
MoonGen: A Scriptable High-Speed Packet Generator

Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg Carle
Technische Universität München
Department of Computer Science

Chair for Network Architectures and Services
{emmericp|gallenmu|raumer|wohlfart|carle}@net.in.tum.de

ABSTRACT
We present MoonGen, a flexible high-speed packet genera-
tor. It can saturate 10GbE links with minimum-sized pack-
ets while using only a single CPU core by running on top
of the packet processing framework DPDK. Linear multi-
core scaling allows for even higher rates: We have tested
MoonGen with up to 178.5Mpps at 120Gbit/s. Moving
the whole packet generation logic into user-controlled Lua
scripts allows us to achieve the highest possible flexibil-
ity. In addition, we utilize hardware features of commodity
NICs that have not been used for packet generators previ-
ously. A key feature is the measurement of latency with
sub-microsecond precision and accuracy by using hardware
timestamping capabilities of modern commodity NICs. We
address timing issues with software-based packet generators
and apply methods to mitigate them with both hardware
support and with a novel method to control the inter-packet
gap in software. Features that were previously only pos-
sible with hardware-based solutions are now provided by
MoonGen on commodity hardware. MoonGen is available
as free software under the MIT license in our git repository
at https://github.com/emmericp/MoonGen.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

Keywords
Packet generation; User space networking; Lua; DPDK

1. INTRODUCTION
Tools for traffic generation are essential to quantitative

evaluations of network performance. Hardware-based so-
lutions for packet generation are expensive and in many
cases inflexible. Existing software solutions often lack per-
formance or flexibility and come with precision problems [2].
The state of the art in packet generation, discussed fur-

ther in Section 2, motivated us to design MoonGen. Our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IMC’15, October 28–30, 2015, Tokyo, Japan.
© 2015 ACM. ISBN 978-1-4503-3848-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2815675.2815692.

novel software packet generator is flexible, fast, and precise
without relying on special-purpose hardware. Moving the
packet generation logic into user-controlled Lua scripts en-
sures flexibility. We build on the JIT compiler LuaJIT [20]
and the packet processing framework DPDK [14]. Our ar-
chitecture and its implementation are described in detail in
Section 3. This combination allows us to send 14.88Mpps,
line rate at 10GbE with minimum-sized packets, from a sin-
gle CPU core while executing script code for each packet.
Explicit support for multi-core architectures allows us to
load multiple 10GbE interfaces simultaneously: We have
tested MoonGen with 178.5Mpps, line rate at 120Gbit/s
using twelve 2GHz CPU cores.
MoonGen is controlled through its API instead of con-

figuration files. We explain the interface in Section 4 by
presenting code examples for typical use cases. The API al-
lows for applications beyond packet generation as it makes
DPDK packet processing facilities available to Lua scripts.
Section 5 evaluates the performance of our approach. We
show that running Lua code for each packet is feasible and
can even be faster than an implementation written in C.
Our packet generator can also receive packets and measure

round-trip latencies with sub-microsecond precision and ac-
curacy. We achieve this by using hardware features of Intel
commodity NICs that are intended for clock synchronization
across networks. Section 6 features a detailed evaluation.
Section 7 investigates different methods for rate limiting

on NICs. It focuses on established methods for traffic rate
limiting by controlling the inter-departure times of pack-
ets based on either software mechanisms or explicit hard-
ware features on modern NICs. Aiming for a more generic
and more powerful approach to traffic limiting, Section 8
proposes a new mechanism introduced by MoonGen. This
solution allows generating complex traffic patterns without
additional hardware support.
MoonGen is available as free software under the MIT li-

cense [5]. Section 9 describes how to use the published code
to reproduce all experiments in this paper.

2. STATE OF THE ART
Packet generators face a tradeoff between complexity and

performance. This is reflected in the available packet gener-
ators: Barebone high-speed packet generators with limited
capabilities on the one hand and feature-rich packet gen-
erators that do not scale to high data rates on the other
hand. While high-speed packet generators often only send
out pre-crafted Ethernet frames (e.g., pcap files), more ad-
vanced packet generators are able to transmit complex load

https://github.com/emmericp/MoonGen

patterns by implementing and responding to higher-layer
protocols (e.g., web server load tester). Consequently, there
is a lack of fast and flexible packet generators. Besides mere
traffic generation, many packet generators also offer the pos-
sibility to capture incoming traffic and relate the generated
to the received traffic.
The traditional approach to measure the performance of

network devices uses hardware solutions to achieve high
packet rates and high accuracy [2]. Especially their abil-
ity to accurately control the sending rate and precise time-
stamping are important in these scenarios. Common hard-
ware packet generators manufactured by IXIA, Spirent, or
XENA are tailored to special use cases such as performing
RFC 2544 compliant device tests [3]. They send predefined
traces of higher-layer protocols, but avoid complex hardware
implementations of protocols. Therefore, these hardware ap-
pliances are on the fast-but-simple end of the spectrum of
packet generators. They are focused on well-defined and
reproducible performance tests for comparison of network-
ing devices via synthetic traffic. However, the high costs
severely limit their usage [2].
NetFPGA is an open source FPGA-based NIC that can

be used as a packet generator [17]. Although costs are still
beyond commodity hardware costs, it is used more often
in academic publications. For example, in 2009, Coving-
ton et al. [4] described an open-source traffic generator based
on NetFPGA with highly accurate inter-packet delays. The
OFLOPS framework by Rotsos et al. [24] is able to measure
latencies with nanosecond accuracy via a NetFPGA.
Software packet generators running on commodity hard-

ware are widespread for different use cases. Especially traffic
generators that emulate realistic traffic, e.g., Harpoon [26],
suffer from poor performance on modern 10GbE links. We
focus on high-speed traffic generators that are able to satu-
rate 10GbE links with minimum-sized packets, i.e., achieve
a rate of 14.88Mpps. Bonelli et al. [1] implement a software
traffic generator, which is able to send 12Mpps by using
multiple CPU cores. Software packet generators often rely
on frameworks for efficient packet transmission [18, 23, 14]
to increase the performance further to the line rate limit.
Less complex packet generators can be found as example
applications for high-speed packet IO frameworks: zsend
for PF_RING ZC [18] and pktgen for netmap [23]. Wind
River Systems provides Pktgen-DPDK [27] for DPDK [14].
Pktgen-DPDK features a Lua scripting API that can be
used to control the parameters of the generator, but the
scripts cannot modify the packets themselves. Further, ex-
isting tools for packet generation like Ostinato have been
ported to DPDK to improve their performance [19]. Previ-
ous studies showed that software solutions are not able to
precisely control the inter-packet delays [2, 4]. This leads to
micro-bursts and jitter, a fact that impacts the reproducibil-
ity and validity of tests that rely on a precise definition of
the generated traffic.
Ostinato is the most flexible software packet solution of

the investigated options as it features configuration through
Python scripts while using DPDK for high-speed packet IO.
However, its scripting API is limited to the configuration of
predefined settings, the scripts cannot be executed for each
packet. Precise timestamping and rate control are also not
supported. [19]
One has to make a choice between flexibility (software

packet generators) and precision (hardware packet genera-

tors) with the available options. Today different measure-
ment setups therefore require different packet generators.
For example, precise latency measurements currently require
hardware solutions. Complex packet generation (e.g., test-
ing advanced features of network middleboxes like firewalls)
requires flexible software solutions. We present a hybrid so-
lution with the goal to be usable in all scenarios.

3. IMPLEMENTATION
We identified the following requirements based on our goal

to close the gap between software and hardware solutions by
combining the advantages of both. MoonGen must...

(R1) ...be implemented in software and run on commodity
hardware.

(R2) ...be able to saturate multiple 10GbE links with mini-
mum-sized packets.

(R3) ...be as flexible as possible.

(R4) ...offer precise and accurate timestamping and rate
control.

The following building blocks were chosen based on these
requirements.

3.1 Packet Processing with DPDK
Network stacks of operating systems come with a high

overhead [23]. We found the performance too low to fulfill
requirement (R2). Packet IO frameworks like DPDK [14],
PF_RING ZC [18], and netmap [23] circumvent the network
stack and provide user space applications exclusive direct ac-
cess to the DMA buffers to speed up packet processing. All
of them have been used to implement packet generators that
fulfill requirement (R2) [18, 23, 27]. We have investigated
the performance of these frameworks in previous work [6]
and found that DPDK and PF_RING ZC are slightly faster
than netmap.
We chose DPDK for MoonGen as it supports a wide range

of NICs by multiple vendors (Intel, Emulex, Mellanox, and
Cisco), is well-documented, fast, and available under the
BSD license [14]. PF_RING ZC was not considered further
as some parts of this framework, which are needed for high-
speed operation, require purchasing a license. In netmap,
user space applications do not have access to the NIC’s reg-
isters. This is a safety precaution as a misconfigured NIC
can crash the whole system by corrupting memory [23]. This
restriction in netmap is critical as it is designed to be part of
an operating system: netmap is already in the FreeBSD ker-
nel [22]. However, MoonGen needs to access NIC registers
directly to implement requirement (R4).

3.2 Scripting with LuaJIT
MoonGen must be as flexible as possible (R3). Therefore,

we move the whole packet generation logic into user-defined
scripts as this ensures the maximum possible flexibility. Lua-
JIT was selected because related work shows that it is suit-
able for high-speed packet processing tasks [7] at high packet
rates (R2). Its fast and simple foreign function interface al-
lows for an easy integration of C libraries like DPDK [20].
LuaJIT may introduce unpredictable pause times due to

garbage collection and compilation of code during run time.

This can lead to exhausted receive queues or starving trans-
mission queues. Pause times introduced by the JIT com-
piler are in the range of “a couple of microseconds” [21].
The garbage collector (GC) works in incremental steps, the
pause times depend on the usage. All packet buffers are
handled by DPDK and are invisible to the GC. A typical
transmit loop does not allocate new objects in Lua, so the
GC can even be disabled for most experiments.
Pause times are handled by the NIC buffers: The cur-

rently supported NICs feature buffer sizes in the order of
hundreds of kilobytes [11, 12, 13]. For example, the smallest
buffer on the X540 chip is the 160 kB transmit buffer, which
can store 128µs of data at 10GbE. This effectively conceals
short pause times. These buffer sizes were sufficient for all
of our tests.

3.3 Hardware Architecture
Understanding how the underlying hardware works is im-

portant for the design of a high-speed packet generator. The
typical operating system socket API hides important aspects
of networking hardware that are crucial for the design of
low-level packet processing tools.
A central feature of modern commodity NICs is support

for multi-core CPUs. Each NIC supported by DPDK fea-
tures multiple receive and transmit queues per network in-
terface. This is not visible from the socket API of the op-
erating system as it is handled by the driver [10]. For ex-
ample, both the X540 and 82599 10GbE NICs support 128
receive and transmit queues. Such a queue is essentially a
virtual interface and they can be used independently from
each other. [12, 13]
Multiple transmit queues allow for perfect multi-core scal-

ing of packet generation. Each configured queue can be as-
signed to a single CPU core in a multi-core packet genera-
tor. Receive queues are also statically assigned to threads
and the incoming traffic is distributed via configurable filters
(e.g., Intel Flow Director) or hashing on protocol headers
(e.g., Receive Side Scaling). [12, 13] Commodity NICs also
often support timestamping and rate control in hardware.
This allows us to fulfill (R1) without violating (R4).
MoonGen does not run on arbitrary commodity hard-

ware, we are restricted to hardware that is supported by
DPDK [14] and that offers support for these features. We
currently support hardware features on Intel 82599, X540,
and 82580 chips. Other NICs that are supported by DPDK
but not yet explicitly by MoonGen can also be used, but
without hardware timestamping and rate control.

3.4 Software Architecture
MoonGen’s core is a Lua wrapper for DPDK that provides

utility functions required by a packet generator. The Moon-
Gen API comes with functions that configure the underly-
ing hardware features like timestamping and rate control.
About 80% of the current code base is written in Lua, the
remainder in C and C++. Although our current focus is on
packet generation, MoonGen can also be used for arbitrary
packet processing tasks.
Figure 1 shows the architecture of MoonGen. It runs a

user-provided script, the userscript, on start-up. This script
contains the main loop and the packet generation logic.
The userscript will be executed in the master task initially

by calling the master function provided by the script. This
master function must initialize the used NICs, i.e., config-

MoonGen Core

DPDK

U
se
rs
cr
ip
t

M
oo

nG
en

H
W NIC NIC

Port

Q0 ... Qn

Port

Userscript

Lua VM

Userscript
spawn

Userscript
slave

Lua VM

Userscript
master

Lua VM

Config API Data API

Config API Data API

Figure 1: MoonGen’s architecture

ure the number of hardware queues, buffer sizes and filters
for received traffic. It can then spawn new instances of it-
self running in slave tasks and pass arguments to them. A
slave task runs a specified slave function. It usually receives
a hardware queue as an argument and then transmits or
receives packets via this queue. Starting a new slave task
spawns a completely new and independent LuaJIT VM that
is pinned to a CPU core. Tasks only share state through the
underlying MoonGen library which offers inter-task commu-
nication facilities such as pipes. All functions related to
packet transmission and reception in MoonGen and DPDK
are lock-free to allow for multi-core scaling.
MoonGen comes with example scripts for generating load

with IPv4, IPv6, IPsec, ICMP, UDP, and TCP packets, mea-
suring latencies, measuring inter-arrival times, and generat-
ing different inter-departure times like a Poisson process and
bursty traffic.

4. SCRIPTING API
Our example scripts in the git repository are designed to

be self-explanatory exhaustive examples for the MoonGen
API [5]. The listings in this section show excerpts from the
quality-of-service-test.lua example script. This script
uses two transmission tasks to generate two types of UDP
flows and measures their throughput and latencies. It can
be used as a starting point for a test setup to benchmark
a forwarding device or middlebox that prioritizes real-time
traffic over background traffic.
The example code in this section is slightly different from

the example code in the repository: it has been edited for
brevity. Error handling code like validation of command-line
arguments is omitted here. The timestamping task has been
removed as this example focuses on the basic packet gener-
ation and configuration API. Most comments have been re-
moved and some variables renamed. The interested reader
is referred to our repository [5] for the full example code
including timestamping.

1 function master(txPort, rxPort, fgRate, bgRate)
2 local tDev = device.config(txPort, 1, 2)
3 local rDev = device.config(rxPort)
4 device.waitForLinks()
5 tDev:getTxQueue(0):setRate(bgRate)
6 tDev:getTxQueue(1):setRate(fgRate)
7 mg.launchLua("loadSlave", tDev:getTxQueue(0), 42)
8 mg.launchLua("loadSlave", tDev:getTxQueue(1), 43)
9 mg.launchLua("counterSlave", rDev:getRxQueue(0))

10 mg.waitForSlaves()
11 end

Listing 1: Initialization and device configuration

4.1 Initialization
Listing 1 shows the master function. This function is ex-

ecuted in the master task on startup and receives command
line arguments passed to MoonGen: The devices and trans-
mission rates to use in this case. It configures one transmit
device with two transmit queues and one receiving device
with the default settings. The call in line 4 waits until the
links on all configured devices are established. It then con-
figures hardware rate control features on the transmission
queues and starts three slave threads, the first two gener-
ate traffic, the last counts the received traffic on the given
device. The arguments passed to mg.launchLua are passed
to the respective functions in the new task. The loadSlave
function takes the transmission queue to operate on and a
port to distinguish background from prioritized traffic.

4.2 Packet Generation Loop
Listing 2 shows the loadSlave function that is started

twice and does the actual packet generation. It first allocates
a memory pool, a DPDK data structure in which packet
buffers are allocated. The MoonGen wrapper for memory
pools expects a callback function that is called to initialize
each packet. This allows a script to fill all packets with
default values (lines 5 to 10) before the packets are used in
the transmit loop (lines 17 to 24). The transmit loop only
needs to modify a single field in each transmitted packet
(line 20) to generate packets from randomized IP addresses.
Line 13 initializes a packet counter that keeps track of

transmission statistics and prints them in regular intervals.
MoonGen offers several types of such counters with differ-
ent methods to acquire statistics, e.g., by reading the NICs
statistics registers. This example uses the simplest type, one
that must be manually updated.
Line 15 allocates a bufArray, a thin wrapper around a

C array containing packet buffers. This is used instead of
a normal Lua array for performance reasons. It contains a
number of packets in order to process packets in batches in-
stead of passing them one-by-one to the DPDK API. Batch
processing is an important technique for high-speed packet
processing [6, 23].
The main loop starts in line 17 with allocating packets of

a specified size from the memory pool and storing them in
the packet array. It loops over the newly allocated buffers
(line 18) and randomizes the source IP (line 20). Finally,
checksum offloading is enabled (line 22) and the packets are
transmitted (line 23).
Note that the main loop differs from a packet generator

relying on a classic API. MoonGen, or any other packet gen-
erator based on a similar framework, cannot simply re-use
buffers because the transmit function is asynchronous. Pass-
ing packets to the transmit function merely places pointers

1 local PKT_SIZE = 124
2 function loadSlave(queue, port)
3 local mem = memory.createMemPool(function(buf)
4 buf:getUdpPacket():fill{
5 pktLength = PKT_SIZE,
6 ethSrc = queue, -- get MAC from device
7 ethDst = "10:11:12:13:14:15",
8 ipDst = "192.168.1.1",
9 udpSrc = 1234,

10 udpDst = port,
11 }
12 end)
13 local txCtr = stats:newManualTxCounter(port, "plain")
14 local baseIP = parseIPAddress("10.0.0.1")
15 local bufs = mem:bufArray()
16 while dpdk.running() do
17 bufs:alloc(PKT_SIZE)
18 for _, buf in ipairs(bufs) do
19 local pkt = buf:getUdpPacket()
20 pkt.ip.src:set(baseIP + math.random(255) - 1)
21 end
22 bufs:offloadUdpChecksums()
23 local sent = queue:send(bufs)
24 txCtr:updateWithSize(sent, PKT_SIZE)
25 end
26 txCtr:finalize()
27 end

Listing 2: Transmission slave task

to them into a memory queue, which is accessed by the NIC
later [14]. A buffer must not be modified after passing it
to DPDK. Otherwise, the transmitted packet data may be
altered if the packet was not yet fetched by the NIC.
Therefore, we have to allocate new packet buffers from

the memory pool in each iteration. Pre-filling the buffers at
the beginning allows us to only touch fields that change per
packet in the transmit loop. Packet buffers are recycled by
DPDK in the transmit function, which collects packets that
were sent by the NIC earlier [14]. This does not erase the
packets’ contents.

4.3 Packet Counter
Listing 3 shows how to use MoonGen’s packet reception

API to measure the throughput of the different flows by
counting the incoming packets.
The task receives packets from the provided queue in the

bufArray bufs in line 5. It then extracts the UDP destina-
tion port from the packet (line 8) and uses counters to track
statistics per port. The final statistics are printed by calling
the counters’ finalize methods in line 19. Printed statistics

1 function counterSlave(queue)
2 local bufs = memory.bufArray()
3 local counters = {}
4 while dpdk.running() do
5 local rx = queue:recv(bufs)
6 for i = 1, rx do
7 local buf = bufs[i]
8 local port = buf:getUdpPacket().udp:getDstPort()
9 local ctr = counters[port]

10 if not ctr then
11 ctr = stats:newPktRxCounter(port, "plain")
12 counters[port] = ctr
13 end
14 ctr:countPacket(buf)
15 end
16 bufs:freeAll()
17 end
18 for _, ctr in pairs(counters) do
19 ctr:finalize()
20 end
21 end

Listing 3: Packet counter slave task

include the average packet and byte rates as well as their
standard deviations.
The format to print in is specified in the counter construc-

tor in line 11. All example scripts use the plain formatter,
the default value is CSV for easy post-processing. The output
can also be diverted to a file. Details are in the documenta-
tion of stats.lua.
This script can be used for another similar test setup by

adapting the code to the test setup by changing hardcoded
constants like the used addresses and ports. The full script
in the repository [5] includes a separate timestamping task
to acquire and print latency statistics for the two flows.

5. PERFORMANCE
Writing the whole generation logic in a scripting language

raises concerns about the performance. One important fea-
ture of LuaJIT is that it allows for easy integration with
existing C libraries and structs: it can directly operate on
C structs and arrays without incurring overhead for bound
checks or validating pointers [20]. Thus, crafting packets is
very efficient in MoonGen.
The obvious disadvantage is that unchecked memory ac-

cesses can lead to memory corruption, a problem that is usu-
ally absent from scripting languages. However, most critical
low-level parts like the implementation of the NIC driver are
handled by DPDK. The MoonGen core then wraps poten-
tially unsafe parts for the userscript if possible. There are
only two operations in a typical userscript that can lead to
memory corruption: writing beyond packet buffer bound-
aries and trying to operate on buffers that are null pointers.
This is an intentional design decision to aid the performance
by avoiding unnecessary checks.

5.1 Test Methodology
Measuring the CPU load caused by a DPDK-based appli-

cation is difficult because DPDK recommends a busy-wait
loop [14], i.e., the CPU load is always 100% for a typical
application. MoonGen and other DPDK-based generators
like Pktgen-DPDK [27] are no exceptions to this. The bot-
tleneck for packet transmission is usually not the CPU but
the line rate of the network, so just measuring the achieved
rate provides no insight. We therefore decrease the clock fre-
quency of our CPU such that the processing power becomes
the bottleneck. The performance can then be quantified as
CPU cycles per packet. The same approach was used by
Rizzo to evaluate the performance of netmap [23].
The tests in this section were executed on an Intel Xeon

E5-2620 v3 CPU with a frequency of 2.4GHz that can be
clocked down to 1.2GHz in 100MHz steps. To ensure con-
sistent and reproducible measurement results, we disabled
Hyper-Threading, which may influence results if the load
of two virtual cores is scheduled to the same physical core.
TurboBoost and SpeedStep were also disabled because they
adjust the clock speed according to the current CPU load
and interfere with our manual adjustment of the frequency.

5.2 Comparison with Pktgen-DPDK
Our scripting approach can even increase the performance

compared to a static packet generator slightly. We show
this by comparing MoonGen to Pktgen-DPDK 2.5.1 [27], a
packet generator for DPDK written in C.
We configured both packet generators to craft minimum-

sized UDP packets with 256 varying source IP addresses on

1 2 3 4 5 6 7 8
0
5

10
15
20
25
30

Number of 1.2GHz CPU Cores

Pa
ck
et

R
at
e
[M

pp
s]

0

10

20

R
at
e
[G

bi
t/
s]

Figure 2: Multi-core scaling under high load

a single CPU core. We then gradually increased the CPU’s
frequency until the software achieved line rate. Pktgen-
DPDK required 1.7GHz to hit the 10GbE line rate of 14.88
Mpps, MoonGen only 1.5GHz. Pktgen-DPDK achieved
14.12Mpps at 1.5GHz. This means MoonGen is more effi-
cient in this specific scenario.
This increased performance is an inherent advantage of

MoonGen’s architecture: Pktgen-DPDK needs a complex
main loop that covers all possible configurations even though
we are only interested in changing IP addresses in this test
scenario. MoonGen, on the other hand, can use a script that
consists of a tight inner loop that exclusively executes the
required tasks: allocating pre-filled packet buffers, modify-
ing the IP address, and sending the packets with checksum
offloading. You only pay for the features you actually use
with MoonGen.

5.3 Multi-core Scaling
The achieved performance depends on the script; the pre-

vious example was a light workload for the comparison to
Pktgen-DPDK, which is limited to such simple patterns.
Therefore, we test a more involved script to stress Moon-
Gen to show the scaling with multiple cores sending to the
same NIC via multiple transmission queues.
Figure 2 shows the performance under heavy load and

the scaling with the number of CPU cores. MoonGen was
configured to generate minimum-sized packets with random
payload as well as random source and destination addresses
and ports. The code generates 8 random numbers per packet
to achieve this. Each core generated and sent packets on two
different 10GbE interfaces simultaneously. Linear scaling
can be observed up to the line rate limit (dashed line).
The code was written in idiomatic Lua without specific

optimizations for this use case: LuaJIT’s standard random
number generator, a Tausworthe generator [20], was used.
Since a high quality random number generator is not re-
quired here, a simple linear congruential generator would
be faster. The code also generates a random number per
header field instead of combining multiple fields (e.g., source
and destination port can be randomized by a single 32-bit
random number).
Despite the lack of optimizations, the code was initially

found to be too fast for meaningful scalability measurements
(10.3Mpps on a single core). We therefore reduced the
CPU’s clock speed to 1.2GHz and increased the number
of NICs to 2 for this test. This test shows that sending to a
single NIC port via multiple queues scales linearly, an impor-
tant assumption made for our architecture (cf. Section 3.3).

64 96 128 160 192 224 256
0

10
20
30
40
50

Packet size [Byte]

R
at
e
[G

bi
t/
s] 1 core 2 cores 3 cores

Figure 3: Throughput with an XL710 40GbE NIC

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

Number of CPU Cores

Pa
ck
et

R
at
e
[M

pp
s]

0
20
40
60
80
100
120

R
at
e
[G

bi
t/
s]

Figure 4: Multi-core scaling (multiple 10 GbE NICs)

5.4 Scaling to 40 Gigabit Ethernet
40GbE NICs like the dual port Intel XL710 [15] are cur-

rently being introduced to the market. However, these first
generation NICs come with bandwidth limitations that do
not exist on the 10GbE NICs discussed previously: they
cannot saturate a link with minimum-sized packets [16] and
they cannot saturate both ports simultaneously regardless
of the packet size [15]. This may limit their use in some
scenarios where a large number of small packets is required,
e.g., stress-testing a router.
We are currently adding support for these NICs in Moon-

Gen and present preliminary results here. Figure 3 shows
the achieved throughput with various packet sizes and num-
ber of 2.4GHz CPU cores used to generate the traffic. Packet
sizes of 128 bytes or less cannot be generated in line rate. Us-
ing more than two CPU cores does not improve the speed,
so this is a hardware bottleneck as described by Intel [16].
The second bandwidth restriction of this NIC is the ag-

gregate bandwidth of the two ports. One obvious restriction
is the 63Gbit/s bandwidth of the PCIe 3.0 x8 link that con-
nects the NIC to the CPU. However, the main bottleneck is
the media access control layer in the XL710 chip: it is limited
to a maximum aggregate bandwidth of 40Gbit/s (cf. Sec-
tion 3.2.1 of the XL710 datasheet [15]). We could achieve
a maximum bandwidth of 50Gbit/s with large packets on
both ports simultaneously and a maximum packet rate of
42Mpps (28Gbit/s with 64 byte frames).

5.5 Scaling to 100 Gigabit Ethernet
100GbE is currently restricted to hardware appliances like

switches and routers and not yet available on commodity
server hardware. We can emulate higher speeds by using
multiple NICs.
We equipped one of our test servers with six dual-port

10GbE Intel X540-T2 NICs to investigate the performance
at high rates. Figure 4 shows the achieved packet rate when

Operation Cycles/Pkt
Packet transmission 76.0 ± 0.8
Packet modification 9.1 ± 1.2
Packet modification (two cachelines) 15.0 ± 1.3
IP checksum offloading 15.2 ± 1.2
UDP checksum offloading 33.1 ± 3.5
TCP checksum offloading 34.0 ± 3.3

Table 1: Per-packet costs of basic operations

generating UDP packets from varying IP addresses. We used
two Intel Xeon E5-2640 v2 CPUs with a nominal clock rate
of 2GHz for this test, but the clock rate can even be reduced
to 1.5GHz for this packet generation task (cf. Section 5.2).
Note that sending to multiple NICs simultaneously is ar-

chitecturally the same as sending to multiple queues on a sin-
gle NIC as different queues on a single NIC are independent
from each other (cf. Section 5.3) in an ideal well-behaved
NIC like the current generation of 10GbE NICs. We do not
expect significant challenges when moving to 100GbE due to
this architecture and promising tests with multiple 10GbE
ports. However, the first generation of 100GbE NICs will
likely have similar hardware restrictions as the 40GbE NICs
discussed in Section 5.4 which need to be taken into account.

5.6 Per-Packet Costs
MoonGen’s dynamic approach to packet generation in

userscripts does not allow for a performance analysis in a
general configuration as there is no typical scenario. Never-
theless, the cost of sending a packet can be decomposed into
three main components: packet IO, memory accesses, and
packet modification logic. We devised a synthetic bench-
mark that measures the average number of CPU cycles re-
quired for various operations that are commonly found in
packet generator scripts. These measurements can be used
to estimate the hardware requirements of arbitrary packet
generator scripts. We repeated all measurements ten times;
the uncertainties given in this section are the standard de-
viations.

5.6.1 Basic Operations
Table 1 shows the average per-packet costs of basic oper-

ations for IO and memory accesses. The baseline for packet
IO consists of allocating a batch of packets and sending
them without touching their contents in the main loop. This
shows that there is a considerable per-packet cost for the IO
operation caused by the underlying DPDK framework.
Modification operations write constants into the packets,

forcing the CPU to load them into the layer 1 cache. Addi-
tional accesses within the same cache line (64 bytes) add no
measurable additional cost. Accessing another cache line in
a larger packet is noticeable.
Offloading checksums is not free (but still cheaper than

calculating them in software) because the driver needs to set
several bitfields in the DMA descriptor. For UDP and TCP
offloading, MoonGen also needs to calculate the IP pseudo
header checksum as this is not supported by the X540 NIC
used here [13].

5.6.2 Randomizing Packets
Sending varying packets is important to generate different

flows. There are two ways to achieve this: one can either

Fields Cycles/Pkt (Rand) Cycles/Pkt (Counter)
1 32.3 ± 0.5 27.1 ± 1.4
2 39.8 ± 1.0 33.1 ± 1.3
4 66.0 ± 0.9 38.1 ± 2.0
8 133.5 ± 0.7 41.7 ± 1.2

Table 2: Per-packet costs of modifications

generate a random number per packet or use a counter with
wrapping arithmetic that is incremented for each packet.
The resulting value is then written into a header field. Ta-
ble 2 shows the cost for the two approaches, the baseline
is the cost of writing a constant to a packet and sending it
(85.1 cycles/pkt).
There is a fixed cost for calculating the values while the

marginal cost is relatively low: 17 cycles/pkt per random
field and 1 cycle/pkt for wrapping counters. These results
show that wrapping counters instead of actual random num-
ber generation should be preferred if possible for the desired
traffic scenario.

5.6.3 Cost Estimation Example
We can use these values to predict the performance of the

scripts used for the performance evaluation in Section 5.3.
The example generated 8 random numbers for fields with a
userscript that is completely different from the benchmark-
ing script: it writes the values into the appropriate header
fields and the payloads, the benchmarking script just fills
the raw packet from the start. The script also combines
offloading and modification; the benchmark tests them in
separate test runs.
The expected cost consists of: packet IO, packet modifica-

tion, random number generation, and IP checksum offload-
ing, i.e., 229.2 ± 3.9 cycles/pkt. This translates to a pre-
dicted throughput of 10.47 ± 0.18Mpps on a single 2.4GHz
CPU core. The measured throughput of 10.3Mpps is within
that range. This shows that our synthetic benchmark can
be used to estimate hardware requirements.

5.7 Effects of Packet Sizes
All tests performed in the previous sections use minimum-

sized packets. The reason for this choice is that the per-
packet costs dominate over costs incurred by large packets.
Allocating and sending larger packets without modifications
add no additional cost in MoonGen on 1 and 10GbE NICs.
Only modifying the content on a per-packet basis adds a
performance penalty, which is comparatively low compared
to the fixed cost of sending a packet. Using larger packets
also means that fewer packets have to be sent at line rate, so
the overall fixed costs for packet IO are reduced: minimum-
sized packets are usually the worst-case.
Nevertheless, there are certain packet sizes that are of

interest: those that are just slightly larger than a single
cache line. We benchmarked all packet sizes between 64
and 128 bytes and found no difference in the CPU cycles
required for sending a packet. Since MoonGen also features
packet reception, we also tried to receive packets with these
sizes and found no measurable impact of the packet size.1
Rizzo notes that such packet sizes have a measurable im-

pact on packet reception, but not transmission, in his evalu-
1Note that this is not true for XL710 40GbE NICs which
can run into hardware bottlenecks with some packet sizes.

ation of netmap [23]. He attributes this to hardware bottle-
necks as it was independent from the CPU speed. We could
not reproduce this with MoonGen. The likely explanation is
that we are using current (2014) server hardware, while the
evaluation of netmap was done in 2012 on an older system
with a CPU launched in 2009 [23].

6. HARDWARE TIMESTAMPING
Another important performance characteristic beside the

throughput is the latency of a system. Modern NICs offer
hardware support for the IEEE 1588 Precision Time Proto-
col (PTP) for clock synchronization across networks. PTP
can be used either directly on top of Ethernet as a layer 3
protocol with EtherType 0x88F7 or as an application-layer
protocol on top of UDP [8].
We examined the PTP capabilities of the Intel 82580 GbE

and the 82599 and X540 10GbE chips. They support time-
stamping of PTP Ethernet and UDP packets, the UDP port
is configurable on the 10GbE NICs. They can be configured
to timestamp only certain types of PTP packets, identified
by the first byte of their payload. The second byte must be
set to the PTP version number. All other PTP fields in the
packet are not required to enable timestamps and may con-
tain arbitrary values. [11, 12, 13] This allows us to measure
latencies of almost any type of packet.
Most Intel NICs, including all 10GbE chips, save the

timestamps for received and transmitted packets in a reg-
ister on the NIC. This register must be read back before
a new packet can be timestamped [12, 13], limiting the
throughput of timestamped packets. Some Intel GbE chips
like the 82580 support timestamping all received packets by
prepending the timestamp to the packet buffer [11].

6.1 Precision and Accuracy
Timestamping mechanisms of the Intel 82599 and Intel

X540 10GbE chips operate at 156.25MHz when running
at 10GbE speeds [12, 13]. This frequency is reduced to
15.625MHz when a 1GbE link is used, resulting in a preci-
sion of 6.4 ns for 10GbE and 64 ns for 1GbE. The datasheet
of the Intel 82580 GbE [11] controller lacks information
about the clock frequency. Testing shows that the acquired
timestamps are always of the form t = n·64ns+k·8ns where
k is a constant that varies between resets, so the precision
is 64 ns.
All of these NICs timestamp packets late in the trans-

mit path and early in the receive path to be as accurate
as possible [11, 12, 13]. We tested the timestamping func-
tionality by using loop-back multimode OM3 fiber cables
on an 82599-based NIC with a 10GBASE-SR SFP+ mod-
ule and Cat 5e cable between the two ports of a dual-port
X540-based NIC. Table 3 on the next page shows measured
latencies tx for different cable lengths x for each NIC as
well as the (de-)modulation time k and propagation speed
vp, which can be calculated from these data points with the
equation t = k+ l/vp. k is higher on the copper-based NIC,
this is likely due to the more complex line code required for
10GBASE-T [9]. This calculation does not take any errors
in the cable length into account; we rely on the vendor’s
specification2. The actual propagation speed and encoding
times may therefore be outside the interval given in Table 3.

2We believe that the 50m cable is actually slightly shorter.

NIC t2m [ns] t8.5m [ns] t10m [ns] t20m [ns] t50m [ns] k [ns] vp

82599 (fiber) 320 352 - 403.2 - 310.7 ± 3.9 0.72c± 0.056c
X540 (copper) 2156.8 - 2195.2 - 2387.2 2147.2 ± 4.8 0.69c± 0.019c

Table 3: Timestamping accuracy measurements

We repeated each measurement at least 500 000 times.
All measurements for the fiber connection on the 82599 NIC
yielded the same result except for the 8.5m cable. This cable
caused a latency of 345.6 ns in 50.2% of the measurements
and 358.4 ns in the other 49.8% (Table 3 shows the average).
This variance is due to the fact that the timer that is saved
when the timestamp is taken is incremented only every two
clock cycles on the 82599 chip [12], i.e., the granularity of
the timer is 12.8 ns but the timestamping operates at 6.4 ns.
The timestamp timer on the X540 is incremented every

6.4 ns so it does not have this problem. However, it faces a
different challenge: the 10GBASE-T standard uses a block
code on layer 1 [9] which introduces variance. Table 3 shows
the median latency. More than 99.5% of the measured values
were within ± 6.4 ns of the median. The difference between
the minimum and maximum latencies was 64 ns. These vari-
ations were independent of the cable length.
The absence of a variance on the 82599 chip demonstrates

a high precision, the plausible results for the modulation
time [28] and the linear behavior of the propagation latency
show a high accuracy.

6.2 Clock Synchronization
Test setups can involve multiple network ports that may

even be on different NICs. For example, measuring the for-
warding latency of a switch requires timestamping a packet
on two different ports. MoonGen therefore needs to be able
to synchronize the clocks between two network ports. This is
even necessary between two ports of a dual-port NIC, which
are completely independent from the user’s point of view.
MoonGen synchronizes the clocks of two ports by read-

ing the current time from both clocks and calculating the
difference. The clocks are then read again in the opposite
order. The resulting differences are the same if and only
if the clocks are currently synchronous (assuming that the
time required for the PCIe access is constant). We observed
randomly distributed outliers in about 5% of the reads. We
therefore repeat the measurement 7 times to have a prob-
ability of > 99.999% of at least 3 correct measurements.
The median of the measured differences is then used to ad-
just one of the clocks to synchronize them. This adjustment
must be done with an atomic read-modify-write operation.
The NICs support this as it is also required for PTP.
Tests show that this technique synchronizes the clocks

with an error of ±1 cycle. Therefore, the maximum accu-
racy for tests involving multiple network interfaces is 19.2 ns
for the 10GbE chips.

6.3 Clock Drift
Using two different clocks also entails the risk of clock

drifts. Drift on X540-based NICs depends on the physi-
cal wiring as the timestamping clock is synchronized to the
physical layer. Two ports on different X540-based NICs that
are directly connected do not exhibit any clock drift while
the link is established. However, the clocks of two ports
on the same X540 NIC will drift if they are connected to

two different NICs. We measured the drift between differ-
ent X540 and 82599 NICs. The worst-case observed drift
was 35µs per second between a NIC on the mainboard and
a discrete NIC.
MoonGen handles clock drift by resynchronizing the clocks

before a timestamped packet is sent, so this drift translates
to a relative error of only 0.0035%. This is not significant for
latency measurements. Since the measurements show a con-
stant clock drift, it would also be possible to subtract the
accumulated drift from the acquired timestamps to avoid
resynchronization.

6.4 Limitations
Our approach for latency measurements comes with lim-

itations. The latency measurements are restricted to Eth-
ernet frames with the PTP EtherType and UDP packets.
MoonGen cannot measure latencies of other protocols.
The naïve handling of clock drift by resynchronizing the

clocks for each packet allows for only a single timestamped
packet in flight, limiting the throughput to 1Pkt/RTT .
MoonGen scripts therefore use two transmission queues, one
that sends timestamped packets and one that sends regular
packets. The regular packets can be crafted such that the
device under test cannot distinguish them from the time-
stamped packets, e.g., by setting the PTP type in the pay-
load to a value that is not timestamped by the NIC. So
MoonGen effectively samples random packets in the data
stream and timestamps them. Note that the benchmarking
standard RFC 2544 calls for only one timestamped packet
in a 120 second interval [3]. MoonGen can timestamp sev-
eral thousands of packets per second to calculate average
latencies and histograms.
The investigated NICs refuse to timestamp UDP PTP

packets that are smaller than the expected packet size of
80 bytes. Larger packets are timestamped properly. This
restriction does not apply to packets with the PTP Ether-
Type as the minimum PTP packet size is below 64 bytes in
this configuration. Measurements of inter-arrival times are
restricted to GbE networks due to lack of hardware support
for timestamping in line rate on 10GbE NICs.
Based on the discussed measurement results and despite

these limitations, we argue that special-purpose hardware is
not necessary to conduct highly precise and accurate latency
and inter-arrival time measurements.

7. RATE CONTROL
An important feature of a packet generator is controlling

the packet rate and generating specific timing patterns to
simulate real-world scenarios. MoonGen utilizes hardware
rate control features of Intel NICs to generate constant bit
rate and bursty traffic. We also implement a novel software-
based rate control for realistic traffic patterns, e.g., based
on a Poisson process. That is discussed further in Section 8,
this section focuses on software rate control in other packet
generators and hardware rate control.

Loadgen

NIC

DuT

NIC
p5

p5 p4 p3 p2 p1 p0

Qmemory QNIC Wire

Figure 5: Software-based rate control

7.1 Software Rate Control in Existing Packet
Generators

Trying to control the timing between packets in software
is known to be error-prone [2, 4]. The main problem with
software-based rate control is that the software needs to
push individual packets to the NIC and then has to wait
for the NIC to transmit it before pushing the next packet.
However, modern NICs do not work that way: they rely

on an asynchronous push-pull model and not on a pure push
model. The software writes the packets into a queue that
resides in the main memory and informs the NIC that new
packets are available. It is up to the NIC to fetch the pack-
ets asynchronously via DMA and store them in the internal
transmit queue on the NIC before transmitting them. A
good explanation of this packet flow can be found in the
datasheet of the X540 chip [13] (Section 1.7), other NICs
follow a similar process.
Figure 5 visualizes this packet flow. Only a single packet

at a time is allowed in the queues (Qmemory & QNIC) to
generate packets that are not back-to-back on the wire.
This hardware architecture causes two problems: the ex-

act timing when a packet is retrieved from memory cannot
be controlled by the software and queues cannot be used
(unless bursts are desired). The former results in a low pre-
cision, as the exact time when the packet is transferred can-
not be determined. The latter impacts the performance at
high packet rates as high-speed packet processing relies on
batch processing [6, 23].

7.2 Hardware Rate Control
Intel 10GbE NICs feature hardware rate control: all trans-

mit queues can be configured to a specified rate. The NIC
then generates constant bit-rate (CBR) traffic. This solves
the two problems identified in the previous section. The
software can keep all available queues completely filled and
the generated timing is up to the NIC. Figure 6 shows this
architecture. The disadvantage is that this approach is lim-
ited to CBR traffic and bursty traffic (by changing the rate
parameter periodically).

7.3 Evaluation
We compare our hardware-assisted solution to the soft-

ware-based rate control found in zsend 6.0.2 (an example ap-
plication of the PF_RING ZC framework [18]), and Pktgen-
DPDK 2.5.1 [27] to quantify the adverse effects of software-
based rate control. We use an Intel 82580 GbE controller,
which is able to timestamp arbitrary received packets in line
rate (cf. Section 6) to measure inter-arrival times.

Loadgen DuT

NICNIC
p9

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

HW rate control
enabled

Qmemory QNIC Wire

Figure 6: Hardware-based rate control

0 0.5 1 1.5 20

0.5

1

1.5

·105

Offered Load [Mpps]

In
te
rr
up

t
R
at
e
[H

z]

Load generated with MoonGen
Load generated with zsend

Figure 7: Interrupt rate with micro-bursts

Figure 8 on the next page compares the inter-arrival times
generated by different packet generators. The generators use
an X540 NIC, which also supports 1Gbit/s. The histograms
have a bin size of 64 ns (precision of the 82580 chip) and were
generated by observing at least 1 000 000 packets.
Traffic from the hardware rate-controlled NIC oscillates

around the targeted inter-arrival time by up to 256 ns and
it avoids generating bursts almost completely (inter-arrival
time of 672 ns, marked with a black arrow in Figure 8). Ta-
ble 4 summarizes the results. The best result in each column
is highlighted.
We discussed these findings with the authors of zsend as

we configured it explicitly to avoid bursts. We then tested
several suggested configurations and versions.We concluded
that these observations indicate a bug in the PF_RING ZC
framework that is being investigated.
It stands to reason that the precision problems as well as

the micro-bursts intensify further at rates beyond 1Gbit/s
with software-based rate control. Measuring inter-arrival
times on 10GbE is a challenging task: Reliable measure-
ments require special-purpose hardware. We do not yet
have such hardware. We predict that the precision of our
hardware-assisted approach will improve at 10GbE speeds:
The frequency of the internal clock on the NIC that controls
the inter-departure times is scaled up by a factor of 10 when
operating at 10GbE compared to GbE [13].

7.4 Effects of Micro-Bursts on Linux Systems
Figure 7 visualizes the interrupt rate on a Linux packet

forwarder running Open vSwitch under increasing load gen-
erated by MoonGen and zsend. Open vSwitch was config-
ured with a static OpenFlow rule to forward between two
ports. The micro-bursts generate a low interrupt rate. The
likely explanation for this is that the bursts trigger the in-
terrupt rate moderation feature of the driver earlier than
expected. This shows that bad rate control can have a mea-
surable impact on the behavior of the tested system.

Rate Packet Generator Micro-Bursts ±64 ns ±128 ns ±256 ns ±512 ns
MoonGen 0.02% 49.9% 74.9% 99.8% 99.8%

500 kpps Pktgen-DPDK 0.01% 37.7% 72.3% 92% 94.5%
zsend 28.6% 3.9% 5.4% 6.4% 13.8%
MoonGen 1.2% 50.5% 52% 97% 100%

1000 kpps Pktgen-DPDK 14.2% 36.7% 58% 70.6% 95.9%
zsend 52% 4.6% 7.9% 24.2% 88.1%

Table 4: Rate control measurements

0

30

60 MoonGen

0

15

30

P
ro
ba

bi
lit
y
[%

]

Pktgen-DPDK

0.5 1 1.5 2 2.5 3 3.5 4
0

15

30

Inter-Arrival Time [µs]

zsend

(a) 500 kpps

0

15

30 MoonGen

0

15

30

P
ro
ba

bi
lit
y
[%

]

Pktgen-DPDK

0.5 1 1.5 2
0

30

60

Inter-Arrival Time [µs]

zsend

(b) 1000 kpps

Figure 8: Histograms of inter-arrival times

7.5 Limitations of Hardware Rate Control
In our tests we encountered unpredictable non-linear be-

havior with packet rates above ∼9Mpps (∼6Gbit/s wire-
rate with 64 byte packets) on Intel X520 and X540 NICs.
A work-around is configuring two transmission queues and
sending a CBR stream from both of them. Note that this
is not equivalent to a single transmission queue with proper
rate control as both queues control their transmission rate
independently from each other.
Hardware rate control of the investigated NICs is also

restricted to CBR traffic, so MoonGen still needs an im-
plementation of software-based rate control for other traffic
patterns.

8. CONTROLLING INTER-PACKET GAPS
IN SOFTWARE

To overcome this restriction to constant bit rate or bursty
traffic, MoonGen implements a novel mechanism for soft-
ware-based rate control. This allows MoonGen to create
arbitrary traffic patterns.

8.1 Sending Gaps on the Wire
We were not satisfied with the precision of existing soft-

ware rate control mechanisms (cf. Section 7.3 and [2, 4]) so
we present a new method here. All existing packet genera-
tors try to delay sending packets by not sending packets for
a specified time, leading to the previously mentioned prob-
lems. MoonGen fills the gaps between packets with invalid
packets instead. Varying the length of the invalid packet
precisely determines the time between any two packets and
subsequently allows the creation of arbitrary complex traffic

Loadgen DuT

NICNIC
p6

p6 pi
3p5pi

4 pi
0p2pi

1p3pi
2p4 p1 p0

HW rate control
disabled

p5

Qmemory QNIC Wire

Figure 9: Precise generation of arbitrary traffic pat-
terns in MoonGen

patterns. With this technique, we can still make use of the
NIC’s queues and do not have to rely on any timing related
to DMA accesses by the NIC.
This approach requires support by the device under test

(DuT): it needs to detect and ignore invalid packets in hard-
ware without affecting the packet processing logic. Moon-
Gen uses packets with an incorrect CRC checksum and, if
necessary, an illegal length for short gaps. All investigated
NICs in our testbed drop such packets early in the receive
flow: they are dropped even before they are assigned to a
receive queue, the NIC only increments an error counter [11,
12, 13]. Subsequently, the packet processing logic is not af-
fected by this software rate control mechanism.
Figure 9 illustrates this concept. Shaded packets pi

j are
sent with an incorrect CRC checksum, all other packets pk

with a correct one. Note that the wire and all transmission
queues are completely filled, i.e., the generated rate has to
be the line rate.

0 0.5 1 1.5
−2

0

2

4

6

8

Offered Load [Mpps]

R
el
at
iv
e
D
ev
ia
tio

n
[%

] 1st quartile Median 3rd quartile

Figure 10: Differences in forwarding latencies of
Open vSwitch with CBR traffic generated by hard-
ware and our software approach

In theory, arbitrary inter-packet gaps should be possible.
The NICs we tested refused to send out frames with a wire-
length (including Ethernet preamble, start-of-frame delim-
iter, and inter-frame gap) of less than 33 bytes, so gaps
between 1 and 32 bytes (0.8 ns to 25.6 ns) cannot be gen-
erated. Generating small frames also puts the NIC under
an unusually high load for which it was not designed. We
found that the maximum achievable packet rate with short
frames is 15.6Mpps on Intel X540 and 82599 chips, only
5% above the line rate for packets with the regular minimal
size. MoonGen therefore enforces a minimum wire-length of
76 bytes (8 bytes less than the regular minimum) by default
for invalid packets. As a result, gaps between 0.8 ns and
60.8 ns cannot be represented.

8.2 Evaluation
We generate CBR traffic with our approach and compare

it to CBR traffic generated by the hardware facilities of our
NIC by comparing the response of a DuT.
We use Intel’s hardware implementation as reference gen-

erator. The same measurement with other software-based
packet generators is not possible as they don’t support ac-
curate timestamping. However, the results from Section 7.4
indicate that the latency would be affected at low rates due
to the measurably different interrupt rate (cf. Figure 7).
Figure 10 shows the difference of the 25th, 50th, and 75th

percentiles of the forwarding latency on a server running
Open vSwitch. The test is restricted to the range 0.1Mpps
to 1.9Mpps as the DuT becomes overloaded at higher rates
and the latency is a function of the buffer size of the DuT
after this point. We repeated the whole test 10 times, the
error bars in the figure show the resulting standard devia-
tions. The relative deviation is within 1.2σ of 0% for almost
all measurement points, only the 1st quartile at 0.23Mpps
deviates by 1.5%±0.5%. Minor activity on the DuT, e.g., an
active SSH session, shows a significantly larger (≥ 10%) ef-
fect on the latency with both rate control methods. This
shows that loading the DuT with a large number of invalid
packets does not cause system activity; the DuT does not
notice the invalid packets.

8.3 Example: Poisson Traffic
CBR traffic is often an unrealistic test scenario for mea-

surements of latency. Bursts or a Poisson process allow for

0 0.5 1 1.5 20
20
40
60
80

100
120
140
160
180

Offered Load [Mpps]

La
te
nc
y
[µ
s]

CBR (median)
CBR (25th/75th percentile)
Poisson (median)
Poisson (25th/75th percentile)

Figure 11: Forwarding latency of Open vSwitch with
CBR and Poisson traffic patterns

more sophisticated tests that also stress buffers as the DuT
becomes temporarily overloaded.
Figure 11 shows measured latencies of Open vSwitch con-

figured to forward packets between two ports. We gener-
ate packets with CBR (hardware rate control) and Poisson
(CRC-based software rate control) traffic patterns and com-
pare their latencies. The outlier at 0.4Mpps for CBR traffic
was reproducible across multiple re-measurements on differ-
ent servers. The sudden drop in latency before the system
becomes overloaded was also reproducible. Both are likely
artifacts of the interaction between the interrupt throttle
algorithm found in the Intel driver [10] and the dynamic in-
terrupt adaption of Linux [25] on the DuT. The artifacts are
present regardless of how the CBR traffic is generated (cf.
Figure 10), so this is not caused by MoonGen but an effect
of the traffic pattern on DuT.
The system becomes overloaded at about 1.9Mpps, result-

ing in packet drops and a very large latency (about 2ms in
this test setup) as all buffers are filled. The overall achieved
throughput is the same regardless of the traffic pattern and
method to generate it. This result shows that the traffic
pattern can affect the DuT in an experiment measurably,
underlining the importance of a reliable precise packet gen-
erator.

8.4 Limitations of our Approach
A shorter per-byte transmission time improves both the

granularity and the minimum length that can be generated.
This means our solution works best on 10 GbE where the
granularity is 0.8 ns.
Due to the artificially enforced minimum size of 76 bytes,

gaps between 1 and 75 bytes (0.8 ns to 60 ns) cannot be pre-
cisely represented (cf. Section 8.1). It is possible to reduce
this range for tests with larger packets or lower rates. We
approximate gaps that cannot be generated by occasionally
skipping an invalid packet and increasing the length of other
gaps. The overall rate still reaches the expected average with
this technique, i.e., the accuracy is high but the precision is
relatively low3 for these delays.
A possible work-around for gaps with a length between

1 and 75 bytes is using multiple NICs to generate traffic
that is sent to a switch. The switch then drops the invalid
frames and multiplexes the different streams before forward-

3Note that ±30ns is still better than hardware rate control
and other software solutions (cf. Section 7.3).

ing them to the DuT. This only works if the generated pat-
tern can be split into multiple streams, e.g., by overlaying
several Poisson processes.
However, short delays are often not meaningful in mod-

ern networks. For example, the 10GBASE-T transmission
standard used by most experiments for this paper operates
on frames with a payload size of 3200 bits on the physical
layer as defined in IEEE 802.3 Section 4 55.1.3.1 [9]. This
means that any layers above the physical layer will receive
multiple packets encoded in the same frame as a burst. So
two back-to-back packets cannot be distinguished from two
packets with a gap of 232 bytes (185.6 ns) in the worst case
and failure to represent gaps between 1 and 75 bytes should
not be noticeable. Note that this limit on the physical layer
only applies to relatively short inter-arrival times, bad rate
control generating bursts is still inferior to our approach
(cf. Figure 7 in Section 7.3).
Another limitation is that our approach is optimized for

experiments in which the DuT (or the first hop in a system
under test) is a software-based packet processing system and
not a hardware appliance. Hardware might be affected by an
invalid packet. In such a scenario, we suggest to route the
test traffic through a store-and-forward switch that drops
packets with invalid CRC checksums. This effectively re-
places the invalid packets with real gaps on the wire. Note
that the effects of the switch on the inter-arrival times need
to be carefully evaluated first.

9. REPRODUCIBLE RESEARCH
We encourage you to install MoonGen and reproduce the

results from this paper to verify our work. All experiments
presented here can be reproduced with the included example
scripts and NICs based on Intel 82599, X540, 82580, and
XL710 chips.
The performance evaluation in Section 5 is based on the

scripts found in examples/benchmarks, an Intel Xeon E5-
2620 v3 CPU, and Intel X540 NICs. The timestamping
accuracy in Section 6 was measured with the script time-
stamps.lua, the clock drift measurements with drift.lua.
Inter-arrival times in Section 7 were measured with inter-
arrival-times.lua. The script l2-load-latency.lua with
the timestamping task disabled was used to generate the
analyzed traffic. The suggested work-around for the hard-
ware rate control limitations at high rates is also imple-
mented in l2-load-latency.lua. Sending bursty traffic
is implemented in l2-bursts.lua. The example measure-
ment of the interrupt rate in Section 7.4 was conducted with
l2-load-latency.lua and zsend 6.0.2.

compare-rate-control-mechanisms.lua was used for the
evaluation in Section 8.2. The latency measurements with
Poisson and CBR traffic in Section 8.3 are based on l2-load-
latency.lua and l2-poisson-load-latency.lua. The DuT
for these tests was Open vSwitch 2.0.0 on Debian Linux 3.7
with ixgbe 3.14.5 running on a server with a 3.3GHz Intel
Xeon E3-1230 v2 CPU. Only a single CPU core was used
by configuring the NIC with only one queue. Each test was
run for at least 30 seconds with at least 30 000 timestamped
packets.
All measurements were conducted on Intel X540 NICs

except for the inter-arrival times (Intel 82580), fiber loop-
back measurements (Intel 82599), and 40GbE tests (Intel
XL710). We used different development versions of Moon-
Gen for the experiments described throughout this paper.

The performance evaluation with 10GbE in Section 5 was
done with commit 492c0e4, and on 40GbE with commit
a70ca21. We confirmed that all described experiments still
work with the example scripts from commit a70ca21 in our
git repository [5].

10. CONCLUSIONS AND FUTURE WORK
We have presented a general-purpose packet generator

that uses hardware features of commodity NICs to imple-
ment functionality that was previously only available on
expensive special-purpose hardware. MoonGen represents
a hybrid between a pure software-based solution and one
based on hardware. It combines the advantages of both
approaches while mitigating shortcomings by using both
hardware-specific features and novel software approaches.
MoonGen measures latencies with sub-microsecond accu-

racy and precision. The desired packet rate can be controlled
precisely through both hardware-support and our rate con-
trol algorithm based on filling gaps with invalid packets.
We have shown that it is feasible to use modern imple-

mentations of scripting languages to craft packets without
sacrificing speed. This makes MoonGen flexible and extensi-
ble. The flexibility goes beyond the capabilities provided by
hardware load generators as each packet can be crafted in
real-time by a script. Tests that respond to incoming traffic
in real-time are possible as MoonGen also features packet
reception and analysis.
In the future, we will add additional example scripts and

support for hardware features of more NICs. MoonGen cur-
rently comes with example scripts to handle IPv4, IPv6,
UDP, TCP, ICMP, IPsec, and ARP traffic.
MoonGen’s flexible architecture allows for further applica-

tions like analyzing traffic in line rate on 10GbE networks or
doing Internet-wide scans from 10GbE uplinks. MoonGen
is under active development, the latest version is available
in our public git repository [5].

Acknowledgments
This research was supported by the DFG MEMPHIS project
(CA 595/5-2), the KIC EIT ICT Labs on SDN, and the
EUREKA-Project SASER (01BP12300A).
We would like to thank the anonymous reviewers and our

colleagues Dominik Scholz, Johannes Reifferscheid, Rainer
Schönberger, Patrick Werneck, Lukas Märdian, Lukas Er-
lacher, and Stephan M. Günther for valuable contributions
to MoonGen and this paper.

11. REFERENCES
[1] Nicola Bonelli, Andrea Di Pietro, Stefano Giordano,

and Gregorio Procissi. Flexible High Performance
Traffic Generation on Commodity Multi–Core
Platforms. In Proceedings of the 4th International
Conference on Traffic Monitoring and Analysis, pages
157–170. Springer, 2012.

[2] Alessio Botta, Alberto Dainotti, and Antonio Pescapé.
Do You Trust Your Software-Based Traffic Generator?
IEEE Communications Magazine, 48(9):158–165,
2010.

[3] Scott Bradner and Jim McQuaid. Benchmarking
Methodology for Network Interconnect Devices. RFC
2544 (Informational), March 1999.

[4] G. Adam Covington, Glen Gibb, John W. Lockwood,
and Nick Mckeown. A Packet Generator on the
NetFPGA Platform. In 17th IEEE Symposium on
Field Programmable Custom Computing Machines,
pages 235–238, 2009.

[5] Paul Emmerich. MoonGen.
https://github.com/emmericp/MoonGen.

[6] Sebastian Gallenmüller, Paul Emmerich, Florian
Wohlfart, Daniel Raumer, and Georg Carle.
Comparison of Frameworks for High-Performance
Packet IO. In ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems (ANCS 2015), May 2015.

[7] Luke Gorrie. Snabb Switch.
https://github.com/SnabbCo/snabbswitch/.

[8] IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control
Systems. IEEE 1588-2008, July 2008.

[9] IEEE. IEEE 802.3-2012 IEEE Standard for Ethernet
Section Four, 2012.

[10] Intel. Intel Server Adapters - Linux ixgbe Base Driver.
http://www.intel.com/support/network/adapter/
pro100/sb/CS-032530.htm. Last visited 2015-08-24.

[11] Intel 82580EB Gigabit Ethernet Controller Datasheet
Rev. 2.6. Intel, 2014.

[12] Intel 82599 10 GbE Controller Datasheet Rev. 2.76.
Intel, 2012.

[13] Intel Ethernet Controller X540 Datasheet Rev. 2.7.
Intel, 2014.

[14] Data Plane Development Kit. http://dpdk.org/.
Last visited 2015-08-24.

[15] Intel Ethernet Controller XL710 Datasheet Rev. 2.1.
Intel, December 2014.

[16] Product Brief - Intel Ethernet Controller XL710 10/40
GbE. Intel, 2014.

[17] NetFPGA. http://netfpga.org/. Last visited
2015-08-24.

[18] Ntop. PF_RING ZC (Zero Copy).
http://www.ntop.org/products/pf_ring/pf_ring-
zc-zero-copy/. Last visited 2015-04-28.

[19] Srivats P. ostinato. http://ostinato.org/. Last
visited 2015-08-24.

[20] Mike Pall. LuaJIT. http://luajit.org/. Last visited
2015-08-24.

[21] Mike Pall. LuaJIT in realtime applications.
http://www.freelists.org/post/luajit/LuaJIT-
in-realtime-applications,3, July 2012. Mailing list
post.

[22] Luigi Rizzo. The netmap project.
http://info.iet.unipi.it/~luigi/netmap/. Last
visited 2015-08-24.

[23] Luigi Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In USENIX Annual Technical Conference,
pages 101–112, 2012.

[24] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob
Sherwood, and Andrew W Moore. Oflops: An Open
Framework for OpenFlow Switch Evaluation. In
Passive and Active Measurement, pages 85–95.
Springer, 2012.

[25] Jamal Hadi Salim, Robert Olsson, and Alexey
Kuznetsov. Beyond Softnet. In Proceedings of the 5th
Annual Linux Showcase & Conference, volume 5,
pages 18–18, 2001.

[26] Joel Sommers and Paul Barford. Self-Configuring
Network Traffic Generation. In Proceedings of the 4th
ACM SIGCOMM Conference on Internet
Measurement, IMC ’04, pages 68–81, New York, NY,
USA, 2004. ACM.

[27] Keith Wiles. Pktgen-DPDK.
http://github.com/Pktgen/Pktgen-DPDK/.

[28] Yinglin Yang, Sudeep Goswami, and Carl G. Hansen.
10GBASE-T Ecosystem is Ready for Broad Adoption,
2012. White paper.

https://github.com/emmericp/MoonGen
https://github.com/SnabbCo/snabbswitch/
http://www.intel.com/support/network/adapter/pro100/sb/CS-032530.htm
http://www.intel.com/support/network/adapter/pro100/sb/CS-032530.htm
http://dpdk.org/
http://netfpga.org/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
http://ostinato.org/
http://luajit.org/
http://www.freelists.org/post/luajit/LuaJIT-in-realtime-applications,3
http://www.freelists.org/post/luajit/LuaJIT-in-realtime-applications,3
http://info.iet.unipi.it/~luigi/netmap/
http://github.com/Pktgen/Pktgen-DPDK/

	Introduction
	State of the Art
	Implementation
	Packet Processing with DPDK
	Scripting with LuaJIT
	Hardware Architecture
	Software Architecture

	Scripting API
	Initialization
	Packet Generation Loop
	Packet Counter

	Performance
	Test Methodology
	Comparison with Pktgen-DPDK
	Multi-core Scaling
	Scaling to 40 Gigabit Ethernet
	Scaling to 100 Gigabit Ethernet
	Per-Packet Costs
	Basic Operations
	Randomizing Packets
	Cost Estimation Example

	Effects of Packet Sizes

	Hardware Timestamping
	Precision and Accuracy
	Clock Synchronization
	Clock Drift
	Limitations

	Rate Control
	Software Rate Control in Existing Packet Generators
	Hardware Rate Control
	Evaluation
	Effects of Micro-Bursts on Linux Systems
	Limitations of Hardware Rate Control

	Controlling Inter-Packet Gaps in Software
	Sending Gaps on the Wire
	Evaluation
	Example: Poisson Traffic
	Limitations of our Approach

	Reproducible Research
	Conclusions and Future Work
	References

