
How Do Multiple Network Cards Influence the
Software Router Performance?

Torsten M. Runge1, Florian Wohlfart2, Daniel Raumer2, Bernd E. Wolfinger1, and Georg Carle2

1Universität Hamburg, Department of Computer Science, Telecommunications and Computer Networks
{runge|wolfinger}@informatik.uni-hamburg.de

2Technische Universität München, Department of Computer Science, Network Architectures and Services
{wohlfart|raumer|carle}@net.in.tum.de

Abstract—The usage of cost-efficient and dynamically adapt-
able commodity PC hardware instead of specialized networking
hardware has aroused strong interest in software routers. Testbed
measurements as well as modeling and simulations of such system
are important methodologies for finding bottlenecks in the packet
processing to predict and optimize the performance. In this
paper, we investigate the impact of the number of network cards
with respect to the software router performance. We predict the
performance of software routers based on a validated model
which we obtain from real testbed measurements.

Keywords— commodity hardware; packet processing; resource
contention; network card; simulation model; ns-3; Linux NAPI

I. INTRODUCTION

Commodity PC hardware has received several performance
improvements. For instance, the trend towards many CPU
cores as well as the multi-queue support of network inter-
face cards (NIC) for parallel packet processing on multi-
core architectures make off-the-shelf PC hardware interesting
for the application as servers or routers. Furthermore, widely
used open source operating systems such as Linux provide
basic packet processing functionalities in software which can
transform PC hardware into a so-called software router. The
advantages of software routers are that they are more cost-
efficient and more flexible to extend with new functionalities
in comparison with special networking hardware such as
hardware routers. However, hardware routers are often capable
of higher packet processing performance and lower energy
consumption. Nonetheless, in small to mid-range networks,
such as home or campus networks, software routers represent
an attractive alternative to expensive hardware routers.

The challenge for software routers is to process packet
rates resp. data rates of million packets per seconds (Mpps)
resp. multiple gigabits per second (Gbps) with no packet loss
and acceptable packet latency. Therefore, the system internal
components such as bus systems (e.g. PCIe, QPI) must provide
the required data rates between the hardware components.
Depending on the type of packet processing (e.g. routing,
firewall, IPsec encryption) the software router must do several
complex treatments per packet. In particular, the scaling of the
number of NICs of software routers is important to compete
with hardware routers.

For the optimization of the software router performance it
is necessary to understand the packet processing steps in PC
systems such as the Linux networking kernel as part of the
operating system (OS) in detail. However, a software router
is a complex system which consists of diverse hardware and
software components interacting and influencing each other.
Therefore, modeling and simulation may help to understand
the complex interplay during the packet processing. Based on
a sufficiently fine-grained model a complex system can be
analyzed to find performance limiting factors and optimize
the system accordingly to eliminate such bottlenecks. Finally,
the model can be used to predict the performance behavior
with respect to diverse scenarios which cannot be investigated
in real testbeds.

In this paper, we measure and simulate the performance
of software routers with respect to multiple network interface
cards. Firstly, we conduct real testbed measurements with a
Linux software router. Besides, we create a model for a soft-
ware router with multiple network cards. This model is derived
from our general concept for modeling of resource contention
in resource-constrained nodes which is implemented as a
resource management module for the widely used network
simulator ns-3. The software router model is calibrated and
validated with real testbed measurements. Based on that, we
evaluate and predict the impact of multiple network cards on
the performance of software router architectures.

The rest of the paper is structured as follows. Section II
gives an overview of the state of the art in modeling, mea-
suring, and implementation of software routers. Section III
describes the procedures of the packet processing inside a
Linux software router. In Section IV we describe our testbed
which we used for the calibration of our software router
model. Section V introduces and applies our general modeling
approach to model a Linux software router with multiple
network cards. Section VI presents a case study to illustrate
the influences of multiple networks on the software router
performance. The case study includes the calibration and
validation of our simulation model based on the real testbed
measurements. Finally, we conclude the paper and give an
outlook to future work in Section VII.



II. RELATED WORK

Many researches have shown that software routers are able
to reach the performance of specialized networking hard-
ware [1]–[3]. The RouteBricks project [1], [3] investigated the
scaling of software routers based on commodity PC hardware.
They applied modern NICs with multi-queueing support and
exploit the parallel packet processing capabilities across mul-
tiple cores within a server as well as a software router cluster
consisting of multiple servers. Bolla and Bruschi [4] identified
the CPU to be the performance bottleneck in packet processing
on commodity PC hardware which was also observed by
RouteBricks [1] and us [5]. Therefore, small packets dominate
the packet forwarding performance in software routers because
a constant number of CPU cycles is needed per packet for
the processing from the incoming port to the output port.
Han et al. [2] investigated several improvements of the packet
processing software by reducing the required number of CPU
cycles per packet. Salim et al. [6], [7] investigated the Linux
NAPI with respect to the reduction of the number of interrupts
in high load situations. Salah et al. [8] evaluated and compared
the performance of IP-packet forwarding of a Linux host
equipped with three NICs.

Chertov et al. [9] proposed a router model which is able
to predict the forwarding performance of arbitrary router
devices based on calibration parameters retrieved from black
box measurements. Salah et al. [10], [11] developed validated
analytical models to estimate the performance of software
based network hosts based on constant bit rate (CBR) and
Poisson traffic. These models consider interrupt moderation
mechanism of Linux and BSD with respect to the interrupt
rate, the interrupt service routine (ISR) as well as packet
processing times. We proposed a general and broadly appli-
cable modeling approach [12] to investigate the node-internal
resource contention during the packet processing. We imple-
mented the modeling approach as a resource management
extension module for the widely used network simulator ns-3.
Based on that we evaluated the influence of the Linux NAPI
with respect to packet latency [13].

Our best practice for measurements that we developed
and proved in previous publications [5], [13]–[15] was in-
fluenced by the work from Bolla and Bruschi [16] and
Dobrescu et al. [1], [17]. Both papers present detailed know
how on performance measurements of software routers. For
load generation we rely on zsend, which is based on the high
speed network IO framework PF RING ZC [18], which claims
to produce CBR traffic. As zsend is a software-based load
generator it cannot guarantee that the generated frames are
accurately spaced. This is a general problem inherent to all
software load generators [19]. We are actively working on an
improved load generator to mitigate some of these issues by
making use of specialized NIC hardware features (e.g. rate-
limiting to avoid micro bursts) [20].

While we have studied the scalability of software packet
processing based on the number of cores [5], the number of
virtual machines [15], or by reducing the processing over-

NIC

DMA EngineIRQ Generator

Memory
sk_buffs

rx ring. . .rx ring

poll list

CPU core

NIC driver

IRQ Handler poll()

Kernel

netif_receive_skb()ip_rcv()net_rx_action()

1

2

2

3

4

5 6 8

7

9

10

Fig. 1. Functional visualization of the processing path in a Linux router

head [21] in the past, we are not aware of a detailed study of
the performance overhead introduced by scaling the number
of NICs on a packet processing system.

III. PACKET PROCESSING IN A LINUX SOFTWARE ROUTER

As a first step to the analysis of Linux router scaling with the
number of NICs we analyze the internals of packet processing.
We sketch a simplified transmission path through the Linux
router, which highlights aspects of scalability. Relevant ele-
ments are visualized in Fig. 1. For a more detailed description
of packet processing functions in the Linux kernel we refer
to our previous work [13], [22] in which we modeled the
reception process in Linux as it is defined by the NAPI.

A. Packet Reception Path

Packets arriving at the NIC port (Fig. 1, 1 ) are transferred to
the memory via Direct Memory Access (DMA). The memory
now contains the packet data and meta information which is
stored in the sk_buff. A packet descriptor is an entry in
the corresponding rx_ring which points to the respective
sk_buff; 2 . The NIC now triggers a hardware interrupt to
the assigned CPU core; 3 . The interrupt handler takes over
and adds an entry to the poll_list that states that packets
in the respective ring need to be processed; 4 . The soft IRQ
scheduler processes the soft IRQs which are processed by the
net_rx_action(); 5 .

The net_rx_action() function processes the entries of
the poll_list. Batches of packets with a defined maximum
batch size each get polled from the rings; 6 . The actual
poll happens via the NAPI function poll() that is defined
as part of the NIC driver; 7 . During that polling interrupts



are deactivated. So higher loads result in a more polling-
based packet processing while high interarrival times result
in a mainly interrupt-driven packet reception. This essential
function of the NAPI provides a flexible tradeoff between
throughput and latency: at high load the NAPI avoids interrupts
and aims for the maximum throughput, at low load the NAPI
generates more interrupts to decrease latency. In order to
avoid a CPU core that is locked by a never ending polling
which would steal the CPU core capacity from other starving
processes (e.g. user space programs that actually process the
received packets) polling is stopped after a certain budget
was used.

B. From Reception to the Transmission

In case of IP packets ip_rcv() is called for each
packet; 8 . An IPv6 packet would take a similar path
(via ipv6_rcv()). For each packet in the polled
batches of packets (stored in an sk_buff) the function
netif_receive_skb() is invoked and MAC level infor-
mation (e.g. VLANs) are processed; 9 . The next steps can
be categorized into prerouting, routing, and postrouting; 10 .
Packets can leave the routing path: e.g. if they are addressed to
the host they get filtered out in the routing step and are directed
on a path for local delivery. As all further processing of each
single packet is independent from the NIC that received the
packet, we do not discuss it in more detail here. The interested
reader is referred to [23].

C. Transmission Path

After the routing decision, the packet gets prepared
for transmission: A pointer to the sk_buff is
placed in a tx_ring of the egress NIC port via
the dev_queue_xmit() (ring selection) and the
hard_start_xmit() (actual writing) functions. Locking
of the ring only occurs if a tx_ring is not exclusively
assigned to a CPU core. The NIC sends the packets of the
Tx ring and triggers an IRQ after the successful transmission.
Then the memory used for the sent packets must be freed
from the Tx ring to store new packets for transmission. The
Tx work limit defines the number of Tx descriptors which
are cleaned in a single batch.

D. Uniting Rx Flows from Different NICs

Modern NICs come with support for multiple Rx and Tx
rings that help to avoid any overhead for locking of the rings
due to parallel processing. From the CPU’s point of view the
splitting and merging of parallel tasks is offloaded to the NICs.
Thereby, the number of theoretically available rx_rings and
tx_rings is some orders higher than the numbers of cores.
Dedicating each CPU core to the traffic arriving at a certain
NIC is inefficient when the load is not equally distributed
among all NICs. For instance, one core may already be fully
utilized while other cores are idle because traffic volumes
in their NICs are low. Therefore, it is advisable to evenly
distribute the incoming traffic to all CPU cores.

In most scenarios a core may have to serve packets from
at least so many rings as there are NIC ports in the software
router. Therefore, different packet paths have to be united to
pass a single CPU core. This happens the same way packet
paths coming in via different rings (and potentially just from
one NIC) are merged: a requested poll task is placed in
the poll list and processed in a round robin manner in the
net_rx_action() function. By avoiding any overhead,
when merging these ingress paths the NAPI ensures an im-
portant design objective: i.e. “robustness at any input rate and
any number of input devices” [6]. Nevertheless, significant
effects may e.g. be introduced by the increased number of
available sk_buffs and rx_rings that lead to additional
IRQ overhead.

E. Side Effects

As we have described the amount of ingress NICs that
provide packets via the Linux NAPI should not affect the
maximum packet rate of a software router significantly. In
reality NIC vendors have implemented further techniques
to increase the performance, e.g. Intel’s interrupt throttling
rate [24] that allows to delay interrupts by specifying a static
or dynamic maximal rate of interrupts per second. As this
maximal rate is ensured by delay and coalescing of interrupts
in case of higher rates of ingoing packets these techniques are
generally referred to as interrupt coalescing (IC). IC techniques
work on a per-NIC-port-basis (or even per rx_ring) and
therefore may introduce measurable effects of multiple NICs.
As these are vendor specific features and not part of each NIC
driver we do not analyze them further in this paper.

IV. MEASURING THE IMPACT OF MULTIPLE NICS

In this section we explain our measurements to quantify the
overhead caused by distributing the load across multiple NICs
in a software router. After defining our measurement goals,
we derive a suitable measurement environment. We split our
detailed description of the measurement environment in two
parts, describing the load generator and the software router
configuration.

A. Measurement Goals

The primary goal of our measurements is to assess the
overhead of using multiple NICs for packet processing in
a software router. Thus, we set up a Linux-based software
router on a dedicated machine. We then test the routing
performance of the software router in different load scenarios
and measure the maximum packet rate of the device for each of
the scenarios. The maximum achievable packet rate is suitable
as an indicator for performance overhead, as it indicates the
efficiency of packet processing. The higher the maximum
observed packet rate is, the lower is the processing overhead
of the software router.

As we are interested in both the resulting performance, and
the root causes for overhead when using multiple NICs, we
perform white-box measurements and look into our software
router during the tests. First, we capture the CPU utilization on



the software router in each of the scenarios. This allows us to
compare the CPU load when using a different number of NICs
and to calculate the number of cycles per packet necessary in
each scenario, which is a direct indicator of the processing
efficiency. A lower observed CPU load at a fixed packet rate
indicates a lower processing overhead in this scenario.

In Section III we gave an overview of the packet reception
and transmission process in the Linux NAPI. We present that
the packet processing mechanisms heavily rely on interrupt
handling and the avoidance of interrupts in the first place.
Therefore, the number of interrupts generated by the NICs is
a key parameter when analyzing the performance overhead by
multiple NICs. We measure the number of interrupts on the
Linux router to test this hypothesis.

B. Measured Scenarios

In order to measure the overhead of using additional NICs
for packet processing, we create measurement scenarios where
we keep all parameters stable except the number of NICs. Our
hypothesis is that at a fixed amount of traffic the processing
overhead changes with the number of NICs involved in the
processing. Basically, this means that we keep the total amount
of traffic sent to the software router stable, but split it in equal
parts among a varying number of tested NICs. We derive three
scenarios using 2 – 4 NICs as illustrated in Figure 2.

The scenario utilizing two NICs (Fig. 2(a)) utilizes bidi-
rectional forwarding between two different NICs, splitting the
load equally among both interfaces. The scenarios involving
three and four NICs (Fig. 2(b) and 2(c)) involve a circular
forwarding also splitting the load equally among all interfaces
involved.

We test the maximum throughput of the software router
according to RFC 2544 [25], which defines requirements for
device benchmarking tests. Our software router, the device
under test (DUT), is connected to a machine that generates
packets for the DUT and captures packets coming back from
the device.

Packet processing on the DUT is limited to one specific core
in all our tests. For multicore-scaling we refer to our previous
work that shows that the maximum possible packet rate scales
linearly with a limited number of cores [5].

C. Software Router Configuration

Hardware We set up the software router on an off-the-
shelf rack server. The machine comes equipped with a dual-
socket Supermicro X9DRH-iTF Mainboard, two Intel Xeon
E5-2640V2 CPUs with 8 cores each running at a maximum
clock speed of 2.00 GHz. The mainboard comes with a
dual-port 10 Gigabit Ethernet NIC on board (Intel Ethernet
Controller X540). We added another dual-port 10 Gigabit
Ethernet NIC (Intel 10 Gbit Network Adapter X540-T2) using
the same controller. In total this makes four 10 Gbit/s NICs
that we use for our tests. All four NICs are attached to the
first of the two CPUs on board which is important because
transferring packets from one CPU to the other via the dual-
IO-hub would result in decreased performance [2].

CPU Settings When setting up and configuring the soft-
ware, our goal is to make the behavior of the DUT predictable
to get repeatable measurements and end up with meaningful
results. We therefore try to eliminate side-effects that influence
the performance of our software router. First, we disable the
Turbo Boost and dynamic frequency underclocking features,
which set the CPU clock speed in a non-predictable way. This
pins the CPU clock speed to the maximum rate of 2 GHz
during all tests. We also disable Hyper-Threading, which
schedules virtual cores onto physical cores in an unpredictable
way.

NIC Settings The NICs also need to be configured to facil-
itate reliable measurements. We disable Ethernet flow control,
a feature that limits the network traffic in case one system
is overloaded, because we also want to measure the DUT in
overload situations. As multi-core measurements are out of
scope, we configure only one rx_ring and tx_ring per
NIC port. On top of that we disable the proprietary interrupt
throttling feature offered by Intel, as explained in Section III.
The Rx/Tx ring buffer sizes are set to 512 descriptors and
offloading features such as Large Receive Offload, Large
Segment Offload, and Checksum Offloading are disabled.

Software Our test systems run grml-Linux, a Debian-based
live system distribution, running kernel version 3.7. As we
want to measure the forwarding performance of the Linux-
specific routing stack, we enable ip forward and set static
routes. As stated in the measurement goals, we configure
the router to process all packets on one designated core. We
already configured one rx_ring and tx_ring for each NIC
port, now we bind the interrupts from all these queues to the
same CPU core. We explicitly disable irqbalance, which has
the goal to balance high-volume interrupts equally across all
cores. Finally, we make sure the router can process incoming
packets instantly without requiring any lookups, especially the
ARP table is set manually before testing. In general we try
to avoid any cross-traffic, e.g. by using statically assigned IP
addresses.

System Performance Indicators We measure the CPU load
and interrupt rate using perf stat, a lightweight tool to
gather performance counters. To get reliable results, we delay
launching perf stat for three seconds and let it end early before
the end of a test run, to make sure that the system is fully
loaded during the measured interval. We did not observe an
influence of the measured throughput when running perf
stat, in contrast to running a full-blown profiling setup,
which would impact the system performance noticeably.

D. Measurement Device Configuration

We further limit the degrees of freedom in our measurement
by using uniformly-sized packets with an Ethernet frame
length of 64 Bytes, the minimum frame length supported
by Ethernet. We previously showed that the performance
of Linux-based software routers scales with the packet rate
(number of packets per second) independent from the frame
size as long as the link bottleneck is not reached [5].



(a) 2 NICs (b) 3 NICs (c) 4 NICs

Fig. 2. Overview of the traffic flow in the three measured scenarios. The gray box signifies the software router, while the arrows represent the traffic flows.

Load Generator To make use of our 10 GBit/s NICs we
use the zsend software load generator, based on the packet
processing framework PF RING ZC [18]. We configure zsend
to generate a constant bit rate (CBR) stream of uniform-sized
UDP packets. As we want to distribute the load equally among
several interfaces, we run zsend for each outgoing interface
with a fraction of the specified packet rate, so that the total
load generated sums up to the target packet rate. Additionally,
we set the destination IP address, specifically for each instance
of zsend, so that we can control the output interface on the
DUT.

Packet Counters Our NICs feature hardware packet coun-
ters that accurately count the number of packets transmitted
and received. We periodically poll these hardware registers to
keep track of the number of packets sent and received on each
network interface.

V. PERFORMANCE EVALUATION WITH SIMULATIONS

The methodology of simulations is often used in education
and scientific studies because the setup of real testbed which
implies complex configurations of the networking devices
and links is often expensive and time consuming. Instead,
researchers can use simulators as a cost-effective approach to
design, validate, and analyze new ideas and optimizations in
a controlled and reproducible manner.

A. Modeling of Resource Management in ns-3

To model a Linux software router, we apply our general
modeling approach for intra-node resource management in
resource-constrained network nodes [12]. Among others, this
modeling approach introduces the terms resource manager,
task unit, resource, and resource pool. A resource manager is
an abstraction of the fundamental functions of the operating
system (e.g. resource allocation, scheduling). All resources
of a specific type are located in a resource pool which is
managed by the resource manager according to a specific
scheduling strategy (e.g. round-robin, priority scheduling). A
task unit (TU) models an OS process or thread which requires
specific resources like a CPU core or memory to be executed.
Therefore, if a task unit has to process packets, it has to
request the corresponding resources. For instance, in case of
the Linux NAPI this refers to an IRQ after the reception of a
packet. If the requested resource is available, then the resource
manager sends a reply to the task unit which corresponds to
the scheduling of an Rx ring by the NAPI.

B. Modeling of a Linux Software Router

Our Linux software router model consists of multiple net-
work interface card ports (NIC0, . . . , NICn) and multiple
CPU cores (C0, . . . , Ck) as depicted in Fig. 3. In the network
simulator ns-3 each NIC port is represented by a specific
Net Device. The Net Device Classifier assures a one-by-
one mapping between net devices and its corresponding net
device task units of the ns-3 resource-management module to
model the ingoing NIC port (TU NICin). A net device task
unit models the behavior of the network card controller. For
instance, the multi-queue feature of modern NICs is modeled
in that way that the incoming traffic may be classified based
on specific packet attributes into one of the incoming queues
(aka. Rx rings) of the successor task units to achieve traffic
load balancing or prioritization of specific traffic.

In a Linux software router, these successor task units model
behavior of the interrupt moderation of the Linux NAPI. There
may be multiple Rx rings which are served by one NAPI thread
pinned to a specific CPU core. This NAPI thread is modeled as
multiple NAPI task units (TU NAPI). Each NAPI task unit
possesses a dedicated incoming queue which models a specific
Rx ring. Therefore, to model a Linux software router with
(n+1) NICs and (k+1) CPU cores we need (n+1) · (k+1)
NAPI task units. These NAPI task units compete for the same
shared CPU core resource. Thus, NAPI task units which are
pinned to the same core cannot be processed simultaneously.
This refers to the fact that a NAPI thread in the real system
can only serve one Rx ring at a certain time.

Depending on the type of the configured packet processing
of the software router, diverse task units for each packet
processing step may follow. For instance, in the case that
the software router models a VPN gateway then a processing
task unit (TU Process) is included which represents the
packet processing step for IPsec encryption. In consequence,
each additional processing task unit requires CPU resources
(C0, . . . , Ck) which leads to an increase of the required CPU
cycles per packet. After the actual packet processing, the
packet is enqueued in the corresponding task unit which
models the outgoing network interface card (TU NICout).
There is a one-by-one mapping between the task units for the
outgoing NIC ports and the corresponding ns-3 net devices.
Finally, the packet is enqueued in the transmission queue of
the outgoing net device and the processing of the native ns-3
core continues.



TU Process

C
0

TU Process

C
k

TU Process

C
0

TU NIC
in

NIC
0

..
.

TU Process

C
k

TU NIC
in

NIC
n

......

...
...

TU NAPI

C
0

TU NAPI

C
k

TU NAPI

C
0

...

TU NAPI

C
k

...
...

TU NIC
out

NIC
0

TU NIC
out

NIC
n

...

...

...

...

...
...

..
.

NetDevice 0

NetDevice n

..
.

NetDevice 0

NetDevice n

...

...

Net Device
Classifier

ns-3 Module
resource-management

ns-3 Core

Resource Manager

Resource Pool

C
k

...C
0

C
1

Fig. 3. Node model of a Linux software router with multiple network cards

C. Model Assumptions and Limitations

The software router model is subject to the following
assumptions and limitations.

• The simulation model assumes that the CPU constitutes
the bottleneck during the packet processing. Furthermore,
we assume a linear scaling in the throughput when
applying multiple CPU cores in parallel. This behavior
was also shown by us [5] and other researchers [1].

• The simulation model considers modern NICs with multi-
queue support which means that each CPU core has at
least one Rx/Tx ring per NIC. This assures that every
CPU core is able to exclusively access its dedicated
Rx/Tx ring without resource contention. Thus, the model-
ing of locking mechanisms to access the Rx/Tx rings can
be omitted. Besides, the processing of a specific packet
always remains at the same CPU core to avoid cache
misses which aligns with common recommendations for
parallel packet processing in multi-core PC systems [1].

• We assume that the outgoing link is not the bottleneck.
Therefore, the model does not implement any queuing
disciplines (qdisc) at the egress NIC. This is in contrast
to many network simulators like ns-3 [26] which assume
the outgoing link to be bottleneck.

• The model neglects concurrent processes or threads
which may lead to context switches. However, concurrent
processes can be easily modeled by introducing additional
task unit which apply for the same shared CPU resource.
Furthermore, the OS scheduling overhead for managing
multiple processes is neglected.

• Additional latencies introduced by other hardware com-
ponents (e.g. DMA, PCI) are omitted but can be modeled
with the help of our ns-3 resource-management extension
to set up more fine-grained case studies.

VI. CASE STUDY:
SCALING OF LINUX SOFTWARE ROUTERS

In this section we evaluate the influence of the number of
network cards with respect to the packet processing perfor-
mance of a Linux software router. Firstly, we measure the
performance of a Linux software router in real testbed ex-
periments. Based on these testbed measurements we calibrate
and validate our Linux software simulation model which is
based on our resource management extension module for the
network simulator ns-3.

A. Case Study Scenario

1) Network Topology: The case study scenario consists of a
specific number of end systems connected to a Linux software
router which acts as the device under test. The number of
end systems is varied to investigate the influence of multiple
network cards (cf. Fig. 2).

2) Load Generation: For all conducted measurements the
load generation is based on the following conditions.

• All traffic is mapped to only one CPU core of the Linux
software router because earlier research showed that the
performance of multi-core CPUs linearly scales with the
number of CPU cores [2], [3], [5], [27].

• The offered load is uniformly distributed between the
number of NICs of the software router.

• All measurements are conducted with an Ethernet frame
length of 64 B, because we have already shown that the
packet size has no significant impact on the performance
in case of IP routing. Furthermore, with small packet sizes
we prevent that the network interface cards become the
bottleneck at high offered loads.



3) Linux Software Router Configuration:
• The considered CPU core of the software router runs at a

clock frequency of 2 GHz. The Intel features turbo boost
and hyper-threading are disabled to prevent the system
from tuning the clock frequency because this would evi-
dently influence the performance of the software router.

• All used network cards are 10 Gbps Ethernet NICs.
• The interrupt moderation of the Linux software router

relies on the NAPI. Therefore, we disabled the proprietary
Intel NIC feature ITR (Interrupt Throttling Rate) [28],
which is an additional interrupt moderation feature to
avoid side effects.

As explained in Section IV we measured the packet for-
warding performance of a real Linux software router. These
testbed measurements aim to serve as calibration points for our
software router model described in Section V. We therefore
use the same parameters for all three scenarios during mea-
surement and simulation. All measurements were conducted
with CBR traffic consisting of uniform UDP packets with an
Ethernet frame length of 64B. We present the results of these
measurements in Figure 4(a) and Figure 4(b).

B. Model Calibration and Validation

Our Linux software router model was calibrated and vali-
dated for IP packet processing based on real testbed measure-
ments of a Linux Software Router. The testbed measurements
were conducted based on constant bit rate (CBR) traffic. The
measured as well as the calibrated values for the simulation
model are shown in Fig. 4(a) and 4(b). We measured a
maximum throughput of the Linux software router of 0.9 Mpps
for a single CPU core running at 2 GHz which relates to a
service time of 1111 ns resp. 3667 CPU cycles per packet.

Through internal measurements by profiling the Linux net-
working stack with the tool perf, we measured the effort for the
packet processing in detail. We observed that the service time
is nearly constant and independent of the packet size because
each IP packet requires a similar number of CPU cycles for the
IP header processing (e.g. routing table lookup). The profiling
results show that ca. 98.5 % of these 1111 ns are consumed for
the polling of packets which consists of 86 % resp. 940 ns for
the packet reception and actual packet processing (e.g. NAPI,
IP processing) as well as 14 % resp. 154 ns for the packet
transmission (e.g. Tx ring cleaning).

Furthermore, based on the testbed measurements we esti-
mate the cost for an ISR with ca. 3400 ns which arises if an
incoming packet causes an IRQ. Besides, we use a NAPI poll
size of 64 and a Tx work limit of 256 which refer the defaults
of the Linux NAPI. Further details of the derivation of the
model calibration parameters are presented in [13].

The simulation results coincide with the testbed measure-
ment values very well which indicates that our simulation
model is valid and has been implemented correctly (Fig. 4).
For the CPU utilization, a derivation offset of 10 to 20 %
occurs for offered loads between 0.2 and 0.4 Mpps due to
additional processing costs which are not considered in the
simulation model. Furthermore, the applied CBR traffic cannot

be precisely guaranteed with the load generator in the testbed.
This is in contrast to the load generation in the simulator which
is able to assure accurate packet interarrival times.

C. Simulation Results

The case study scenario is modeled based on the network
simulator ns-3 as well as our ns-3 extension module resource-
management [12]. The end devices and the software router are
represented as dedicated ns-3 nodes. For the load generation,
on each end system a UDP client as well as a UDP server
application is installed. The UDP clients generate traffic with
a constant packet size of 64 B according to a Poisson stream.
The Linux software router possesses limited resources, thus
our ns-3 resource management module must only be deployed
to the software router.

In contrast to the testbed measurement in the model cal-
ibration, the offered load is based on Poisson traffic with
exponentially distributed interarrival times. Thus, the offered
traffic is more realistic because short packet bursts as well
as short idle times with no packet arrivals occur. Besides,
for a specific offered load the overall IRQ rate is smaller
with Poisson traffic in comparison to CBR traffic because
when multiple packets arrive in a short burst only one IRQ is
triggered which also reduces the CPU utilization. We analyzed
the IRQ rate, the CPU utilization, and the mean packet latency
for a Linux software router with different numbers of NICs.

1) IRQ Rate and CPU Utilization: The IRQ rate is a
measure for the IRQ overhead in number of IRQs in a specific
time interval triggered by the NICs. The CPU utilization is a
dimensionless metric for the usage of the CPU as the relation
between the busy time and the total time of observation.

Fig. 5(a) and Fig. 5(b) show the offered load in million
packets per second (Mpps) on the x-axis. Fig. 5(a) illustrates
the IRQ rate in number of million IRQs per seconds on the
y-axis whereas Fig. 5(b) represents the corresponding CPU
utilization in percentage on the y-axis. Each of the lines in
both figures represents a different configuration of the software
router with respect to the number of NICs.

For low offered loads below 0.3 Mpps the CPU core is idle
most of the time. Here, the Linux NAPI behaves interrupt-
driven because almost every incoming packet causes an IRQ
and is directly processed. Thus, when the offered load in-
creases the IRQ rate as well as the CPU utilization linearly
increases. However, the higher the offered load becomes the
bigger is the difference in the IRQ rate and CPU utilization
for the different number of NICs. For instance, at an offered
load of 0.3 Mpps we observe an IRQ rate respectively CPU
utilization with 2 NICs of 0.27·106 IRQ/s resp. 79 % whereas
with 4 NICs the values are 0.31·106 IRQ/s resp. 86 %.

For an offered load higher than 0.3 Mpps, the IRQ rate
decreases because there are often packets in the Rx rings
of NICs and thus the Linux NAPI disables the IRQs for
the corresponding Rx/Tx rings. Therefore, the Linux NAPI
often works in poll-driven mode which saves IRQs. Thus, the
rising of the CPU utilization also diminishes. When the offered
load reaches the maximum throughput of the CPU core at ca.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

#I
R

Q
/s

 *
 1

06

Offered Load [Mpps]

measured, 2 NIC
measured, 3 NIC
measured, 4 NIC
simulated, 2 NIC
simulated, 3 NIC
simulated, 4 NIC

(a) IRQ Rate

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

C
PU

 U
til

iz
at

io
n 

[%
]

Offered Load [Mpps]

measured, 2 NIC
measured, 3 NIC
measured, 4 NIC
simulated, 2 NIC
simulated, 3 NIC
simulated, 4 NIC

(b) CPU Utilization

Fig. 4. Measured and simulated IRQ rate and CPU utilization for different numbers of NICs based on CBR traffic used for model calibration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

IR
Q

 R
at

e 
[#

IR
Q

/s
 *

 1
06 ]

Offered Load [Mpps]

2 NIC
3 NIC
4 NIC
5 NIC
6 NIC
7 NIC
8 NIC
9 NIC

10 NIC

(a) IRQ Rate

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

C
PU

 U
til

iz
at

io
n 

[%
]

Offered Load [Mpps]

2 NIC
3 NIC
4 NIC
5 NIC
6 NIC
7 NIC
8 NIC
9 NIC

10 NIC

(b) CPU Utilization

Fig. 5. Simulated IRQ rate and CPU utilization for different numbers of NICs based on Poisson traffic

0.9 Mpps, then all IRQs of the Rx rings are disabled to use
the saved CPU cycles for the actual packet processing.

We conclude that with increasing offered loads the CPU
core becomes saturated earlier with a higher number of NICs
because at the same offered load each NIC triggers a separate
IRQ for each packet. In contrast, with a smaller number of
NICs at the same offered load, an IRQ serves multiple packets
which leads to less IRQ-induced CPU utilization.

2) Packet Latency: The packet latency represents the delay
which a packet incurs during its traversal through the software
router. The packet latency consists of waiting and services
times in several system components. In general, the waiting
time of a specific packet depends on the number of packets
prior to that packet in the waiting queue which is here an Rx
ring. In the case of IP routing, the service time of a packet is
constant (cf. Section VI-B). The packet latency is dominated
by the waiting and service time at the CPU bottleneck.

Fig. 6 shows the offered load in Mpps on the x-axis and
the simulated mean packet latency in microseconds on the y-
axis. The mean packet latency is stated with 95 % confidence
interval. Each of the lines represents a different configuration
of the software router with respect to the number of NICs. The
mean packet latency exponentially increases when the offered
load increases. For offered loads higher than the maximum
throughput of 0.9 Mpps of this router configuration, the mean
packet latency is no longer well-defined. This is because
arriving packets often hit a full incoming packet queue and
must be dropped. For the same offered load, the mean packet
latency is bigger the higher the number of NICs is. This is
because with multiple NICs more IRQs must be handled which
CPU cycles cannot be used for the actual packet processing
which leads to higher waiting times. Consequently, with a
higher number of NICs the full CPU utilization of 100 % is
already reached for lower offered loads (cf. Figs. 4(b), 5(b)).



 0

 5

 10

 15

 20

 25

 30

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

M
ea

n 
P

ac
ke

t L
at

en
cy

 [µ
s]

Offered Load [Mpps]

2 NIC
3 NIC
4 NIC
5 NIC
6 NIC
7 NIC
8 NIC
9 NIC

10 NIC

Fig. 6. Simulated mean packet latency for different numbers of NICs

VII. SUMMARY AND OUTLOOK

We investigated the impact of multiple NICs for the perfor-
mance of Linux software routers. We proposed a model of a
Linux software router which we calibrated and validated based
on testbed measurements. We showed that the Linux NAPI is
able to scale with multiple NICs. However, the number of
NICs have an impact on the performance, especially for the
mean packet latency due to the additional IRQ overhead.

In future, we plan to further refine our model which includes
the consideration of the latency caused by other system
components. Besides, we are implementing a Linux NAPI
extension for QoS-aware packet processing in software.

ACKNOWLEDGMENTS

This research has been supported by the Deutsche For-
schungsgemeinschaft (DFG; German Research Foundation)
as part of the MEMPHIS project (GZ: WO 722/6-1). We
would like to acknowledge the valuable contributions through
numerous in-depth discussions from our colleagues Alexan-
der Beifuß, Paul Emmerich, Sebastian Gallenmüller, Andrey
Kolesnikov, and Dr. Klaus-Dieter Heidtmann.

REFERENCES

[1] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting Par-
allelism To Scale Software Routers,” in ACM Symposium on Operating
Systems Principles (SOSP), October 2009.

[2] S. Han, K. Jang, K. Park, and S. Moon, “Building a Single-Box 100
Gbps Software Router,” in IEEE Workshop on Local and Metropolitan
Area Networks (LANMAN), May 2010, pp. 1–4.

[3] K. Fall, G. Iannaccone, M. Manesh, S. Ratnasamy, K. Argyraki, M. Do-
brescu, and N. Egi, “RouteBricks: Enabling General Purpose Network
Infrastructure,” ACM SIGOPS Operating Systems Review, vol. 45, no. 1,
pp. 112–125, 2011.

[4] R. Bolla and R. Bruschi, “PC-based Software Routers: High Perfor-
mance and Application Service Support,” in ACM SIGCOMM Work-
shop on Programmable Routers for Extensible Services of Tomorrow
(PRESTO), August 2008, pp. 27–32.

[5] T. Meyer, F. Wohlfart, D. Raumer, B. E. Wolfinger, and G. Carle,
“Validated Model-Based Performance Prediction of Multi-Core Soft-
ware Routers,” Praxis der Informationsverarbeitung und Kommunikation
(PIK), vol. 37, no. 2, pp. 93–107, 2014.

[6] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond Softnet,” in 5th
Annual Linux Showcase & Conference, vol. 5, 2001, pp. 18–18.

[7] J. H. Salim, “When NAPI Comes to Town,” in Linux Conference, 2005.
[8] K. Salah and M. Hamawi, “Performance of IP-Forwarding of Linux

Hosts with Multiple Network Interfaces,” Journal of Network and
Computer Applications, vol. 36, no. 1, pp. 452 – 465, 2013.

[9] R. Chertov, S. Fahmy, and N. Shroff, “A Device-Independent Router
Model,” in IEEE Conference on Computer Communications (INFO-
COM), April 2008.

[10] K. Salah, K. El-Badawi, and F. Haidari, “Performance Analysis and
Comparison of Interrupt-Handling Schemes in Gigabit Networks,” Com-
puter Communications, vol. 30, no. 17, pp. 3425–3441, 2007.

[11] K. Salah, “Modeling and Analysis of PC-based Software Routers,”
Computer Communications, vol. 33, no. 12, pp. 1462–1470, 2010.

[12] T. M. Runge, B. E. Wolfinger, S. Heckmüller, and A. Abdollahpouri, “A
Modeling Approach for Resource Management in Resource-Constrained
Nodes,” Journal of Networks, vol. 10, no. 01, pp. 39–50, 2015.

[13] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A Study of Networking Software Induced
Latency,” in International Conference on Networked Systems (NetSys),
March 2015.

[14] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “A Study of
Network Stack Latency for Game Servers,” in 13th Annual Workshop
on Network and Systems Support for Games (NetGames’14), Nagoya,
Japan, Dec. 2014.

[15] ——, “Performance Characteristics of Virtual Switching,” in IEEE In-
ternational Conference on Cloud Networking (CloudNet), Luxembourg,
October 2014.

[16] R. Bolla and R. Bruschi, “Linux Software Router: Data Plane Optimiza-
tion and Performance Evaluation,” Journal of Networks, vol. 2, no. 3,
pp. 6–17, June 2007.

[17] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward Predictable
Performance in Software Packet-Processing Platforms,” in USENIX
Conference on Networked Systems Design and Implementation (NSDI),
April 2012.

[18] F. Fusco and L. Deri, “High Speed Network Traffic Analysis with
Commodity Multi-core Systems,” in Internet Measurement Conference,
November 2010, pp. 218–224.

[19] A. Botta, A. Dainotti, and A. Pescapé, “Do You Trust Your Software-
based Traffic Generator?” IEEE Communications Magazine, vol. 48,
no. 9, pp. 158–165, 2010.

[20] P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “MoonGen: A
Scriptable High-Speed Packet Generator,” ArXiv e-prints, Oct. 2014.

[21] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of Frameworks for High-Performance Packet IO,” in
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS 2015), 2015.

[22] T. M. Runge, A. Beifuß, and B. E. Wolfinger, “Low Latency Network
Traffic Processing with Commodity Hardware,” in International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), July 2015.

[23] D. Raumer, F. Wohlfart, D. Scholz, P. Emmerich, and G. Carle, “Per-
formance Exploration of Software-based Packet Processing Systems,” in
Leistungs-, Zuverlässigkeits- und Verlässlichkeitsbewertung von Kommu-
nikationsnetzen und verteilten Systemen, 8. GI/ITG-Workshop MMBnet,
September 2015.

[24] P. Emmerich, D. Raumer, A. Beifuß, L. Erlacher, F. Wohlfart, T. M.
Runge, S. Gallenmüller, and G. Carle, “Optimizing Latency and CPU
Load in Packet Processing Systems,” in International Symposium on
Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), 2015.

[25] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network
Interconnect Devices,” RFC 2544 (Informational), Internet Engineering
Task Force, March 1999.

[26] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network Simulations with the ns-3 Simulator,” ACM SIGCOMM
Demonstration, August 2008.

[27] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
Accelerated Software Router,” ACM SIGCOMM Computer Communi-
cation Review, vol. 41, no. 4, August 2011.

[28] Intel Corporation, “Interrupt Moderation Using Intel GbE Controllers,”
April 2007.


