1.76 Mpps with 2000 flows.
The interrupts were restricted to a single CPU core.

Another relevant scenario for a cloud system is cloning
a flow and sending it to multiple output destinations, e.g. to
forward traffic to an intrusion detection system or to implement
multicast. Fig. 8 shows that performance drops by 30% when
a flow is sent out twice and another 25% when it is copied one
more time. This shows that a large amount of the performance
can be attributed to packet I/O and not processing. About
30% of the CPU time is spent in the driver and network
stack sending packets. This needs to be considered when a
monitoring system is to be integrated in a system involving
software switches

D. Open vSwitch Throughput with Virtual Network Interfaces

Virtual network interfaces exhibit different performance
characteristics from physical interfaces. For example, dropping
packets in an overload condition is done efficiently and con-
currently in hardware on a pNIC while a vNIC needs to drop

2Lower than the previously stated figure of 1.88 Mpps due to active
profiling.
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packets in software. We therefore compare the performance of
the pNIC to pNIC forwarding with the pNIC to vNIC scenario
shown in Fig. 4(a).

Fig. 9 compares the observed throughput under increasing
offered load with both physical and virtual interfaces. The
graph for traffic sent into a VM shows an inflection point at
an offered load of 0.5 Mpps. The throughput then continues
to increase until it reaches 0.85 Mpps, but a constant ratio
of the incoming packets is dropped. This start of drops is
accompanied by a sudden increase in CPU load in the kernel.
Profiling the kernel with perf shows that this is caused by
increased context switching and functions related to packet
queues. Fig. 10 plots the CPU load caused by context switches
(kernel function __switch_to) and functions related to
virtual NIC queues at the tested offered loads with a run time
of five minutes per run. This indicates that a congestion occurs
at the vNICs and the system tries to resolve this by forcing a
context switch to the network task of the virtual machine to
retrieve the packets. This additional overhead leads to drops.

Packet sizes are also relevant in comparison to the pNIC
to pNIC scenario because the packet needs to be copied to
the user space to forward it to a VM. Fig. 11 plots the
throughput and the CPU load caused by the kernel function
copy_user_enhanced_fast_string, which copies a
packet into the user space, in the forwarding scenario shown
in Fig. 4(a). The throughput drops only marginally from
0.85 Mpps to 0.8 Mpps until it becomes limited by the line
rate with packets larger than 656 Byte. Copying packets poses
a measurable but small overhead. The reason for this is the
high memory bandwidth of modern servers: our test server
has a memory bandwidth of 200 GBit per second. This means
that VMs are well-suited for running network services that
rely on bulk throughput with large packets, e.g. file servers.
Virtualizing packet processing or forwarding systems that need
to be able to process a large number of small packets per
second is, however, problematic.
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We derive another test case from the fact that the DuT runs
multiple applications: OvS and the VM receiving the packets.
This is relevant on a virtualization server where the running
VMs generate substantial CPU load. The VM was pinned to
a different core than the NIC interrupt for the previous test.
Fig. 12 shows the throughput in the same scenario under
increasing offered load, but without pinning the VM to a
core. This behavior can be attributed to a scheduling conflict
because the Linux kernel does not measure the load caused
by interrupts properly by default. Fig. 13 shows the average
CPU load of a core running only OvS as seen by the scheduler
(read from the procfs pseudo filesystem with the mpstat
utility) and compares it to the actual average load measured
by reading the CPU’s cycle counter with the profiling utility
perf.

The Linux scheduler does not measure the CPU load
caused by hardware interrupts properly and therefore schedules
the VM on the same core which impacts the performance. The
kernel option CONFIG_IRQ_TIME_ACCOUNTING can be
used to enable accurate reporting of CPU usage by interrupts,
this resolves this conflict. However, this option is not enabled
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by default in the Linux kernel because it slows down interrupt
handlers which are designed to be executed as fast as possible.

We conducted further tests in which we sent external traffic
through a VM and into a different VM or to another pNIC as
shown in Fig. 4(b) and 4(c) in Section IV-A. The graphs for
the results of more detailed tests in these scenarios provide
no further insight beyond the already discussed results from
this section because sending and receiving traffic from and to
a vNIC show the same performance characteristics.

V. CONCLUSION

We analyzed the performance characteristics and limita-
tions of the Open vSwitch data plane, a key element in many
cloud environments. Our study showed good performance
when compared to other Linux kernel forwarding techniques.

A few guidelines for cloud system operators can be de-
rived from these results: Virtual machines and NIC inter-
rupts should be explicitly pinned to disjoint sets of CPU
cores. If pinning all tasks is not feasible, the kernel op-
tion CONFIG_IRQ_TIME_ACCOUNTING should be enabled
which might slow down interrupt handlers (cf. Sec. IV-D). The
load caused by processing packets on the hypervisor should
also be considered when allocating CPU resources to VMs.
Even a VM with only one virtual CPU core can load two CPU
cores due to virtual switching. The total system load of Open
vSwitch can be limited by restricting the NIC’s interrupts to a
set of CPU cores instead of allowing them on all cores.

Virtualized services that rely on bulk data transfer via large
packets achieve a high throughput. Moving packet processing
systems or virtual switches and routers into VMs is problem-
atic because of the high overhead per packet that needs to cross
the VM/host barrier.
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