
A Study of Network Stack Latency
for Game Servers

Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle

Technische Universität München, Department of Computer Science, Network Architectures and Services
{emmericp|raumer|wohlfart|carle}@net.in.tum.de

Abstract—Latency has a high impact on the user satisfaction
in real-time multiplayer games. The network between the client
and server is, in most cases, the main cause for latency and out
of the scope of the game’s developer. But the developer should
avoid introducing unnecessary delays within his responsibility;
i.e. with respect to development and operating costs he should
wisely choose a network stack and deployment model for the
server in order to reduce latency. In this paper we present
latency measurements of the Linux network stack and effects
of virtualization. We show that a worst-case scenario can cause
a latency in the millisecond range when running a game server.
We discuss how latencies can be reduced by using the packet
processing framework DPDK to replace the operating system’s
network stack.

Keywords—latency, measurement, virtualization, Intel DPDK

I. INTRODUCTION

Real-time multiplayer games require packet processing
with low latency in order to provide a good gaming experience.
The biggest share of delay often comes from the network
connection between the server and the player and is out of
scope for game developers. This network latency can be in
the order of tens of milliseconds for Internet connections.
Therefore a micro-optimization of network stack latency is
often not considered worth the effort by developers. In this
paper, we show that the network stack can cause a latency in
the millisecond range on the server in edge cases. We show
how to avoid these cases and what should be considered when
designing a game server.

Another important scenario are players connected via local
area network (LAN) to the game server. This is especially
relevant for electronic sports events that allow players to
compete in real-time games with minimal latency. The network
latency here is minimal and the impact of the network stack’s
latency therefore of greater importance. We show that the
latency caused by the network stack can be in the range of
hundreds of microseconds under normal operating conditions.
This is a significant share of the total latency in this scenario.
The server’s developers must take the network stack into
account when designing a game server for this use case.

In this paper, we use a server application that effectively
emulates a game server and measure its latency under dif-
ferent conditions. Excessive use of buffers can cause large
latencies due to a problem known as buffer bloat [1]. We
discuss how this problem applies to game servers and how
a worst-case scenario, e.g. by a malicious or bugged client,

can increase the latency by several milliseconds and how to
avoid this worst-case latency. We also investigate the effects of
deploying a game server on a virtual machine (VM) in a cloud
environment. We then discuss advantages of game servers that
bypass the operating system’s network stack in order to provide
maximum throughput performance and minimal latency.

This paper is structured as follows: In Section II we look
at the theoretical background of packet processing on servers
with an emphasis on latency. Section III presents related work.
We describe our methodology and test setup in Section IV.
Our measurements and latency comparisons are presented in
Section V. We then conclude with a summary of our results
in Section VI.

II. PACKET PROCESSING IN LINUX

Off-the-shelf hardware has received features to cope with
the growing number of cores and network speed. For example,
modern network interface cards (NICs) can copy incoming
packets directly to the CPU’s cache instead of going through
the memory. This improves both the throughput and the latency
of servers [2]. This technique is called direct cache access
(DCA), an extension of direct memory access (DMA).

The network stack has also been improved to take ad-
vantage of these new paradigms in Linux: The New API
(NAPI), introduced in Linux kernel 2.4.20, is designed to
mitigate performance problems with high packet rates. It first
introduced throttling of interrupt rates and polling the NIC
for new packets to reduce the large per-packet overhead of
interrupts. This optimization is a trade-off between throughput
and latency which is increased by the reduced number of
interrupts. [3]

We follow a packet’s path through a modern Linux-based
game server and analyze the impact on the latency of each
component and processing step.

A. Schematic View of Network Stacks for Game Servers

Figure 1 schematically visualizes the processing path of
packet reception and the hard- and software that is involved.

Packets arriving at the ingoing interface are stored in the
Rx NIC buffer. From there they are immediately transferred to
the CPU’s cache via DCA over the PCIe bus. This transfer is
controlled by the DMA engine on the NIC and does not require
intervention by the CPU. The CPU only needs to transfer
DMA descriptors, pointers to memory locations to which the
incoming packets are written, to the NIC. It is up to the driver978-1-4799-6882-4/14/$31.00 © 2014 IEEE

NIC Rx NIC Buffer

...

Corew1
Soft
IRQ

Application

OS

CPU
ZerowCopy

copy

or

Hardware

Driver

NAPI

map

Gamewserver
Corewn...

DMAwEngine

...
UDPwBuffer

UDP
stack

}

}
}
}

Memory

Fig. 1. Schematic view on RX packet processing and hardware resources

to ensure that the NIC always has enough descriptors available
to transfer packets. The Intel X540 NIC used in our testbed
drops incoming packets by default if there are no descriptors
available instead of filling the Rx NIC buffer [4]. The size
of the initial buffer on the NIC is therefore not relevant for
the latency. Only the size of the DMA descriptor ring buffer
affects the latency. This descriptor buffer has a default size of
512 entries with the ixgbe driver under Linux.

The NIC triggers an interrupt when the transfer is com-
pleted. The latency between the interrupt assertion and the
call into the Soft IRQ interrupt handler is estimated as about
2µs by Larsen et al. [5]. It is therefore not a significant
source of latency for a game server if one interrupt is used
per packet. Triggering an interrupt for each packet proved
to be a bottleneck for high packet rates; modern drivers and
NIC therefore moderate the maximum interrupt rate [3]. This
interrupt throttle rate (ITR) increases the throughput at the cost
of latency.

B. Transferring the Packet into the User Space

The packet now resides in the kernel space where it will
now be processed by the OS and application. The server runs
in the user space and the kernel needs to transfer it to the
application.

1) Linux Network Stack: The application opens a socket
on startup with an associated buffer space. It then uses the
recv syscall on the socket, this call retrieves a packet from
the buffer and copies it into a user space memory location.
The Linux network stack copies the packet to the user space
in order to make it available to the application. This path is
highlighted with a dotted blue line in Figure 1.

The syscall involves a switch to kernel mode and back
as well as a copy operation for each packet. This poses a
significant overhead, limits the maximum throughput, and adds
latency due to processing time. High speed applications like

software routers therefore often run in the kernel context to
avoid this overhead. This entails the risk of system crashes
due to simple programming bugs and therefore requires careful
development and extensive testing. It also complicates the
development process due to additional challenges of running
in the kernel. For example, regular adjustments for new ker-
nel versions are needed because the interfaces may change
between versions. This approach is therefore not suitable for
complex applications like game servers.

2) Memory Mapping Frameworks: Memory mapping
frameworks for packet I/O are a new approach to this problem.
These frameworks provide a user space application direct
access to both the NIC and the memory pages to which the
packets are written. The packet’s path is highlighted with a
dotted red line Figure 1. This avoids the copy operation and
context switch, these frameworks are therefore also referred to
as zero copy frameworks [6]. The most popular frameworks
that implement this are PF RING ZC [6], netmap [7], and Intel
DPDK [8]. We use DPDK for this paper because we found it
to be the most pleasant to use. However, we expect similar
results with the other frameworks because they all build on
the same principles and make similar performance claims [6],
[7], [8].

The frameworks build on modified drivers to bypass the
system’s network stack. They do not use interrupts and rely on
polling the NIC instead, this reduces the per-packet costs. The
application spends all idle time in a busy-wait loop that polls
the NIC, so a packet is retrieved as soon as the application is
ready to handle it. Note that this does not increase the overall
latency: Even with interrupts, the packets still need to spend
time in a queue until the application is ready to process them.
The cost of a poll-operation is less than 80 cpu cycles for
DPDK [8], i.e. 40 ns on the 2 GHz CPU used here. This is
even faster than the 2µs required to process an interrupt [5].
A major drawback is that the polling loop will always cause
100% CPU load. Sleeping between polls increases latency
and is not recommended in DPDK, instead it offers APIs to
control the CPUs clock frequency to alleviate the problem and
conserve power [9].

These frameworks also process batches of multiple packets
with a single call to further decreases the cost per packet.
For a game server, a state update that needs to be sent to
multiple players can be processed with a single API call while
the Linux network stack requires multiple expensive system
calls to achieve this.

The major drawback of these frameworks is that they offer
only basic IO functionality compared to the network stack of
an OS. They only handle receiving and sending of raw packets
without any further processing. It is up to the application to
implement protocols like IP and UDP. This simplistic approach
offers an improved performance compared to a full-blown
network stack as the programmer can choose which features
are needed and implement them in an application-specific way.

C. Servers in the Cloud

Additional processing steps are required for the case of
virtualized game servers. The virtual machine exposes a virtual
NIC that needs to be connected to the physical NIC. Thus,
the number of buffers that can introduce an undesired latency

increases: both the virtual NIC and its driver add additional
buffers to the packet’s path. The overall system load also
increases: The virtual NIC that processes packets for the VM
is emulated in software and the system also needs to run a
virtual switch to connect the virtual NIC to the physical NIC.

D. Sending Packets

The server also needs to respond to incoming packets. This
transmit path is similar to the receive path: The packet is first
placed into a transmit buffer associated with the socket and
copied from the user to the kernel space into a buffer associated
with the socket. The driver manages a buffer of Tx DMA
descriptors that are used to transfer the packet to the NIC.

III. RELATED WORK

Rotsos et al. presented a framework for measuring the
latency of OpenFlow switches [10]. They utilized an FPGA
to acquire time stamps with a high precision and presented
measurements of the software switch Open vSwitch running
on Linux. They measured a latency of 35µs (σ = 13µs) for
simple in-kernel forwarding under light load. This can be seen
as a lower bound for the latencies of a game server that also
involves user space processing.

Bolla and Bruschi applied RFC 2544 [11] to a Linux
software router [12]. They used a dedicated network testing
device to acquire the latency with microsecond accuracy. They
measured delays from 14µs to hundreds of µs depending on
the load and configuration for packet forwarding in the kernel
under normal operating conditions. Overloading the software
router resulted in latencies in the millisecond range.

Whiteaker et.al. measured the impact of virtualization on
the latency [13]. They observed a long tail distribution of
latencies when packets are forwarded into a VM. They placed
different workloads on the VM and measured the impact
on latency. They also measured latencies in the millisecond
range if the VM is put under a high network load. Their
measurements are restricted to a 100 Mbit/s network due to
hardware restrictions of their time stamping device.

Larsen et al. take a detailed look at the latency of TCP/IP
traffic [5]. They provide a detailed breakdown of the latencies
by the different processing steps of a server that answers a
simple request. However, they do not put the system under
notable load.

Our major contribution for this paper beyond the results
in the related work is that we explicitly focus on game
servers using UDP. The related work either measures in-kernel
forwarding techniques or metrics like ICMP ping response
times under load. We measure the latency of UDP packets that
are processed by a user space application. We also include
measurements of the memory mapping framework DPDK
which circumvents the Linux network stack. Our test setup
also improves beyond the related work as we use a custom
load generator that utilizes hardware features of commodity
NICs to obtain latency measurements. Our load generator is
described in [14].

IV. TEST METHODOLOGY AND SETUP

We ran all tests in our 10 GbE testbed with direct connec-
tions between the involved servers.

A. Hard- and Software

Our device under test (DuT) running the game server is
equipped with an Intel Xeon E5-2640 v2 CPU clocked at
2 GHz. All features that scale the CPU frequency with the load,
like power-saving features and Turbo Boost have been disabled
as we observed measurement artifacts with these features.
Hyper-threading was also disabled for the same reason.

The NIC is an Intel X540-T2 that is directly connected to
the load generator which uses the same 10 GbE NIC. The DuT
uses the Intel ixgbe driver in version 3.9.15 with both the Rx
and Tx ring configured to the default of 512 DMA descriptors.
NIC interrupts were restricted to a single CPU core.

The DuT and the virtual machine run a Debian-based live
image with kernel 3.7. Virtual machines run on KVM 1.1.2
with VirtIO NICs and Open vSwitch 2.0 to connect them to
the external network interface.

B. Load Generator and Sink

We use a custom load generator based on the packet
processing framework DPDK for our measurements. This load
generator is able to generate traffic at 10 GBit/s. We utilize the
IEEE 1588 PTP [15] hardware time stamping features of the
X540 NIC which can be used to time stamp virtually arbitrary
UDP packets. The time stamped packets only require a few
byte identification in the payload to be recognized as PTP
packets by the NIC. The hardware is able to provide latency
measurements with sub-microsecond precision [4]. We take
time stamps of up to 500 packets per second. The timestamped
packets are injected in the test traffic at randomized intervals.
The DuT cannot distinguish them from other traffic as they
only differ in payload which is ignored by the application.
The packets are time stamped in hardware immediately before
sending and after receiving them from the physical layer. We
also use the hardware rate control feature of the X540 NIC [4]
to ensure a constant inter-packet delay to generate smooth
constant bitrate traffic. [14]

The load generator uses a dual-port NIC, one port is used to
generate the test traffic and send it to the DuT. The second port,
also attached to the DuT, measures the achieved throughput.

C. Model Game Server

Our latency measurements are based on a server application
that emulates the behavior of a game server. The server opens a
UDP socket and waits for packets from a client. All connected
clients are kept in a list. For each received packet, the server
waits 150 CPU cycles to emulate processing logic. The actual
processing time causes only a very small part of the total delay;
150 clock cycles correspond to only 0.03µs with the 2 GHz
CPU in the DuT. The processing logic was only added to avoid
possible artifacts caused by an unrealistic setup where a packet
is sent back out immediately. Even a longer processing time of
a real game-server only adds a constant latency and is dwarfed
by other effects like buffering. Finally, the server sends a copy
of the incoming packet to all clients in the list. The latency is
defined as the time until the last client in the list receives a
response.

We run tests with an incoming packet rate of 10 to 100 kpps
(kilo packets per second) and 4 to 32 connected clients. All

0 20 40 60 80 100
100

101

102

103

104

Offered Load [kpps]

A
v
g
.

L
a
te

n
cy

[µ
s]

(l
og

1
0

sc
a
le

)

32 Clients
16 Clients
8 Clients
4 Clients

Fig. 2. Average latency under increasing load with a varying number of
clients

30 35 40 45 50 55 60 65 70
0

1

2

3

4

Latency [µs]

P
ro
b
ab

il
it
y
[%

]

Fig. 3. Histogram of latencies for 4 clients, default buffer size, 30 kpps offered
load

tests use a packet size of 128 byte to emulate a small state
update packet, e.g. a player’s position update. This achieves
a high system load and avoids hitting the line rate limit for
outgoing packets with a large number of clients.

This setup should be interpreted as a server with a large
number of clients, e.g. for a massively multiplayer online game
(MMO), that needs to send out state updates on average to 4
to 32 clients for each incoming packet. Another interpretation
of the test scenario is a server that hosts multiple small games.

The server was restricted to a single CPU core as we have
shown in previous work that packet processing can achieve
linear scaling with the number of CPU cores [16].

D. Graphs

All graphed latencies are the average of at least 10 000
measurements unless mentioned otherwise. The error bars in
the graphs show the standard deviation, they are omitted if they
are smaller than the mark indicating the measurement point.

V. EVALUATION

We evaluate the latency with our emulated game server
running on Linux and in a virtualized environment. We then
port the emulated game server to the packet processing frame-
work DPDK that allows us to access the NIC directly without
intervention from the OS.

A. Basic Latency Characteristics under Linux

Figure 2 shows how the average latency changes for a
server running directly under Linux when the offered load

4 16 64 208
100

101

102

103

104

105

Buffer Size [KiB] (log2 scale)

W
or

st
-C

as
e

L
at

en
cy

[µ
s]

(l
og

1
0

sc
al

e)

50

100

150

200

250

M
a
x
.

T
h

ro
u

g
h

p
u

t
[k

p
p

s]

4 C. Lat. 4 C. TP

8 C. Lat. 8 C. TP

16 C. Lat. 16 C. TP

32 C. Lat. 32 C. TP

Fig. 4. Impact of UDP buffer sizes on worst-case latency and throughput

increases with a varying number of clients that need to receive
a packet. We will use these results as a baseline. A higher
number of clients increases the number of packets sent per
incoming packet as well as the total required bandwidth. This
has a significant effect on the total latency.

Figure 3 shows a histogram with a bin size of 0.5µs
for the measured latencies for the server with 4 connected
clients under moderate load (30 kpps). Histograms for other
measurement points have a similar shape. The different peaks
in the distribution are likely caused by the large number of
queues on the packet’s path.

The offered loads at which packets were dropped go in
hand with a sudden and high increase in latency. Figure 2
marks the first measurements where more than 5% of the
packets were lost with a black arrow. The minimum observed
latency was 39.6µs (σ = 4.9µs) at an offered load of 9.7 kpps,
the highest 26.8 ms (σ = 0.2 ms) when the system was over-
loaded with 32 clients and 95 kpps and had to drop packets.
This excessive worst-case latency is, of course, unrealistic
under normal server operation. However, a malicious attacker
(or a bug in the client) could exploit this behavior and flood
the server with packets. The bandwidth required for such a
denial of service attack is relatively low: 20 kpps to overload
a server with 32 clients corresponds to only 10 MBit/s when
using minimally sized UDP packets (64 byte). Examples for
such attacks are the recent denial of service attacks on multiple
online games including the PlayStation Network, Battle.net,
and League of Legends [17], [18].

This large worst-case latency of 20 ms in the overload
scenario is caused by the relatively large default buffer size
of UDP buffers under Linux: 208 KiB in our Debian test
system. Prevention mechanisms like rate-limiting clients at an
application level are therefore also not effective if the attacker
can fill this buffer which is managed by the OS and not by
the application.

Figure 4 shows the effect of modifying the buffer size
(via the setsockopt syscall). The graph plots both the
maximum offered load that does not cause packet loss and the
average latency under overload conditions, i.e. when the DuT
drops packets. Increasing the buffer size beyond 64 KiB does
not improve the throughput any further while the worst-case
latency still grows linearly with the buffer size. The buffer size

0 20 40 60 80 100
100

101

102

103

104

Offered Load [kpps]

L
at

en
cy

[µ
s]

(l
og

1
0

sc
al

e)

VM Average Linux Average

VM 95th Perc. Linux 95th Perc.

VM 99.9th Perc. Linux 99.9th Perc.

Fig. 5. Virtualization overhead, 4 clients, 64 KiB buffer size

100 150 200 250 300 350 400 450 500 550 600
0

0.2

0.4

Latency [µs]

P
ro
b
ab

il
it
y
[%

]

Fig. 6. Histogram of VM latencies for 4 clients, default buffer size,
30 kpps offered load

has no effect on the latency for lower packet rates. A buffer
size of a maximum of 64 KiB should therefore be chosen for
a game server. The buffer is also required to mitigate bursts
in the traffic, so the optimum value is specific to the game’s
traffic characteristics and must be adjusted individually.

B. Virtual Machines

Virtualizing servers and cloud computing is nowadays a
commonplace technique to simplify server management and
increase availibility [19]. Virtualization comes with increased
latency for networking applications. A packet now needs to
be processed by two operating systems: by the hypervisor and
the virtualized guest OS.

Figure 5 shows how the latency changes if the game
server is moved into a VM. The scenario with 4 clients and
64 KiB buffer size is chosen as a representative example, other
configurations follow a similar pattern. The peak in latency at
around 20 kpps is visible in all configurations with VMs. It
is caused by an increase in the system load as the dynamic
adaption of the interrupt rate starts too late in this high-load
scenario.

The graph also shows how the 99.9th percentile of the
latency increases by a disproportionately large factor. This
is also visible in the histogram of the observed latencies
shown in Figure 6. The probability distribution is now a long
tail distribution which negatively affects the 99.9th percentile
latencies. This effect in VMs has also been observed by Xu
et. al. [20].

0 20 40 60 80 100
100

101

102

103

104

105

Offered Load [kpps]

A
v
g.

L
at

en
cy

[µ
s]

(l
og

1
0

sc
a
le

) 4 C. Linux 4 C. DPDK
32 C. Linux 32 C. DPDK

Fig. 7. Latency with DPDK compared to Linux with default buffer size

11 11.5 12 12.5 13 13.5
0

1

2

Latency [µs]

P
ro
b
a
b
il
it
y
[%

]

Fig. 8. Histogram of DPDK latencies for 16 clients, 500 kpps offered load

C. High-Performance Packet I/O Frameworks

We ported our emulated game server to DPDK. DPDK
bypasses the Linux network stack completely (cf. Figure 1), so
a DPDK application needs to implement all required protocols
separately in the user space application. This does not pose a
problem for a simple protocol like UDP.

Our emulated game server accepts packets from the NIC,
checks if it is a UDP packet addressed to a configured port,
waits 150 CPU cycles to emulate processing, and then sends
out responses by copying the packet. The packets’ layer 2 and
3 addresses are adjusted accordingly. We do not use any buffers
beyond the on-board memory of the NIC and the 512-entry Rx
and Tx DMA ring buffer of the DPDK driver.

Figure 7 compares the latency of the DPDK-based game
server with the Linux scenario from Section V-A. The game
server now achieves an average latency of 9µs for 4 clients
and 11µs for 32 clients at 100 kpps. We also tested higher
incoming packet rates in order to measure the worst-case
conditions in overload scenarios. But the server was only
limited by the 10 GBit/s line rate of the outgoing interface.

The latencies are also normally distributed with a very
low standard deviation compared to the previously observed
distributions. Figure 8 shows a histogram (bin width 0.0064µs)
of the latencies under a high system load: the offered load of
500 kpps with 16 clients causes an output traffic of 9.5 GBit/s.
The observed average latency of 12.32µs (σ = 0.67µs) under
these extreme conditions is still lower than the lowest latencies
with the Linux network stack.

One important technique that allows for this speed-up is
that DPDK processes packets in batches. All response packets

TABLE I. COMPARISON OF LATENCY BETWEEN THE EVALUATED DEPLOYMENT OPTIONS WITH 4 CLIENTS

Deployment Buffer [KiB] Load* [%] Average [µs] Std. Dev. [µs] 50th Perc. [µs] 95th Perc. [µs] 99th Perc. [µs] 99.9th Perc. [µs]

Linux

16
20 44.7 6.6 44.6 57.0 61.8 75.2
90 338.3 73.8 321.9 492.1 552.3 590.9

110 414.7 68.8 408.6 540.3 598.5 623.6

64
20 40.7 9.6 41.8 44.4 45.4 71.7
90 142.6 23.8 143.0 164.2 170.0 527.9

110 1240.3 9.2 1251.4 1255.9 1270.8 1242.9

Linux VM

16
20 209.3 154.0 205.7 227.1 382.1 2292.5
90 460.3 128.4 449.0 572.2 707.3 2354.1

110 1006.8 120.3 995.0 1108.6 1179.1 2805.3

64
20 207.6 161.0 204.9 225.2 341.0 3030.7
90 940.8 290.5 849.9 1351.9 1991.6 3723.2

110 4312.6 277.9 4295.3 4764.0 5030.3 5891.0

DPDK N/A

†20 10.6 0.4 10.4 11.0 11.1 11.3
†90 12.3 1.1 12.2 12.4 17.8 27.2
†99 15.2 1.9 14.8 18.1 25.8 33.3

*) Normalized to the load at which the first drops were observed, i.e. a load ≥ 100% indicates an overload scenario
†) Normalized to the load at which the output hits the 10 GBit/s line rate

can be sent with a single call into the DPDK library which
directly passes them to the NIC – without involving the
OS. DPDK also avoids expensive context switches (cf. Sec-
tion II-B2) which contributes to the improvement. The per-
packet processing costs are therefore significantly lower in
this scenario and thus achieve a higher throughput and lower
latency at the same time.

D. Comparison

Table I compares selected configurations between the three
discussed deployment options. The DPDK game server is the
fastest in all configurations. Virtualization has a large impact
on the 99.9th percentile of the latency: Even under light load
0.1% of the packets have a latency of more than 2 ms.

VI. CONCLUSION

We measured the influence of the network stack and
evaluated the effect on games servers. Virtualization increases
both the average latency and its standard deviation leading
to less predictable performance. Running a game server in a
VM should therefore be avoided. Our measurements showed
that specially the buffer sizes have significant influence on the
delay which results in a optimization problem between delay
and throughput.

DPDK and similar frameworks are a promising new tech-
nique to improve latency and performance for UDP-based
game servers. However, they come with an additional develop-
ment cost as the developers now need to implement the whole
IP and UDP stack in the server application instead of relying
on the OS abstraction. These frameworks should be considered
to reduce latency and operating costs of large game server
deployments.

ACKNOWLEDGMENTS

This research has been supported by the DFG as part
of the MEMPHIS project (CA 595/5-2), the KIC EIT ICT
Labs on SDN, and the BMBF under EUREKA-Project SASER
(01BP12300A).

REFERENCES

[1] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the Internet,”
Queue, vol. 9, no. 11, p. 40, 2011.

[2] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct Cache Access for
High Bandwidth Network I/O,” ACM SIGARCH Comput. Archit. News,
vol. 33, no. 2, pp. 50–59, May 2005.

[3] J. H. Salim, “When NAPI comes to town,” in Proceedings of Linux
2005 Conference, 2005.

[4] “Intel Ethernet Controller X540 Datasheet Rev. 2.7.” Intel Corporation,
March 2014.

[5] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural
Breakdown of End-to-End Latency in a TCP/IP Network,” International
Journal of Parallel Programming, vol. 37, no. 6, pp. 556–571, 2009.

[6] “PF RING,” http://www.ntop.org/products/pf ring/, ntop, last visited
2014-08-20.

[7] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in USENIX
Annual Technical Conference, April 2012.

[8] “Intel DPDK: Data Plane Development Kit,” http://dpdk.org/, Intel
Corporation, last visited 2014-08-20.

[9] Intel, “Data Plane Development Kit: Programmer’s Guide, Revision 6,”
January 2014.

[10] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An Open Framework for OpenFlow Switch Evaluation,” in
Passive and Active Measurement. Springer, March 2012, pp. 85–95.

[11] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network
Interconnect Devices,” RFC 2544 (Informational), Internet Engineering
Task Force, March 1999.

[12] R. Bolla and R. Bruschi, “Linux Software Router: Data Plane Optimiza-
tion and Performance Evaluation,” Journal of Networks, vol. 2, no. 3,
pp. 6–17, June 2007.

[13] J. Whiteaker, F. Schneider, and R. Teixeira, “Explaining packet delays
under virtualization,” ACM SIGCOMM Computer Communication Re-
view, vol. 41, no. 1, pp. 38–44, 2011.

[14] P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “MoonGen: A
Scriptable High-Speed Packet Generator,” ArXiv e-prints, Oct. 2014.

[15] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), July 2008.

[16] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance Char-
acteristics of Virtual Switching,” in 2014 IEEE 3rd International Con-
ference on Cloud Networking (CLOUDNET’14), Luxembourg, 2014.

[17] J. Haywald, “Hackers take down League of Legends, EA, and Blizzard
temporarily,” http://www.gamespot.com/articles/hackers-take-down-
league-of-legends-ea-and-blizzard-temporarily-update/1100-6416869/,
GameSpot, December 2013, last visited 2014-08-20.

[18] “Sony PlayStation Network and other game services attacked,”
http://www.bbc.com/news/technology-28925052, BBC News, August
2014, last visited 2014-09-02.

[19] B. Munch, “Hype Cycle for Networking and Communications,” Gartner,
Report, July 2013.

[20] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding Long
Tails in the Cloud,” in Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation. USENIX Association,
2013, pp. 329–342.

