
Performance Exploration of Software-based
Packet Processing Systems

Daniel Raumer, Florian Wohlfart, Dominik Scholz, Paul Emmerich, and Georg Carle

Technische Universität München, Department of Computer Science, Network Architectures and Services
{raumer|wohlfart|scholzd|emmericp|carle}@net.in.tum.de

Abstract—Software systems that are placed on commodity
hardware are integral components of today’s networks. They gain
momentum as an attractive alternative to dedicated hardware
routers, switches, and firewalls. Their big advantages are the high
customizability of the software and increased cost-efficiency of
the necessary hardware. To improve the performance, features
intended to speed up the processing, are steadily added. For
assessing influences on the performance, the software and its
interaction with available hardware features have to be tested
and modelled. Therefore, we evaluate the performance of the
Linux Network Stack in different use cases and develop a
performance prediction model. Using both black- and white-
box measurements the internal behaviour of the Linux router
is analysed when approaching data rates up to 10 Gbit/s and
the impact of occurring performance limiting factors is studied.
External measurements are restricted to the packet rate, while
white-box measurements are performed using the profiling tool
perf. From the results of these measurements, the CPU cycles
required to process each packet and their distribution to the tasks
executed by the involved driver and kernel functions is analysed.

Index Terms—measurement, software-based networked sys-
tems, performance correlation, performance model

I. INTRODUCTION

Through steady development the performance of commodity
hardware has been continuously increased in recent years.
Especially multi-core architectures have therefore become
more interesting to fulfil network tasks by using software
packet processing systems instead of dedicated hardware.
In particular, software routers using UNIX-based operating
systems (OS) are attractive, as a fully functional protocol stack
that handles the processing, in this case forwarding on layer
3 of the ISO/OSI model, is implemented. The advantages of
high flexibility and lowered costs are contrasted with possible
higher performance and reduced energy consumption achieved
with specialized hardware [1], [2]. Furthermore, for software
routers, features can be rapidly deployed or modified, whereas
dedicated hardware would consume extensive development
cycles before being able to be upgraded.

With the continuous growth of the internet, the demands
on the used techniques increase, too. While 1 GbE is common
in home networks, 10 GbE and 40 GbE is common standard
in carrier grade networks. Even 100 GbE is already standard-
ised [3]. While hardware routers are able to accomplish these
line rates, software routers reach their limit [1]. However,
software routers are in general capable of reaching the same

performance that hardware routers deliver today [1], [4].
Problems arise especially for small packet sizes: the full line
rate cannot be reached as the maximum number of packets
per second that can be processed is limited by the CPU.
Other factors are further limiting the performance of a software
router [1], [4], [5].

While new techniques improve the performance, the interac-
tion with other mechanisms has to be understood and analysed
to prevent unwanted behaviour or possible side effects. A
common approach is black-box testing: the software router
is tested in a certain scenario, using varying input traffic,
and, for instance, the resulting packet rate is used to compare
the results. Although this shows how many cycles per packet
are needed to process a packet, it is not further analysed
where exactly, in relation to which function of the OS, the
performance is decreased.

In this paper we present a bottom-up performance prediction
model of the components involved in packet forwarding on
LINUX-based packet processing systems. It is intended to
show which functions of the kernel are involved to accomplish
each general task and which share of the CPU cycles per
packet is consumed by each of them. We use our model for
white-box tests, to explain the router internals and analyse
the influence of performance limiting factors. Furthermore,
different use cases can be compared in respect to which task
consumes more or less cycles and, therefore, is responsible for
performance losses or gains. This includes measurements with
different router configurations and different types of traffic.

Another common test is to confront the router with different
packet rates to evaluate the dynamic behaviour of the kernel.
Most of the time these measurements are only carried out up
to the point at which the CPU is under full load. Although
this is understandable as it is not normal for a system to work
continuously under overload, forcing the router under overload
over a longer period of time can be caused by misconfiguration
or by an attack, targeting the CPU of the software router.

By maintaining generality the model also applies to other
forwarding frameworks. While the general steps that are neces-
sary to forward packets remain the same for most frameworks,
different approaches can be compared.

The remainder of this paper is structured as follows. Based
on a discussion of related work about performance exploration
of (Linux) software based packet processing in Section II,
we describe the internals of packet processing in Linux-based

software switches and routers, in Section III. In Section IV, we
discuss the components that are relevant for the performance
breakdown and formulate relations as analytical models for
software based packet processing systems. Section V utilizes
our models in a case study, for a detailed exploration of
the performance in which we discuss the used measurement
methodology (in Section V-A). We end with a summary of
our contributions in Section VI.

II. SOFTWARE-BASED PACKET PROCESSING SYSTEMS

Wu and Crawford [6] gave an in-depth description of which
components are involved and what each of them does when
receiving a packet that is destined for an application in user
space, already in 2006. To analyse the performance they
developed a mathematical model of the whole process: the NIC
is modelled using the token bucket algorithm, in which tokens
are represented by packet descriptors, and all other processing
steps are modelled as queueing processes. They come to the
conclusion that, aside from the CPU, the size of the rx_ring
(packer reception buffer) influences the bottleneck as packets
can be dropped if not enough descriptors are available due to
“memory pressure”.

Bolla and Bruschi [5], [7] showed a deep understanding
of the processing steps. They used RFC 2544 compliant
test cases to analyse the performance of different hardware
and data plane architectures, focusing on the Linux kernel
version 2.6 [5]. They used throughput, latency and profiling
measurements to evaluate an optimized Linux 2.6 kernel,
the Click Modular router and the SMP Linux 2.6 kernel.
According to their results, they obtained rates up to 2.5 Gbit/s
with an optimized kernel version. Today, the used kernel
versions underwent changes in comparison to versions used
these days. Anyway, the underlying analysis of the packet
processing steps, ranging from the New API (NAPI) to the
transmitting NIC, contributed to our performance prediction
model. Especially the interaction of interrupts and poll-rate
are interesting as it is still valid with today’s performance
optimized NIC drivers (cf. [8]). Bolla and Bruschi stated the
fundamental that the CPU limits the number of packet headers
that can be processed, while bandwidth and latency of the I/O
busses limit the total throughput [7]. Furthermore, they show
based on their measurements and analysis that shared data
structures like the tx_ring of the NIC cause extra CPU cycles,
as the access to those is serialized using mutex-like techniques.
In addition, the data has to be synchronized between the caches
of multiple CPUs causing more overhead. Based on these
results they propose a multi-core packet forwarding software
architecture. The evaluation shows that they are able to reach
a packet rate up to 4 Mpps.

In 2009, Dobrescu et al. [4] revisited software router ar-
chitectures and performed black-box tests. They were already
close to reach the 10 Gbit/s line rate when using software
routers with multiple 1 Gbit/s ports and minimally sized pack-
ets. Studies from 2013 showed that the trend towards contin-
uously increased performance continued [1]. Beifuß et al. [8]

presented a study of the packet reception process and devel-
oped a simulation model of it. Emmerich et al. [9] system-
atically described the bottlenecks concerning hardware and
software, which we kept in mind during the design of our
model.

Besides general purpose Network IO Software, frame-
works that focus on high-speed packet processing have
been developed: e.g. netmap [10], Intel DPDK [11], or
PF_RING ZC [12]. While these are designed to fulfil general
network tasks, they are also able to function as a soft-
ware router or switch, e.g. DPDK vSwitch [13], Click on
netmap [14], and VALE [15]. We also designed our model in
conformance with these approaches to packet processing. For
an in depth analysis of high speed network IO frameworks
we refer to our recent publication and papers referenced in
there [16].

III. GENERAL STEPS OF PACKET PROCESSING

Our abstract model of packet processing is shown in Fig-
ure 1: The NIC at which a packet arrives (1) has to fulfil two
tasks. Firstly, the packet is transferred to the main memory of
the system (2). A descriptor (pointer) to the memory region
is then stored in a queue (3), to keep track of arrived packets.
Secondly, the NIC has to inform the OS and thereby invoke
the actual processing of the packet (4). Using the pointer to the
data of the packet (5), initial operations can be performed (6)
before a routing decision is made. This includes for example
integrity checks or the application of firewall rules. Now
the actual processing takes place, a forwarding decision is
made (7). A Longest Prefix Matching [17] algorithm takes
the information of the IP header to find the best match in
a routing table. After the next hop has been determined, the
same operations as described in step (6) can be applied again
(8). Furthermore, the layer 2 address for the next hop is
being resolved. When the processing of the packet is finished,
the egress network board, as determined through the routing
lookup, is informed that the packet is ready for transmission
(9). Similar to the processing of the ingress NIC, a descriptor
to the memory region of the packet is stored in a queue (10),
before it finally is transmitted (11).

Operating System

routing table

IN PRE OUTPOST

Inbound NIC

Buffer

Outbound NIC

Buffer

Memory

1

2

3

4 5

6

7

1110

9

8

Fig. 1. Abstract model of the packet forwarding process

Our model assumes the forwarding process of network
traffic consists of two main parts [18]. The NIC has to handle
the transfer of the packets between itself and the main memory
and the OS has to make the layer 2 and 3 forwarding decision.
The abstract view reveals that the access to main memory and
the used data structures are potential performance limiting
factors [9], [16].

A. Packet Processing on Linux Operating Systems

Operating systems implement a general purpose network
stack for processing and delivering of packets to user appli-
cations that comes with a subsystem for layer 3 forwarding.
This allows Linux systems to act as software router.

The steady development process of the Linux network-
ing code [19] requires steady updates to documentation and
measurements. In addition to reading kernel source code,
publications like [8], [17], [20] provide further insights and
measurements. Furthermore, a book by Rosen [21] provides an
in-depth explanation of the Linux networking kernel code. Our
analysis is based on kernel version 3.7 [22]. For changes since
this version the interested reader is referred to Märdian [19]
who summarized new features that were added from version
3.7 to 3.16.

1) Reception API – NAPI: With the arrival of the packet,
transfer of the packet to main memory, and invocation of
further processing by informing the OS, have to be accom-
plished [8], [20], [21]. The Linux kernel uses the sk_buff struc-
ture for the internal representation of packets. The NIC stores
descriptors, pointing to sk_buff structures, into buffers. It uses
at least one buffer for packet reception (rx_ring) and one for
transmission (tx_ring). When receiving a packet, the descriptor
has to be initialized and allocated with an empty sk_buff (cf.
Fig.1). The Direct Memory Access (DMA) engine of the NIC
transfers the packet data to kernel memory space, the packet
is stored in an sk_buff, and is ready for further processing.
Otherwise it will be discarded by the NIC, because no packet
descriptor was available [6]. This feature allows the NIC to
drop packets without additional CPU load when the system is
overloaded. Thus overload has no impact on the performance
of the network stack [17].

To inform the kernel that a packet is available the NIC
schedules a hardware interrupt through its interrupt generator.
The CPU responds by calling the interrupt handler of the
driver. Since the kernel version 2.4.20 the driver uses the
New API (NAPI) [21]. Instead of directly enqueueing each
packet into the backlog queue of the CPU, the interrupt
handler invokes napi_schedule that adds a reference to
the NIC to the poll_list of the CPU and triggers a
soft interrupt. When this software interrupt gets served the
CPU executes net_rx_action, which then successively
uses the poll driver method of each device present in
the poll_list in a round-robin fashion to poll a certain
number of available packets from their ring buffer. For each
of these packets netif_receive_skb is called, which then
invokes the layer 3 handler of the network stack by executing
ip_rcv [20].

2) Linux Network Stack: The Linux network stack is de-
signed to support multiple networking protocols including the
Address Resolution Protocol (ARP), the Internet Protocol,
and Internet Control Message Protocol (ICMP), the user
Datagram Protocol (UDP) and Transmission Control Protocol
(TCP) [23]. The network stack processes each packet layer by
layer. In order to forward a packet, however, only the layers up
to the network layer are involved. For IPv6 packets separate
functions exist that follow the same naming conventions (for
instance ipv6_rcv instead of ip_rcv).

a) Prerouting Processing: The first function that gets
invoked, ip_rcv, sanity checks for the length of the IP
header, the checksum, and the length of the payload [17], [20].
If any of these checks fail, the packet gets dropped.

The packet next passes the netfilter subsystem. The purpose
of this subsystem is to filter out packets and to perform
changes [17]. It is used for firewalls implemented with iptables
[24], network address translation (NAT) [25], modifying the
contents of packet headers (mangling), connection tracking or
gathering network statistics [20].

Afterwards, ip_rcv_finish continues and determines
whether the packet has to be delivered locally or
forwarded to another host. Hence, via a call to
ip_route_input_noref the packet gets passed to
the routing subsystem. The last action of ip_rcv_finish
is to invoke dst_input of the sk_buff. Depending on
the result of the routing lookup, this method calls the
corresponding function for next steps.

b) Routing Subsystem: In Linux all threads and pro-
cesses use the same shared routing table. Hence, the first
task of ip_route_input_noref is to acquire a read-
copy-update (RCU) lock [26]. As it synchronises the access
with low overhead and wait-free reads, RCU-locks are widely
used within the Linux kernel [27] and replace other locking
mechanisms, whenever possible. Aside from sorting out for
instance broadcast and multicast packets to handle them sep-
arately, a lookup in the routing table is initiated by calling
fib_lookup. Linux uses the forwarding information base
(FIB) trie [20]. The FIB trie contains the routing entries, each
being a mapping of a subnet or IP address to a next-hop and
outgoing interface. A lookup in the specified table is performed
with fib_table_lookup. The basic idea of this function
is to go through the FIB trie and try to find the best match
for the destination IP address of the packet according to the
longest prefix matching algorithm [20].

Depending on the result of the lookup, the sk_buff gets
updated. The dst_input method is either set to
ip_local_deliver for delivery to the local host or to
ip_forward if the packet has to be forwarded. In the latter
case the next-hop and outgoing interface get updated, too.

c) Postrouting Processing: If the packet gets delivered
to the local host it gets passed to the next layers for further
processing (for instance TCP or UDP), until it reaches the
application in userspace via the socket API [28]. As this path
is not subject of this paper we refer to [6], [17], [20] for further
description.

In case of a forwarding decision to the next host the
time to live (TTL) of the IP header is being decreased.
If the TTL reaches zero, the packet gets dropped and
an ICMP time exceeded message is triggered [20]. The
length of the packet is compared to the maximum trans-
mission unit of the outgoing link. Afterwards, potential IP
options are processed and statistics get updated. Now a net-
filter hook (NF_INET_POST_ROUTING) is invoked again.
If fragmentation is needed and allowed it is handled via
ip_fragment. To resolve the next-hop to a MAC address
the packet is passed to the neighbouring subsystem via
__ipv4_neigh_lookup_noref. If the entry is cached,
the respective header field can be updated, otherwise the MAC
address has to be resolved for instance using ARP for IPv4 or
the neighbour discovery protocol for IPv6 packets. When the
data link header has been completed, the packet is passed to
the transmitting NIC by invoking dev_queue_xmit.

3) Transmission API: To control and schedule the traffic
between kernel and NIC, queueing disciplines are used [29].
The default queueing discipline, qdisc, uses the FIFO strategy
to manage the packets [20]. dev_queue_xmit enqueues
each packet into the qdisc of the device that has been deter-
mined by the routing lookup. Then a spin-lock for the respec-
tive qdisc is acquired. These locks are the Linux implemen-
tation of active waiting-mutexes [30], hence, a transmission
queue can only be used by one process at a time. When this
lock is successfully acquired and the device is running and not
stopped because for instance tx_ring is full, all the packets in
the qdisc are handled. Another lock (HARD_TX_LOCK) has to
be acquired before the dev_hard_start_xmit function of
the driver is invoked. This method loads the packet descriptor
into the tx_ring [20]. Finally, the NIC is informed of the
packets that are ready for transmission.

The NIC informs the CPU with an interrupt when the packet
transmission is completed After the interrupt, the meta data of
the sk_buff structure is deallocated and the memory is freed.

B. Performance Limiting Factors
While the Linux design is convenient for running applica-

tions up to a rate of 1 Gbit/s, it rapidly reaches a limit when
trying to work with rates up to 10 Gbit/s [9]. Furthermore,
processing is not optimized for a forwarding-only task. Im-
pediments for packet processing in software routers have been
identified [1], [2], [5], [6], [9].

1) CPU: The most common bottleneck is the CPU. The
more complex the processing of a packet is, the more CPU-
cycles are consumed. A CPU operating at a frequency of
CPUfreq Hz provides a number of CPU cycles per second
Cavailable/s and needs a total of Ctotal CPU cycles to process
a single packet. The resulting maximum packet rate Rmax can
be calculated with

Rmax =
CPUfreq

Ctotal
=

Cavailable/s

Ctotal
(1)

This is valid when the CPU operates at its maximum frequency
and full capacity. Thus, Rmax can only be influenced by
Ctotal.

2) Memory: The complete data of a packet, consisting
of meta-data and payload, passes the system memory (cf.
Section III-A). This leads to two different obstacles when
forwarding packets at high-speed: costs for allocation and
deallocation of memory that is influenced by the complexity of
the data structure (sk_buff). Especially when working at high
packet rates, constantly allocating and deallocating memory
causes significant overhead that reduces the performance of
the system [2]. The complexity of the sk_buff -structure that
is compatible with numerous protocols and thus contains the
meta-data of several protocols increases the workload. For
the task of forwarding a packet, however, only the layer
2 and 3 headers are needed. Higher layer meta-data is not
processed, as the packet is not passed up to these protocol
handlers. Dorado et al. claim that “63% of the CPU usage
in the reception process of a single 64B sized packet” [2] is
consumed by sk_buff related operations. Another proof is the
software switch, DPDK vSwitch [13] that uses a purged data
structure to increase the speed compared to Open vSwitch.

3) Generality of the Software Design: At multiple occa-
sions of the forwarding process data structures are protected
with locking mechanisms to prevent faulty data caused by
race conditions. One example, where multiple locks are used,
is the access to the rx NIC [17]. For instance, the qdisc is
protected with a spin-lock. Whenever a spin-lock is already
locked, many CPU cycles are potentially wasted for active
waiting of other processes [30]. Anyhow, locks can be omitted
for dedicated software data planes where each CPU core gets
packets in exclusively used rx buffers and stores them to
dedicated tx buffers. So although Linux routers waste CPU
cycles for obtaining and releasing these locks a Linux router
scales linearly as there is no shared access on rx and tx rings.

4) Cache Size: With large data structures the size of the
available CPU caches can limit the performance. If the data
surpasses the size of the cache the number of cache misses can
increase significantly and cycles are spent fetching the missed
information. Cache thrashing causes the cycles per packet to
increase as the actual processing of the packet is idling for
data. This effect may occur due to the size of the routing
table. For comparison today’s backbone routers, which use
the Border Gateway Protocol, hold up to 500,000 entries [31].

Additional processing tasks like firewalls, NAT, or collecting
statistics, that can be hooked via netfilter rules in the Linux
network stack at multiple occasions may require additional
CPU cycles, (cache) memory, and locks.

IV. PERFORMANCE BREAK DOWN

Profiling reveals how many CPU time has been spent on
each function. Due to the high complexity of packet process-
ing these results are hardly useful without further treatment.
Filtering out all components that do not contribute to packet
processing and grouping of the remaining functions allows for
further analysis. The model which defines the groups is shown
in Figure 2. It allows to compare different scenarios and to
compare CPU cycles spent for each group of processing tasks.

CroutingCprerouting CpostroutingCRX

Calloc

CTX

Cfree

Ctotal

Fig. 2. Performance prediction model

We defined the following groups:

CRX contains all functions for reception via the NIC and its
driver. The tasks are considered to be finished after the
driver handed the packet over to the OS for the actual
processing of the packet headers.

Calloc contains allocation and transfer of the packet data to
the main memory. Though this could be part of CRX ,
the separate group for buffer allocation accommodates
for the significant impact of allocation on the overall
performance.

Cprerouting for processing steps after the packet was received
from the driver but before the routing decision is made.
The pre-routing processing includes for instance integrity
checks and the traversal of firewalls or NAT.

Crouting for lookup of the packet route – i.e. a FIB lookup.
Cpostrouting for tasks after the routing decision – for instance

fragmentation or the resolution of MAC addresses.
Cfree for packet buffer deallocation – analogue to Calloc, the

deallocation of the packet buffer.
CTX transmitting side NIC tasks, analogous to CRX .
Cother is a group for all functions that remained unassigned. It

contains functions that are invoked in different groups and
thus cannot be assigned to an own group and background
tasks, which cannot be turned off. Fewer CPU time in this
group leads to more precise statements and conclusions
regarding the other groups.

Summing up the individual parts leads to the overall con-
sumed cycles per packet

Ctotal =
∑

i∈{RX,alloc,...,other}
Ci, (2)

With Equation 1 we can predict the maximum packet rate
Rmax.

Vice versa, one can measure Rmax and either CPUload or
Cactive - the amount of cycles that the CPU actively spent
processing per second1 - to calculate Ctotal:

Ctotal =
Cavailable/s ∗ CPUload

Rmax
=

Cactive

Rmax
(3)

A load that produces CPUload = 100% avoids artefacts that
can be caused by interrupts [8] or empty poll cycles [16]. To
parametrize the model one has to measure how many CPU
cycles are consumed by each function and then sort them into
the groups of the model.

1Cactive plus the amount of cycles spent idle must equal Cavailable

V. PARAMETRIZATION OF THE MODEL

In this section we demonstrate the application of our model
(cf. Section IV). The described (and further) measurements
were performed by Dominik Scholz [32]. They were restricted
to single core measurements as software routers scale linearly
with the number of cores due to optimal parallelism [1]. The
methodology was developed in previous measurements [1],
[8], [9], [16], [33], [34].

A. Methodology

The measurements were performed on serves equipped with
Supermicro X9SCM-F mainboards and Intel Xeon E3-1230
v2 CPUs with 3.3 GHz and 8 MB L3 cache, Dual channel
16 GB ECC DDR3 SDRAM clocked at 1333 MHz, and Intel
X520-SR2 (DuT) and X520-SR1 (load generator and sink)
based on the Intel 82599 Ethernet controller. Hyper-threading,
turbo boost, and power saving features were disabled. To avoid
fluctuations from CPU migrations, all processing tasks and
interrupt handlers were always explicitly pinned to specific
CPU cores. All offloading features of the NICs and pause
frames were disabled. The size of the rx_ring was increased
to its maximum of 4096 entries.

We ran Grml Live Linux 2013.02 with the Linux kernel
version 3.7, and the ixgbe 3.14.5 NIC driver. Some experi-
ments required a kernel with base pointers (compiler option
-fno-omit-framepointer) to enable the profiling tool
perf to create function call-stacks. Previous experiments
showed that base pointers reduce the total throughput by about
15% [9].

All unnecessary background tasks were disabled to mini-
mize possible interferences that affect the measurements. To
generate packets up to the line rate of 10 GbE a customized
version of the pfsend packet generator based on the pf_ring
DNA packet processing framework has been used. To count
the sent and received packets the statistics register of the NIC
has been used.

The Linux profiling tool perf was used for all measure-
ments. The sampling was restricted to be system-wide of all
applications running on the single core to which the traffic
was pinned. The result is the actual number of CPU cycles per
second Cactive. This value is used to calculate the cycles per
packet Ctotal using Equation 3 and to scale the values obtained
with perf record2. When we used the alternative kernel
version, compiled with base pointers, the resulting binary file
of perf record contained information about the function
call-stack.

We used profiling data to create flame graphs. Although
Flame graph visualizations are too detailed for usage in papers
the visualizations of the call stacks were helpful to identify
CPU-consuming functions. Such an exemplary flame graph
is displayed in Figure 3. We also used a modified colouring
schema for Flame Graphs that clusters functions of the Flame
Graphs and paints them using identical colour.

2perf record is a tool, part of perf that allows sampling of counters
with configurable rate and periods

Fig. 3. Flame graphs are useful to get an overview to CPU cycle consumption:
this exemplary flame graph visualizes the distribution of CPU cycles spent on
the different functions of the Linux kernel

All profiling tests were run five minutes per offered rate
to obtain reliable values. Additional sampling showed that
under full workload the relative cycles of the functions were
equal with a deviation of less than ±1% in a 95 % confidence
interval. Therefore, the measurements with the maximum
received rate shown in Figure 4 - thus maximum CPU load -
were used to parametrize the model. For 64 Byte and 512 Byte
packets the line rate of 10 Gbit/s was not reached. However,
the router was at full load and, when increasing the offered
load even more, started dropping packets. These packets are
dropped by the NIC without stressing the CPU. Hence, for
64 Byte and 512 Byte packets the model is parametrized with
mean values.

B. Increasing the Packet Size

Our first investigation analyses the system behaviour differ-
ent packet sizes, ranging from the minimum size of 64 Bytes
to a close-to-maximum size of 1500 Bytes. Previous work
showed that for small packet sizes the line rate of 10 Gbit/s
can not be reached [1]. Instead, when the CPU is completely
utilized, additional packets are dropped by the NIC. For larger
packets, however, the line rate can be reached, leading to a not
fully utilized CPU.

A closer look at the different parts of our performance
prediction model confirms that packet size has no influence
on the packet rate (cf. Section II): The rx NIC handles
all incoming packets the same, while sk_buff ’s are always
allocated to fit a maximum sized packet. The network stack
only needs the information of the layer 2 and 3 headers to
make a forwarding decision.

1) Impact on the Packet Rate: Figure 4 shows the received
packet rates for the tested packet sizes. The offered rate equals
the received rate of packets until the line rate is hit or the CPU
is at full capacity. As expected, for the smaller packet sizes
of 64 and 512 Bytes, the line rate is not reached. Instead,
the CPU reaches full capacity when offering 1.67 Mpps. The
received rate remains at this maximum when offering even
more packets per second as additional packets get dropped by
the rx NIC. For 1024 and 1500 Byte packets the line rate is
reached at 1.2 Mpps and 0.82 Mpps respectively but the CPU
is not fully utilized for these packets.

0 0.4 0.8 1.2 1.6 2 2.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100% CPU load

line rate for 1024 Byte packets

line rate for 1500 Byte packets

Offered Rate [Mpps]

R
ec

ei
ve

d
R

at
e

[M
p
p
s]

64 Byte

512 Byte

1024 Byte

1500 Byte

Fig. 4. Packet rates for different packet sizes

TABLE I
MAXIMUM PACKET RATE, MAXIMUM CPU LOAD AND CYCLES PER

PACKET FOR DIFFERENT PACKET SIZES

Packet Size Rmax [Mpps] CPUload Ctotal

64 Byte ∼ 1.67 ∼ 100% 1979
512 Byte ∼ 1.67 ∼ 100% 1969
1024 Byte ∼ 1.20 ∼ 75% 2056
1500 Byte ∼ 0.82 ∼ 55% 2203

Table I summarizes the maximum packet rate and the
respective CPU load for all tested packet sizes. The re-
sulting cycles per packet were calculated with Equation 3
with Cavailable = 3.3 ∗ 109 CPU cycles per second for all
further calculations. Ctotal is constant for different packet
sizes, except in scenarios where the packets per interrupt
decrease and thus the costs for interrupts per packet increase.
Explicit listing of interrupt costs can help to explain this effect,
but is not applicable for polling based packet reception (cf.
Section II).

2) Distribution of CPU-cycles: Figure 5 shows the re-
sults of the perf record measurements for 64 Byte
IPv4 packets. Until 1.67 Mpps, the consumed CPU cycles
increase linearly for almost all functions with the offered
packet rate. The functions ip_rcv, fib_table_lookup
or dev_queue_xmit account for large shares in CPU
utilization. The function with the highest percentage is

0.5 1.0 1.5 2.0
packetUrateU[Mpps]

0

20

40

60

80

100

c
y
c
le

sU
_c

u
m

u
la

ti
v
e
xU

[n
]

CPUUidle

<1.5nU_740Ufunctionsx

fib_validate_source

ip_route_input_noref

ixgbe_can_reuse_rx_page.isra.88

ip_forward

ip_finish_output2

check_leaf

dev_queue_xmit

ip_rcv

skb_release_data

ixgbe_xmit_frame_ring

build_skb

__netif_receive_skb

fib_table_lookup

poll_idle

ixgbe_poll

arch_local_irq_restore

do_raw_spin_lock

Fig. 5. Distribution of CPU-cycles across functions for 64 B packets

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
packetCrateC[Mpps]

0

20

40

60

80

100
cy

cl
e
sC

bc
u
m

u
la

ti
v
e
_C

[f
]

CPUCidle

<1.5fCb728Cfunctions_

skb_release_data

ixgbe_xmit_frame_ring

build_skb

__netif_receive_skb

fib_table_lookup

ixgbe_poll

poll_idle

do_raw_spin_lock

Fig. 6. Distribution of CPU-cycles across functions for 1500 B packets

do_raw_spin_lock, which is implementing active waiting
to acquire a lock for a resource that is shared among multiple
processes. This shows that locking mechanisms as they exist
in general purpose systems, like Linux, are limiting the per-
formance of the network stack significantly. As modern NICs
offer multiple rx_rings these locks could be removed from the
general packet transmission process in Linux as long as it is
ensured that each rx_ring is used exclusively by one core.

The number of polls at a certain frequency is adjusted
dynamically by the NAPI driver [8]. This way, the latency is
reduced when only processing few packets, while under higher
loads the overhead is reduced. This effect of the interrupt
throttle rate explains the rapidly increasing CPU activity for
the first ∼0.2 Mpps [9]. With an increasing packet rate the
number of interrupts increase, too. When reaching a certain
maximum, the number of packets polled per interrupt is
increased instead. This then leads to the less steep slope of
CPU activity after 0.2 Mpps.

As perf samples all the functions of the kernel, more
than 750 different names appear in the output, many of which
consume close to no cycles. The values of all functions are
constant after hitting 1.67 Mpps. This can be explained with
the rx_ring of the NIC. If not enough packet descriptors are
polled from the ring, no free descriptors are available for
incoming packets, hence, these are dropped. This is done
without any time loss, resulting in no impact on the overall
performance. Therefore, measurements with packet rates that
lead to full CPU load are treated as if they were multiple tests
for the maximum received packet rate. These are then used
to calculate average values with errors bars showing the 95 %
confidence intervals.

The effect that 1500 Byte packets need slightly more cycles
compared to smaller packets can be explained with the associ-
ated profiling graph in Figure 6. As the line rate is hit at a rate
of 0.82 Mpps, the CPU is not under full load and the graph
equals the one for 64 Byte packets for 0 Mpps to 0.82 Mpps
(cf. Figure 5). Therefore, the idle functions, in particular
poll_idle, are still present and consume additional cycles
compared to smaller packet sizes.

The last step to parametrize the performance prediction

TABLE III
TOP 5 CYCLE-CONSUMING FUNCTIONS IN Cother (64 B PACKETS)

Function Cycles appears in
do_raw_spin_lock 194 all Groups
arch_local_irq_restore 43 CRX , Cprerouting

arch_local_irq_save 21 Calloc, Cfree

__phys_addr 20 CRX , Cfree, CTX

spin_unlock 15 Calloc, Cpostrouting , Cfree, CTX

model is to divide each function into a group of the model.
Table II shows the resulting values for the model when using
the measurements with different packet sizes. Figure 7 shows
a plot of these values.

CRX Calloc Cprer Cr Cpostr Cf ree CTX Cother
0

100

200

300

400

500

600

C
PU

-c
yc

le
s

p
er

 p
ac

ke
t

64 Byte

512 Byte

1024 Byte (*)

1500 Byte (*)

Fig. 7. Per packet CPU-cycles distribution for different packet sizes

The processing by the rx and tx NICs and their respective
drivers consumes approximately 35 % of the whole cycles
with minimal increases for larger packets at the receiving
side, which are explained by the increased DMA transfer
time. The allocation and deallocation is independent from
the size of the packet, because a maximum sized sk_buff is
allocated anyway. However, both together consume up to 20 %
of the total cycles, showing that per packet allocation and
deallocation are a costly task. The processing of the network
stack, represented by Cprerouting, Crouting and Cpostrouting,
uses only the information of the necessary headers, hence the
size of the payload does not matter. Each individual part takes
about 10 % of the cycles, without the use of any additional
processing.

A downside of our model is the inaccuracy caused by the
functions in Cother. To solve this issue, a more sophisticated
method to distribute the functions into the groups of the model
can be used, factoring in what share of each function is used
per group.
Cother represents the final 15 % of CPU cycles, includ-

ing functions that appear in more than just one group
or only consume a close to zero percentage. The five
functions with the biggest share are shown in table III.
Furthermore, it is shown in which parts of the model they
occur. Function do_raw_spin_lock consumes close to
10 % of the CPU cycles. Approximately 90 % of the calls
to do_raw_spin_lock occur when transmitting a packet
by the tx NIC, hence 90 % of the cycles for this function

TABLE II
PER PACKET CPU-CYCLES DISTRIBUTION FOR DIFFERENT PACKET SIZES (* AND RATES)

Packet Size CRX Calloc Cprerouting Crouting Cpostrouting Cfree CTX Cother Ctotal

64 Byte 408 144 187 200 195 231 288 325 1979
512 Byte 412 135 181 192 214 229 275 327 1969
1024 Byte (*) 433 130 161 226 206 245 267 389 2056
1500 Byte (*) 443 146 187 208 205 194 286 532 2203

can be added to CTX . Doing so leads to 40-45 % for rx and
tx NIC processing. This conforms to previous research [2],
[10]. Anyway, for higher accuracy we continue to count
do_raw_spin_lock to Cother.

For larger packet sizes, in particular 1500 Byte, Cother

consumes even more cycles. This is again explained by the
idle functions, for instance poll_idle with ∼ 40 cycles,
are added to this group. This was done mainly for the reason
that these functions do not actually process the packet and
would just obscure the results, making them less comparable
with the smaller packet sizes.

In summary we see a constant behaviour across all parts
of the model. Only Cother increases due to the increased
relative impact on a packet rate that is decreased due to
the limiting Ethernet link bandwidth (see (*) in table II).
Therefore, our following tests only use 64 Byte packets to
reduce the overall number of test cases. Our tests show
impediments of locking mechanisms and per-packet allocation
and deallocation of packets. This is the reason why most
high-speed packet processing frameworks implement different
techniques to solve especially these issues [10].

C. Increasing the Number of Flows

In the following we increase the number of flows, each
represented by a packet with an unique destination address, to
analyse the behaviour of the routing subsystem for a growing
routing table. The measurements with 64 Byte packets of the
previous section are used as reference, representing one flow.
The general assumption is, that only the behaviour of the
routing subsystem differs for varying numbers of flows. As
all packets are pinned to the same core, neither the NIC nor
the network stack treats the packets differently in any way. The
traffic itself uses repetitive, linear increasing IPv4 addresses as
destination. This was done to test the worst case, constantly
changing destinations, which means that the results of the
lookup can not be cached. However, as kernel version 3.7
uses no routing cache anyway, this behaviour is given by the
design of the routing subsystem. The expected result is, that
as long as the necessary data of the FIB trie fits into the cache
of the CPU, the performance does not decrease significantly.

The packet rates for different numbers of flows are shown in
Figure 8. Concurring with previous results, the rate decreases
slightly (∼ 0.1Mpps) for tests with more flows. The run
with more than one million flows however shows a maximum
packet rate of only 1.39 Mpps. The packet rate decreases when
increasing the offered rate even further. This effect can be
explained by the cache behaviour of the CPU (cf. V-D).

0 0.4 0.8 1.2 1.6 2 2.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Offered Rate [Mpps]

R
e
c
e
iv

e
d

R
a
te

[M
p
p
s] 1 flow

256 flows

16k flows

1m flows

Fig. 8. Packet rates for different number of flows

CRX Calloc Cprer Cr Cpostr Cf ree CTX Cother
0

100

200

300

400

500

600

700

800

C
PU

-c
yc

le
s

p
er

 p
ac

ke
t

1 flow

256 flows

16.384 flows

1.048.576 flows (*)

Fig. 9. Per packet CPU-cycles distribution, different number of flows, 64 B

Parametrizing the model with the results of these measure-
ments lead to the values shown in table IV and presented
in Figure 9. As expected, more flows have no impact on
the processing by the NIC and its driver. The only anomaly
is given by Cfree. When having a closer look at which
functions, that are divided into Cfree, cause this behaviour,
only skb_release_data shows a significant deviation. In
the last row of table V, for 1 flow this function consumes
approximately 133 cycles, while for the other tests this is
reduced to under 40 cycles. A possible explanation for this
is the dynamic memory management of the OS. For one flow,
the packet rate is slightly increased, hence, more packets per
second have to be managed at the same time. This means that
more locks must be acquired to release the data again, which
could cause this increased consumption of cycles.

The pre- and postrouting processing is constant, as the same
operations are performed, independently of the destination
address. Only the routing subsystem shows an increased

TABLE IV
PER PACKET CPU-CYCLES DISTRIBUTION FOR DIFFERENT NUMBER OF FLOWS, 64 BYTE

Number of Flows CRX Calloc Cprerouting Crouting Cpostrouting Cfree CTX Cother Ctotal

1 408 144 187 200 195 231 288 325 1979
256 429 135 181 350 181 139 293 337 2048
16.384 416 136 189 406 177 141 283 343 2093
1.048.576 (*) 426 136 183 720 184 142 281 346 2420

TABLE V
FUNCTIONS WITH THE LARGEST DIFFERENCES IN THEIR RESPECTIVE

GROUP FOR DIFFERENT NUMBERS OF FLOWS

Function Group 1 flow 256 flows 1.048.576 flows
fib_table_lookup Crouting 116 238 423
check_leaf Crouting 45 89 361
skb_release_data Cfree 133 37 35

consumption of cycles for increasing amounts of routing table
entries. This is matching the assumptions, as no routing cache
is implemented. Only two functions, listed in table V have a
significant impact on this increase of up to 3.5 times the value
for one flow. Both are directly involved for finding the best
match in the FIB. This means that finding the best match in
the FIB trie lasts longer, as the size of the tree-like structure
that represents the routing table is increased, hence, it takes
more time to traverse it until the correct leaf is found.

D. Limitations through the Cache Size

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

·106

overload

Offered Rate [Mpps]

E
v
en

ts
p

er
S
ec

o
n
d

[-
]

L1 cache misses

L2 cache misses

L3 cache misses

Fig. 10. Cache misses for 1.048.576 Flows.

The effect that for 1.048.567 flows the received rate de-
creases after hitting the peak rate when further increasing the
offered rate (cf. Figure 8), is deviant from all other measure-
ments. To better understand this behaviour we repeated the
test with a bit rate up to the maximum of the 10 GbE links.
The received rate decreases until it approaches approximately
1.1 Mpps at an offered rate of 8 Mpps and stays at this
level. A decreased packet rate means the cycles per packet
increase. When having a look at which functions consume

these additional cycles, only functions in Crouting show an
increased consumption.

Figure 10 shows the misses across the level 1, 2 and 3
caches of the CPU. The curve of the L1 misses is similar
to the packet rate, while the L2 cache misses are at a nearly
constant level of half of the L1 misses. The most interesting is
the progression of the last level cache misses. In the beginning
they are rapidly increasing which is not changing when
surpassing the mark of the maximum packet rate - in this case
the maximum L1 cache misses. Instead the L3 cache misses
approach the L2 misses, until all L2 cache misses miss the L3
cache, too. We attribute this effect to the increased number
of packets that are handled by the router, resulting in more
requests per second to the routing table. Anyhow, the structure
is too large to fit completely into the L3 cache. Already a low
estimated value for one routing entry of 20 Bytes (4 Byte IPv4
address, 4 Byte subnet mask, outgoing interface, metric, meta-
data, ...) leads to a routing table of approximately 21 MiB for
1.048.576 flows, which is vastly larger than the 8 MiB level 3
cache3. Together with the fact, that always different destination
addresses are looked up, referencing different parts of the FIB
trie, this causes more and more L3 cache misses. This in turn
slows down the whole processing of the packets as they are
backed-up, causing the cycles per packet to increase. The worst
performance is reached when all L3 references miss the cache
and thereby cause the maximum number of memory accesses.

In summary the performance is not decreased significantly
when increasing the number of flows. The only identified
difference is, as expected, finding the best match in the routing
table, as this structure keeps growing with the number of flows.
Once this number exceeds a certain value, however, another
limiting factor, the size of the L3 cache, gains importance.
If the FIB is larger than the cache, the overall performance
is reduced because of worse cache behaviour. Generally this
shows, that the size of used data structures must be kept in
mind, as bad cache behaviour may lead to unexpected effects
which drastically reduce the performance.

While a routing table with more than one million entries
may be unrealistic this loss of performance might already
occur for a number of flows between 65.536 and 262.144.
Hence, this effect is relevant, as BGP routers can have more
than 500.000 routing entries nowadays [31]. These values
are continuously rising, causing other problems, too, as for
instance backbone routers run out of memory [35].

3For reference, using the same estimated size for a routing entry, 16.384
entries need a total of only 328 KiB, hence the complete routing table fits
into the level 3 cache.

VI. SUMMARY

We presented an analytical model for software based packet
processing systems that can predict upper bounds for the
maximum throughput. Our model can be parametrized to fit
arbitrary systems. Our case study where we broke down the
performance of a Linux router described the influence and
relationship of FIB size, network stack, and packet processing
tasks on the performance. We encourage to use our profiling
data for model parametrization.

ACKNOWLEDGMENTS

This research has been supported by the DFG as part
of the MEMPHIS project (CA 595/5-2) and the BMBF in
context of the EUREKA-Project SASER (01BP12300A). We
acknowledge the valuable contributions from Alexander Bei-
fuß, Torsten Runge, and Sebastian Gallenmüller.

REFERENCES

[1] T. Meyer, F. Wohlfart, D. Raumer, B. E. Wolfinger, and G. Carle,
“Measurement and Simulation of High-Performance Packet Process-
ing in Software Routers,” Proceedings of Leistungs-, Zuverlässigkeits-
und Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten
Systemen, September 2013, 7. GI/ITG-Workshop MMBnet 2013.

[2] J. L. Garcia-Dorado, F. Mata, J. Ramos, P. M. S. del RÃo, V. Moreno,
and J. Aracil, “High-performance network traffic processing systems
using commodity hardware,” Data Traffic Monitoring and Analysis, pp.
3–27, 2013.

[3] IEEE, “IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Forceofficial
web site,” http://www.ieee802.org/3/ba/, accessed: May 2015.

[4] M. Dobrescu, N. Egi, K. Argyraki, B. G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting Par-
allelism To Scale Software Routers,” Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pp. 15–28, 2009.

[5] R. Bolla and R. Bruschi, “Linux Software Router: Data Plane Optimiza-
tion and Performance Evaluation,” Journal of Networks, vol. 2, no. 3,
2007.

[6] W. Wu and M. Crawford, “The Performance Analysis of Linux Net-
working - Packet Receiving,” International Journal of Computer Com-
munications, 2006.

[7] R. Bolla and R. Bruschi, “PC-based Software Routers: High Perfor-
mance and Application Service Support,” Proceedings of the ACM
workshop on Programmable routers for extensible services of tomorrow,
pp. 27–32, 2008.

[8] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A Study of Networking Software Induced La-
tency,” in 2nd International Conference on Networked Systems (NetSys),
March 2015.

[9] Paul Emmerich and Daniel Raumer and Florian Wohlfart and Georg
Carle, “Assessing Soft- and Hardware Bottlenecks in PC-based Packet
Forwarding Systems,” in Fourteenth International Conference on Net-
works (ICN 2015), Barcelona, Spain, Apr. 2015.

[10] L. Rizzo, “Revisiting Network I/O APIs: The Netmap Framework,”
Commun. ACM, vol. 55, no. 3, pp. 45–51, Mar. 2012.

[11] “Impressive Packet Processing Performance Enables Greater Workload
Consolidation,” in Intel Solution Brief. Intel Corporation, 2013,
Whitepaper.

[12] “ntop.org: PF_RING ZC,” http://www.ntop.org/products/pf_ring/pf_
ring-zc-zero-copy/, last visited 2015-07-10.

[13] I. O. S. T. Center, “Packet Processing - Intel DPDK vSwitch,” https://01.
org/packet-processing/intel%C2%AE-onp-servers, accessed: September
2014.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[15] L. Rizzo and G. Lettieri, “VALE, a switched ethernet for virtual
machines,” CoNEXT, pp. 61–72, 2012.

[16] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of Frameworks for High-Performance Packet IO,” in
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS 2015), Oakland, USA, May 2015.

[17] C. Benvenuti, Understanding Linux Network Internals. O’Reilly Media,
Inc., 2005, vol. 1.

[18] R. Bolla and R. Bruschi, “An Effective Forwarding Architecture for
SMP Linux Routers,” Telecommunication Networking Workshop on QoS
in Multiservice IP Networks, pp. 210–216, 2008.

[19] L. Märdian, P. Emmerich, and D. Raumer, “What’s New in the Linux
Network Stack?” in Proceedings of the Seminars Future Internet
(FI) and Innovative Internet Technologies and Mobile Communications
(IITM), Summer Semester 2014, München, Germany, Apr. 2015.

[20] M. Rio, M. Goutelle, T. Kelly, R. Hughes-Jones, J. Martin-Flatin, and
Y. Li, “A Map of the Networking Code in Linux Kernel 2.4.20,”
Technical Report DataTAG-2004-1, March 2004.

[21] R. Rosen, Linux Kernel Networking: Implementation and Theory.
Apress, 2013, vol. 1.

[22] F. Electrons, “Linux Cross Reference Version 3.7,” http://lxr.
free-electrons.com/source/?v=3.7, accessed: August 2014.

[23] J. W. Buse, “Linux Network Stack,” http://www.linux.org/threads/
linux-network-stack.4620/, accessed: May 2015.

[24] I. set, “iptables,” http://ipset.netfilter.org/iptables.man.html, accessed:
May 2015.

[25] K. Egevang and P. Francis, “RFC 1631: The IP Network Address
Translator (NAT),” 1994.

[26] LWN.net, “Using read-copy-update,” http://lwn.net/Articles/37889/, ac-
cessed: May 2015.

[27] P. E. McKenney, “RCU Linux Usage,” http://www.rdrop.com/users/
paulmck/RCU/linuxusage.html, accessed: May 2015.

[28] die.net, “socket - Linux man page,” http://linux.die.net/man/7/socket,
accessed: May 2015.

[29] T. L. D. Project, “Components of Linux Traffic Control,” http://www.
tldp.org/HOWTO/Traffic-Control-HOWTO/components.html, accessed:
May 2015.

[30] Wikipedia, “Spinlock,” http://goo.gl/f1Dqhx, accessed: May 2015.
[31] APNIC, “BGP Routing Growth in 2011,” http://labs.apnic.net/blabs/?p=

25, accessed: May 2015.
[32] D. Scholz, “A Model for Performance Prediction in PC-based Packet

Processing Systems,” in Bachelor’s Thesis, München, Germany, 2015.
[33] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “A Study of

Network Stack Latency for Game Servers,” in 13th Annual Workshop
on Network and Systems Support for Games (NetGames’14), Nagoya,
Japan, Dec. 2014.

[34] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
Characteristics of Virtual Switching,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet’14), Luxembourg, Oct.
2014.

[35] BGPMON, “What caused today’s Internet hiccup,” http://www.bgpmon.
net/what-caused-todays-internet-hiccup/, accessed: August 2014.

