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Abstract—Most systems connected to the Internet are general
purpose machines (except specialized routers and switches in the
network core) that handle packet processing in software. Even in
the network core, there is a trend towards packet processing in
software, e.g. using OpenFlow or virtual switches. While packet
processing in software is flexible and offers many capabilities,
it also represents a challenge to evaluate, optimize, or predict
the performance of such complex systems. This makes it hard
to evaluate the networking performance of servers, end user
hosts, or home routers. We present a study that investigates
the packet latency caused by packet processing in the Linux
network stack. We develop a simulation model in ns-3 for packet
processing via the Linux network stack that helps understanding
of its performance implications. We validate our simulation model
based on measurements with nanosecond accuracy and software
profiling.
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I. INTRODUCTION AND RELATED WORK

Networking and Internet access is a core feature of any
modern operating system (OS). Therefore, the OS needs to
provide a network stack that is responsible for processing
incoming and outgoing packets. The high complexity of an
OS makes it hard to analyze and predict the packet processing
performance and characterize performance guarantees. Spe-
cialized networking hardware, such as routers and switches, are
optimized for high-speed packet processing and meet specified
performance guarantees. Nevertheless, commodity hardware
can be turned into routers, switches, firewalls, and other packet
processing systems using software implementations, which
makes them both more cost-efficient and flexible while still
being able to scale up to high-speed traffic [1], [2].

As previous works have shown, the CPU is the perfor-
mance bottleneck for packet processing systems [1]–[5]. This
bottleneck can be mitigated by efficient packet processing
software [6]–[8]. For example, interrupt moderation techniques
which reduce the number of interrupts the CPU needs to
handle [9], [10]. Other approaches use the massive parallel
processing capabilities of dedicated graphics processing units
(GPUs) [11].

As black box measurements [12], [13] only provide a rough
understanding and white box measurements bare the risk of
forged results due to the measurement side effects, previous
work has addressed the challenges of measurements with a
careful combination of both [1], [14]–[16]. Carlsson et al. [12]
presented a latency measurement setup for black box measure-
ments of routers according to RFC 2679. Rotsos et al. [13]

utilized FPGAs for accurate software switch latency measure-
ments. Bolla and Bruschi [14] presented a detailed study of a
Linux kernel 2.6 based PC and performed RFC 2544 conform
tests by means of a special network device testing box. The
dedicated device testing box allowed to measure latency with
microsecond accuracy. Dobrescu et al. [1] made analytical
estimations for packet processing latency and combined them
with the number of CPU cycles per packet that was measured
with software profiling. Tedesco et al. [15] applied a queuing
model to distribute measured latencies to different internal
processing steps in a PC. Recently, Emmerich et al. [16]
described practical know-how on throughput measurement
of Open vSwitch in which they dealt with the problem of
tampered results due to measuring.

Another approach to gain insights into the internals of
complex PC-based packet processing systems is modeling and
simulation. Therefore, Chertov et al. [17] presented a model
of forwarding devices that can be configured to simulate the
behavior of different devices. Kristiansen et al. [18] proposed a
model for the packet processing overhead resulting from soft-
ware. Meyer et al. [5] modeled resource contention in a server
to analyze parallel packet processing with multiple cores. For
our following analysis we distinguish three categories of tasks
in network packet processing in PC systems: packet reception,
application-specific processing, and packet transmission. We
put our focus on the packet reception and transmission that
is carried out by network stacks provided in OS and the NIC
drivers.

In this paper, we measure and simulate how networking
software like the network interface card (NIC) driver and the
OS network stack influence the packet latency. We analyze NIC
driver and OS mechanisms with respect to packet processing
based on commodity hardware. We model these mechanisms
and extended our previously proposed ns-3 resource manage-
ment module [4] accordingly.

The rest of this paper is organized as follows. Section II
reviews the developments in packet processing on PC hardware
and introduces concepts to optimize the packet processing
performance. Section III gives a step-by-step explanation of
the Linux network stack and its interaction with the NIC
driver. In Section IV we present the setup which was used
for measurements in our testbed. We introduce our simulation
model in Section V. Section VI contains the calibration and
validation of our simulation model based on the results of
our testbed measurements and simulations. We summarize our
results in Section VII.



II. PC-BASED PACKET PROCESSING

In the following we discuss hardware and software tech-
niques that are relevant to mitigate different potential bottle-
necks in PC-based packet processing systems.

A. Hardware

On the hardware side, the high network performance of
PC systems can be attributed to two main developments:
(1) Connections of hardware components and subcomponents
in PC architectures and the related interaction processes are
optimized, interactions are bundled and thus reduced. (2) The
hardware underwent changes to cope with the growing number
of cores and to shift workload from the general purpose CPU
to dedicated components.

The first development results in a dedicated memory con-
troller that provides direct memory access (DMA) for the
NICs. A descriptor to the containing memory region is stored
in a queue-like structure and via an interrupt the NIC informs
the OS that a packet is ready to be processed. Even forehanded
copying of data to CPU caches [19] is common today. Bus
systems like PCIe allow for increased maximum data rates
with each new version.

As a result of the second development the NICs (e.g. [20])
can distribute packets to different CPU cores via programmable
hardware filters or static hash-based criteria. Even direct han-
dover of specified flows to subsequent software processing
steps by the NIC is common today. NICs also provide ca-
pabilities for packet segmentation, checksum calculation, and
combination of shortly followed interrupts (interrupt modera-
tion) to shift this workload of additional processing tasks and
interrupt handling routines from the CPU.

B. Software

The actions for handling a packet after the NIC informed
the OS are determined by software. While the driver coordi-
nates the interaction with the NIC, the main functionality is
provided by the OS which abstracts it via interfaces: in Linux
this interface is called New API (NAPI), in Windows this is
called Transport Device Interface (TDI). In the following we
will focus on the Linux NAPI.

Legacy NIC drivers cause NICs to trigger an interrupt
request (IRQ) for every incoming packet which implies IRQ
storms in high load situations. As this overhead prevents the
CPU from the actual packet processing, a new network inter-
face was introduced in Linux kernel 2.6. It allows compliant
NICs and drivers for IRQ mitigation to reduce the system
load. Furthermore, the NAPI introduces a polling mechanism
which enables the NIC driver to fetch multiple packets from an
input queue while IRQs are disabled. Besides, it favors packet
throttling in overload situations by early packet dropping
directly in the NIC.

Modified drivers that do not conform NAPI and take
polling to the extreme (e.g. busy-wait) like the Click Modular
Router [21] achieve higher packet rates in comparison. How-
ever, they suffer from drawbacks like a permanent high CPU
load due to active polling for packets even if no packets were
received. Frameworks that fully rely on polling mitigate this
by providing techniques to downscale the CPU frequency [8].

Depending on the purpose of the software on top of the OS
network stack the relation of received traffic to the transmitted
traffic can be of any type: 1:N (e.g. game server), 1:1 (e.g.
firewall), N:0 (e.g. monitoring), 0:N (e.g. actor nodes), etc.
The processing costs per packet vary from a constant number
of CPU cycles per packet up to totally unpredictable per
packet costs [22]. Processing is determined by software until
a descriptor is placed in a Tx queue of the outgoing interface
and the next processing steps are again performed by the egress
NIC.

The applications can either run in kernel or in user space
context. User space applications require additional copying
which introduces extra overhead for each context switch
between user and kernel space. Kernel space applications
entail the risk of system crashes due to programming bugs.
They require careful development and extensive testing due
to the additional challenge of running in the kernel. Besides
the Linux network stack, packet processing frameworks like
DPDK [8], PF RING [7], and netmap [6] exist, which re-
place the default network stack for certain purposes. These
alternative network stacks can also be used in monitoring
systems [22], web or game servers, (software) switches [23],
[24], routers [24], (software) firewalls, or workstations.

There are currently four different approaches to optimize
the performance of the network stack: (1) Avoiding the copy
operation between kernel and user space processes by map-
ping buffer regions. (2) Preallocated packet buffers do not
receive any supplementary adaptations and remain as initially
configured to avoid any overhead. (3) The introduction of
polling instead of interrupts. (4) Processing batches of packets
with one API call on reception and sending to distribute the
per-call overhead to a larger number of packets. Although
these techniques allow high throughput rates they introduce
drawbacks: (1) The lack of a standardized API via that appli-
cations can access the network increases the implementation
complexity of applications. (2) Static buffer sizes prohibit
adaptive reactions to filled buffers that introduce extra latencies
in overload scenarios. (3) Continuous polling avoids sleeping
of the CPU and counteracts power saving features that are
desired in low load scenarios. The general purpose Linux
network stack tries to satisfy any application by making trade-
offs between performance, usability, functionality, and power
saving. The NAPI needs to perform well not only in providing
high packet rates but also in low load scenarios, so specialized
approaches outperform it in selected performance metrics, like
the maximum packet rate. Nonetheless, the NAPI is widely-
used today in end systems and servers due to its generality.

III. LINUX-BASED PACKET PROCESSING

In this section, we describe packet processing in Linux in
detail. We describe the NAPI, explain the interaction between
the NAPI and the NIC driver, and the interrupt throttling rate as
an important configuration parameter for the packet processing.

A. NAPI

NAPI-based packet processing includes the following steps
as depicted in Fig. 1:



Fig. 1. Schematic view of the NAPI functionality

1) The DMA engine copies a packet from the receiving NIC
hardware Rx Queue to an Input Queue in the main
memory.

2) The NIC triggers a hardware IRQ which is served by the
assigned CPU core. The mapping between an IRQ and
a CPU core that is intended to handle the IRQ can be
statically assigned.

3) The IRQ Handler enqueues an entry referring to the In-
put Queue into the poll list (napi_schedule()) and
raises a so called soft IRQ (NET_RX_SOFTIRQ). Each
CPU core provides a dedicated poll list to schedule the
queues that needs to be handled.

4) The soft IRQ Scheduler completes the soft IRQ and invokes
the networking functionality (net_rx_action()).

5) net_rx_action() peeks the first entry of the poll list
and initiates the poll (poll()). Since the implementation
of poll() is driver-specific, we discuss its behavior in
the next section.

6) A poll returns for two reasons:
(a) The corresponding Input Queue is empty.
(b) poll() yields after processing a certain quota

(poll size) of packets to prevent other Input Queues from
starving (Continue with step 8).

7) The respective entry is removed from the poll list
(napi_complete()) and the poll finishes. (Continue
with step 9).

8) The current poll is suspended although the Input Queue is
not empty. The respective entry is re-enqueued into the
poll list in a round-robin manner.

9) If the poll list still contains entries NAPI continues with
step 5. Otherwise, the algorithm ends.

Fig. 2. NAPI in conjunction with NIC driver ixgbe; Shaded boxes represent
functions which are part of the Linux kernel (not ixgbe)

The handling of net_rx_action()is also limited to budget
of OS processed packets as well as a timeout to share the
CPU core with other competing devices or processes. If budget
packets were processed or if the timeout expired then a
NET_RX_SOFTIRQ soft IRQ is raised again and the CPU
core is released.

B. NIC driver

For the description of the interaction between the NAPI
and the NIC driver, we choose the Intel 10 GbE driver ixgbe.
The ixgbe driver implements the Input and Output Queues as
Rx and Tx rings which are continuously allocated memory
blocks made of descriptors. These descriptors point to the
actual packet buffers and are used by the DMA engine to copy
packet data from the NIC to the main memory (Rx) and vice
versa (Tx). In case no ready to use Rx descriptors are available
to the NIC, new packets get dropped in hardware. This way an
overwhelmed system is not bothered by additional incoming
packets that cannot be handled anyway. If an Rx descriptor
is available and a packet is received by the NIC, then it is
stored in the NIC Rx Queue. The NIC’s Board Logic fetches
a Rx descriptor from the Rx ring and transfers the packet
data via DMA into the associated buffer in the main memory.
Afterwards, an IRQ is asserted and handled (cf. Sec. III-A,
steps 1 - 6). A detailed view of the most important steps
performed by the ixgbe driver’s poll() function is provided
in Fig. 2.

A feature of the ixgbe driver is that IRQs can be shared by
Rx and Tx rings to mitigate the number of IRQs. This means an
IRQ can indicate that a packet was received and has to be han-
dled, or that a packet was transmitted and the Tx ring must be
cleaned. For this reason the implementation of poll() is split
up into the two following phases: ixgbe_clean_tx_irq
and ixgbe_clean_rx_irq.

1) In the ixgbe_clean_tx_irq() phase, the driver
cleans Tx descriptors from the Tx ring which are still
associated to packets the NIC has already sent. The
driver can clean up to 256 Tx descriptors consecutively
(independent from the poll size).



2) The ixgbe_clean_rx_irq() phase starts
with the recycling of Rx descriptors, which is
done before they are returned to the hardware
(ixgbe_alloc_rx_buffers()).

3) The packet data is fetched from the Rx ring: A Rx
descriptor is read from the ring and a socket buffer
structure (SKB) is created that points to the respective
buffer (ixgbe_fetch_rx_buffer()).

4) After several sanity checks, the processing of the SKB is
initiated (netif_receive_skb()).

5) The Ethertype determines how the SKB is processed.

With Open vSwitch, the actual packet processing for IP packets
is defined by (ovs_vport_receive()). Open vSwitch
determines the outgoing interface and the output queue. At
this point, the packet transmission based on NAPI and ixgbe
starts.

1’) In the end of the processing, the SKB containing the packet
gets scheduled for transmission (sch_direct_xmit).

2’) A Tx descriptor is prepared in the Tx ring
(ixgbe_xmit_frame_ring()). If more packets
are available on the Rx ring and if the poll size is not
reached, the algorithm continues with step 2.

3’) In case the Tx and Rx rings were cleaned, the respective
IRQ is re-enabled. If the dynamic interrupt throttling rate
(ITR) is enabled, the ITR is recalculated to reprogram the
NIC. Then, the poll returns to the NAPI (cf. section III-A,
step 7).

C. Interrupt Throttling Rate

NAPI-based packet processing can be configured by several
parameters. In case of using the ixgbe driver one of the most
important parameters is the ITR. The ITR defines an upper
bound of IRQs per second for a set of Tx and Rx rings.
The ITR relies on a ITR timer which is set to 1

ITR after an
IRQ was asserted. Until the ITR timer is expired, no further
IRQs can be generated. If packet transmission or reception
happened before the ITR timer expired, the IRQ is fired on
timer expiration. Otherwise the next reception or transmission
event immediately causes an IRQ. The ITR can be configured
as static, dynamic, or disabled.

Disabling the ITR results in short packet latencies but has
a negative impact on the maximum throughput, especially in
high traffic load situations, where the CPU is often occupied
with IRQ handling. Using a static ITR is suitable for manually
setting the upper bound of IRQs per second which is then
independent of the offered load. The increase of the ITR lowers
the latency but increases the CPU utilization and may lower
the maximum throughput. Hence, the appropriate configuration
of the ITR is a trade-off between latency and maximum
throughput.

With a dynamic ITR, the ITR is adopted according to
the current traffic load. When a poll finishes, a new ITR is
recalculated. The three ITR states lowest, low (initial state)
and bulk are defined where each ITR state is associated to a
specific ITR value in thousand interrupts per second (kips) as
depicted in Fig. 3.

The current ITR state s and the throughput determine the
transition to a new ITR state s′. The new ITR r′ is calculated

lowest
100 kips

low
20 kips

bulk
8 kips

≥10 MB/s ≥20 MB/s

<20 MB/s<10 MB/s

Fig. 3. Interrupt throttling rate states of the ixgbe NIC driver

on basis of the current ITR r and the ITR value of the new
ITR state s′ according to Eq. (1).

r′ =
10 · s′ · r
9 · s′ + r

(1)

For instance, if the current offered load is low, and thus the
throughput is low, then the ITR becomes high and vice versa.

IV. LATENCY EVALUATION WITH MEASUREMENTS

For the measurement of the NAPI performance a network
stack is required that utilizes the NAPI. This network stack
must not introduce any unpredictable effects into the measured
data to avoid corruption of our packet reception and transmis-
sion measurements. In the best case it only utilizes a constant
additional share of the CPU and adds a constant additional
latency per packet to the measurements. Therefore, we decided
to use Open vSwitch [25]–[27] as a representative NAPI-based
in-kernel packet forwarding application. Open vSwitch is part
of Linux and is able to operate in layer 2 of the ISO OSI stack
but also in higher layers. Previously we have shown that Open
vSwitch has a predictable average per packet processing cost
in terms of CPU cycles [16].

A. Measurement Setup

Our test setup is based on recommendations by
RFC 2544 [28]. The device under test (DuT) is connected
to a device which runs a load generator and a packet counter
in order to measure the achieved throughput. For profiling of
software the DuT runs the Linux tool perf to gather statistics
like the interrupt rate. Profiling measurements were run for five
minutes per test to get accurate results. Our tests indicate that
running this utility on the DuT introduces an overhead that
reduces the maximum throughput by 1 %.

The DuT uses an Intel X540-T2 dual 10 GbE NIC and
is equipped with a 3.3 GHz Intel Xeon E3-1230 V2 CPU.
We disabled Hyper-Threading, Turbo Boost, and power saving
features that scale the frequency with the CPU load because
we observed measurement artefacts with these features.

The DuT runs the Debian-based live Linux distribution
Grml with a 3.7 kernel, the ixgbe 3.14.5 NIC driver with
interrupts statically assigned to CPU cores. Open vSwitch is
used in version 2.0.0 with manually created OpenFlow rules
to match the traffic.

B. Load Generation

Our load generator is based on the high-performance packet
processing framework DPDK [8]. This packet generator can
reliably generate constant bit rate (CBR) traffic by utilizing
rate control hardware features of a X540-based NIC [20].



We generate minimally sized Ethernet frames (64 B) be-
cause we have shown in previous work that the packet size
does not affect the throughput [16]. Using the minimal packet
size allows for a challenging load on the DuT without reaching
the 10 GbE line rate.

C. Measurement Accuracy

Relying on data measured in software introduces uncer-
tainty. Therefore, we rely on the hardware counters of our
X540-based NIC [20], which we periodically snapshot for our
measurements.

Utilizing the IEEE 1588 hardware timestamping feature
allows for an accuracy less than 25 ns resulting. This re-
sults from the per interface accuracy of the clocks and the
inaccuracy of synchronization between the clocks of two
different interfaces. The synchronization is even required for
two interfaces on a dual port NIC that share one chip because
the two ports are completely independent and do not share a
clock for timestamping. We record timestamps for randomly
sampled packets at a rate of ca. 1000 packets per second to get
statistically independent timestamps.

V. LATENCY EVALUATION WITH SIMULATIONS

Simulations are a cost-effective approach to design, val-
idate, and analyze proposed protocols and algorithms in a
controlled and reproducible manner. Our proposed simulation
model is able to imitate the packet processing software by
means of NAPI and NIC driver behavior in a Linux system
(cf. Section III). Besides the prediction of throughput and CPU
utilization, our simulation model aims for the prediction of
latencies introduced by the packet processing software for any
offered load.

In order to simulate the software induced packet latencies
of real systems, we model the scheduling of polls defined by
NAPI and the dispatching of packets according to ixgbe as
described in Section III.

A. Integration into ns-3 Resource Management

We implement our simulation model within the widely-
used discrete event network simulator ns-3 [29]. In our previ-
ous work, we presented a modeling approach for resource-
constrained network nodes [4] which we applied to show
the linear scaling of multi-core software routers [5]. The OS
is modeled by the resource manager and the actual packet
processing is modeled by task units. We implemented this
modeling approach as the ns-3 resource management module.
Now we extend this modeling approach with respect to the
NAPI and NIC driver behavior.

B. Simulation Model

Fig. 4 illustrates our simulation model derived from a real
Linux-based system with NAPI behavior (cf. Figs. 1 and 4).
The resource manager can be seen as the abstraction of the
NAPI functionality and a task unit represents the functionality
of the NIC driver.

The Resource Manager is responsible for handling IRQs
and managing the poll lists. In real systems the interrupt ser-
vice routine is a high priority task that causes other processes

Fig. 4. Schematic view of the simulation model

to be suspended during IRQ handling. Our simulation model
respects this and consumes a specific amount of simulated
time tirq for handling IRQs. The driver-specific behavior of
the poll() function is modeled by a Task Unit. As described
before ixgbe’s poll function splits up into two cyclic phases.
Although in real systems numerous functions are involved in
each of these phases, the successive performed steps are always
the same. Thus, our model simplifies and considers each of
both phases as a loop of a single step. The phases are:

Phase 1: Cleaning of the the Tx ring
(ixgbe_clean_tx_irq). The total simulated time
consumed in this phase depends on the number of packets
that have been transmitted using the Tx ring. Each transmitted
packet causes the simulated time to advance for a specific
amount tclean. In order to keep track of the transmitted
packets, each Task Unit provides counters (dscr. counter)
that are altered when a packet is scheduled for transmission
(ixgbe_xmit_frame_ring()), a packet has been
transmitted (tx callback()), or the Tx ring is cleaned.

Phase 2: Packets from the Rx ring are handled
(ixgbe_clean_rx_irq). The number of successively han-
dled packets is specified by the poll size. The model does
not consider real packet processing but packet transmission.
Thus, the simulation model has to schedule the subsequent
transmission events ixgbe xmit frame ring for up to poll size
successive packets from the Input Queue. The simulated time
between two consecutive transmission events is tproc .

Additionally, each Task Unit needs to generate IRQs in
order to indicate the Resource Manager that a queue state
has changed. IRQs can be generated on ITR events. An ITR
event schedules the next ITR event according to the ITR (cf.
Sec. III-C).



As our simulation model focuses on the processing time
consumed by software. We determine the packet latency, as
the difference between the time the NIC passed the packet data
to the Input Queue (cf. Fig. 4 marker (A)), and the time the
software inserts the packet into the respective Output Queue
(cf. Fig. 4 marker (B)).

Our model neither considers realistic DMA, modulation
and demodulation latency in the NICs nor other latencies
caused by hardware. Therefore, we introduce a constant offset
value toff which is added to each determined latency in order
to estimate the total intra-node latency. Furthermore, our model
neglects concurrent processes which might influence the packet
processing. However, due to the strict separation of hardware,
OS, and NIC driver in our model, it can easily be extended by
adequate software or hardware models.

VI. MODEL CALIBRATION AND VALIDATION

In this section we discuss our measurement and simulation
results. We measured the per-packet processing latency on be-
half of Open vSwitch. The real measurements were conducted
in a testbed (cf. Sec. IV) and the simulations were made with
our ns-3 resource management extension (cf. Sec. V).

For the calibration and validation of our model we simulate
the system and the setting that we use in our real world
measurements (cf. Sec. IV-A). This reflects the standard setup
for device benchmarking [2], [28]: the DuT is charged by
traffic that flows from a load generator to a sink. Both are
directly connected to the DuT. In both, our simulation and our
measurement setup we configured the DuT with the default Tx
and Rx ring size of 512. The poll size is directly programmed
in the driver code. For the ixgbe driver the poll size is 64
packets The ITR was set to dynamic ITR scheme. We load the
system with traffic of different constant bit rates (CBRs).

A. Model Calibration

Model calibration is the procedure of setting the model
parameters in the simulation model with respect to the modeled
real system. We calibrate the model according to measurement
and profiling results of the DuT in the testbed.

Based on our throughput measurements we obtain a maxi-
mum packet forwarding rate of 1.87 Mpps achieved by the DuT
with one CPU core. With a CPU frequency of 3.3 GHz this
relates to a processing time of 567 ns per packet. Profiling indi-
cates that 99.5 % of these 567 ns are consumed by ixgbe poll
which is composed as follows: 15% (85 ns) correspond to
ixgbe clean tx irq (tclean) and 85% (479 ns) correspond to
ixgbe clean rx irq (tproc). Profiling revealed that handling an
IRQ from the NIC takes 202 ns (tirq ca. 667 CPU cycles).

From our latency measurement, we observe a minimum
latency of approximately 8000 ns. The measurement was per-
formed with low offered load (i.e. 0.0446 Mpps), so each
packet received by the ingoing interface immediately generates
an IRQ and the packet is processed directly (the Tx descriptor
rings of the outgoing interface has been cleaned due to a
separate IRQ for the prior packet transmission). Since a single
packet takes 479.5 ns to be processed, we have to add an
additional latency (toff ) of 8000 ns - 479 ns = 7521 ns to each
processed packet.

tclean 85 ns
tproc 479 ns
tirq 202 ns
toff 7521 ns

TABLE I. MODEL CALIBRATION PARAMETERS
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Fig. 6. Number of interrupts in dependence to offered load

B. Model Validation

Fig. 6 shows the measured and the simulated interrupt
rate in dependence on the offered load in million packets
per second (Mpps). The simulated interrupt rate reveals two
abnormalities: (1) The peak at ca. 0.5 Mpps is missing. (2)
Two peaks are visible at ca. 1.4 Mpps. (3) The interrupt rate
decreases faster and less smooth than in the real system. We
assign these discrepancies to effects not considered in our
simulation model such as realistic DMA or hardware buffers.

The distribution of the packet latency is not normally
distributed (cf. Fig. 7). Thus, we omitted mean values and con-
fidence intervals. Instead, we denote the latency distributions
(for measurements and simulation) by percentiles.

The observed latency distribution as indicated by the per-
centiles results from randomized sampling in measurements
(cf. Sec. IV-A) and simulations. Fig. 5(a) shows the measured
25th, 50th, 75th, and 99th percentile for the observed latency
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Fig. 7. Example of the non-trivial distribution of packet latencies: histogram
of measured latencies at 1.03 Mpps, bin width: 250 ns
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Fig. 5. Distribution of latencies and the relative simulation error with varying offered loads

distribution in relation to the offered load. Fig. 5(b) illustrates
the percentiles for the latency distribution predicted by our
simulation model in relation to the offered load. An Xth
percentile refers to the minimal value which is higher than
X percent of the measured or simulated latencies.

The comparison of Fig. 5(a) with Fig. 5(b) shows: (1) For
low offered load the simulated latency is constant while the
measured latency increases. This error arises from the constant
latency offset toff , which we use to estimate the additional
latency introduced by non-software parts of the system. (2)
From 0.5 to 1.0 Mpps the measured latency is almost constant,
cf.(a), while the simulated latency decreases, cf.(b). (a) For
offered loads from 0.5 to 1.0 Mpps we see the measured
interrupt rate is higher than the 16 kips we expect due to the
ITR algorithm. According to the offered load the throughput
on the Tx ring as well as on the Rx ring is above 20 MB/s.
Therefore, we expect 8 kips at maximum for each ring but
we observe up to 27 kips for both rings. Thus, we assume the
ITR is oscillating. This effect occurs if a poll starts with many
packets backlogged in the Rx ring while the current ITR has a
high value. In this case the time between the poll finishes (all
packets from the Rx ring are served) and the expiration of the
ITR timer is short. In worst case the poll finishes shortly before
the ITR timer expires and causes an IRQ. Since the observed
throughput was high, the ITR is decreased. For the successive
poll which starts immediately after the previous poll due to the
IRQ, there are just few packets backlogged. In this case the
time between the poll finishes and the remaining time until the
ITR timer expires is long. Hence, many packets are backlogged
for the successive poll. Furthermore, the ITR is increased due
to the low throughput observed and the procedure starts over.
An oscillating ITR potentially influences the distribution of
latencies, because on the one hand the large backlogs introduce
high latencies and on the other hand small backlogs introduce
low latencies. In a real system it is possible that concurrent
processes interrupt the packet processing and exceptionally
more packets get backlogged. (b) If the interrupt rate remains
constant and the offered load increases, then the mean latency
decreases because more packets arrive during an active poll.

Instead of being backlogged in the Rx ring and served by
the successive poll, such packets are served directly by the
poll they arrived in. The time these packets are backlogged
in the Rx ring before being served is therefore short. This
positive effect is a consequence of growing offered load and
reaches its maximum when the packets arrive approximately
as fast as they are served. This is why we observe a drop off
in the measured as well as the simulated latencies right before
overload situation (1.87 Mpps and above). (3) In overload
situations the measured latency is four times higher than the
simulated latency. In this case the latency is predominantly
defined by the service time of the bottleneck (in this case
the CPU) and the accumulated queue sizes in front of the
bottleneck. Therefore, we assume this effect is related to
additional hardware buffers which are not considered in our
model (e.g. the Rx buffer in the NIC).

For the simulated and the measured 99th percentile of the
latency distribution we calculated the absolute mean error Eabs

= 16.049µs and the relative mean error Erel = 15.20 % that
are defined as follows:

Eabs =
(
∑

i∈n |T
i
sim−T

i
meas|)

n , Erel =

∑
i∈n |

Ti
sim−Ti

meas
Ti
meas

|)

n

Where T i
meas (resp. T i

sim) is the observed latency of the
ith measurement (resp. simulation) and n is the total number
of sampled latencies.

The error plots in Fig. 5 show the relative error as a
function of the offered load. The relative error increases
drastically in cases of very low offered load and overload
situations (due to unconsidered effects). Therefore, the (rel-
ative) mean error was calculated based on the measurements
with an offered load between 0.2 Mpps and 1.87 Mpps. The
confidence intervals were omitted because the results only
show insignificant variances as they are based on CBR traffic.
It is conspicuous that the error plot is unsteady. On closer
inspection we noticed that the peaks for relative errors are
in coincidence with disparities in the measured and simulated
interrupt rates (except in overload situation). Therefore, if we
manage to eliminate these discrepancies (e.g. by implementing



a proper DMA model), we expect the prediction of intra-node
packet latency becomes more precise. Despite of the discussed
deficits, the general shapes of the interrupt rate and latency
plots indicate that our approach is basically correct. Thus, our
model is suitable to predict latency related effects caused by
NAPI and ixgbe.

VII. CONCLUSION

In this study, we investigated the latency which a packet
incurs due to the packet processing software in PC systems
based on Linux. We analyzed the interactions between the NIC
driver and NAPI as part of the operating system. On the one
hand side, we carried out testbed measurements to determine
the distribution of packet latency with nanoseconds accuracy.
On the other hand side, we modeled and simulated NIC
driver and NAPI mechanisms by extending our ns-3 resource
management module. Based on the testbed measurements, we
calibrated and validated our simulation model with respect to
packet latency. The simulation results show in comparison with
the results of the measurements a rather accurate prediction
of the packet latency. In future work, we will evaluate new
algorithms for low latency packet processing (e.g. real-time
support) with our validated model. Based on that, we will
recommend optimizations for NIC drivers and the OS.
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