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Abstract Virtual switches, like Open vSwitch, have

emerged as an important part of today’s data centers.

They connect interfaces of virtual machines and pro-

vide an uplink to the physical network via network

interface cards. We discuss usage scenarios for virtual

switches involving physical and virtual network inter-

faces. We present extensive black-box tests to quantify

the throughput and latency of software switches with

emphasis on the market leader, Open vSwitch. Finally,

we explain the observed effects using white-box mea-

surements.

Keywords Network measurement · Cloud · Perfor-

mance evaluation · Performance characterization ·
MoonGen

1 Introduction

Software switches form an integral part of any virtu-

alized computing setup. They provide network access

for virtual machines (VMs) by linking virtual and also

physical network interfaces. The deployment of software

switches in virtualized environments has led to the ex-

tended term virtual switches and paved the way for the

mainstream adoption of software switches [37], which

did not receive much attention before. In order to meet

the requirements in a virtualized environment, new vir-

tual switches have been developed that focus on per-

formance and provide advanced features in addition to
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the traditional benefits of software switches: high flex-

ibility, vendor independence, low costs, and conceptual

benefits for switching without Ethernet bandwidth lim-

itations. The most popular virtual switch implementa-

tion – Open vSwitch (OvS [43]) – is heavily used in

cloud computing frameworks like OpenStack [7] and

OpenNebula [6]. OvS is an open source project that is

backed by an active community, and supports common

standards such as OpenFlow, SNMP, and IPFIX.

The performance of packet processing in software

depends on multiple factors including the underlying

hardware and its configuration, the network stack of

the operating system, the virtualization hypervisor, and

traffic characteristics (e.g., packet size, number of flows).

Each factor can significantly hurt the performance, which

gives the motivation to perform systematic experiments

to study the performance of virtual switching. We carry
out experiments to quantify performance influencing

factors and describe the overhead that is introduced

by the network stack of virtual machines, using Open

vSwitch in representative scenarios.

Knowing the performance characteristics of a switch

is important when planning or optimizing the deploy-

ment of a virtualization infrastructure. We show how

one can drastically improve performance by using a dif-

ferent IO-backend for Open vSwitch. Explicitly map-

ping virtual machines and interrupts to specific cores is

also an important configuration of a system as we show

with a measurement.

The remainder of this paper is structured as fol-

lows: Section 2 provides an overview of software switch-

ing. We explain recent developments in hardware and

software that enable sufficient performance in general

purpose PC systems based on commodity hardware,

highlight challenges, and provide an overview of Open

vSwitch. Furthermore, we present related work on per-

formance measurements in Section 3. The following Sec-
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tion 4 explains the different test setups for the measure-

ments of this paper. Section 5 and Section 6 describe

our study on the performance of software switches and

their delay respectively. Ultimately, Section 7 sums up

our results and gives advice for the deployment of soft-

ware switches.

2 Software Switches

A traditional hardware switch relies on special purpose

hardware, e.g., content addressable memory to store the

forwarding or flow table, to process and forward pack-

ets. In contrast, a software switch is the combination

of commodity PC hardware and software for packet

switching and manipulation. Packet switching in soft-

ware grew in importance with the increasing deploy-

ment of host virtualization. Virtual machines (VMs)

running on the same host system must be intercon-

nected and connected to the physical network. If the

focus lies on switching between virtual machines, soft-

ware switches are often referred to as virtual switches.

A virtual switch is an addressable switching unit of po-

tentially many software and hardware switches span-

ning over one or more physical nodes (e.g., the ”One

Big Switch” abstraction [29]). Compared to the default

VM bridging solutions, software switches like OvS are

more flexible and provide a whole range of additional

features like advanced filter rules to implement firewalls

and per-flow statistics tracking.
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Fig. 1 Application scenario of a virtual switch

Figure 1 illustrates a typical application for virtual

switching with both software and hardware switches.

The software switch connects the virtual network in-

terface cards (NIC) vNIC with the physical NICs pNIC.

Typical applications in virtualization environments in-

clude traffic switching from pNIC to vNIC, vNIC to

pNIC, and vNIC to vNIC. For example, OpenStack rec-

ommends multiple physical NICs to separate networks

and forwards traffic between them on network nodes

that implement firewalling or routing functionality [39].

As components of future network architectures packet

flows traversing a chain of VMs are also discussed [33].

The performance of virtual data plane forwarding

capabilities is a key issue for migrating existing services

into VMs when moving from a traditional data center

to a cloud system like OpenStack. This is especially

important for applications like web services which make

extensive use of the VM’s networking capabilities.

Although hardware switches are currently the dom-

inant way to interconnect physical machines, software

switches like Open vSwitch come with a broad sup-

port of OpenFlow features and were the first to sup-

port new versions. Therefore, pNIC to pNIC switching

allows software switches to be an attractive alternative

to hardware switches in certain scenarios. For software

switches the number of entries in the flow table is just

a matter of configuration whereas it is limited to a few

thousand in hardware switches [49].

2.1 State of the Art

Multiple changes in the system and CPU architectures

significantly increase the packet processing performance

of modern commodity hardware: integrated memory

controllers in CPUs, efficient handling of interrupts,

and offloading mechanisms implemented in the NICs.

Important support mechanisms are built into the net-

work adapters: checksum calculations and distribution

of packets directly to the addressed VM [8]. NICs can

transfer packets into memory (DMA) and even into

the CPU caches (DCA) [4] without involving the CPU.

DCA improves the performance by reducing the num-

ber of main memory accesses [26]. Further methods

such as interrupt coalescence aim at allowing batch

style processing of packets. These features mitigate the

effects of interrupt storms and therefore reduce the num-

ber of context switches. Network cards support modern

hardware architecture principles such as multi-core se-

tups: Receive Side Scaling (RSS) distributes incoming

packets among queues that are attached to individual

CPU cores to maintain cache locality on each packet

processing core.

These features are available in commodity hardware

and the driver needs to support them. These consider-

ations apply for packet switching in virtual host envi-

ronments as well as between physical interfaces. As the

CPU proves to be the main bottleneck [18, 35, 13, 47]

features like RSS and offloading are important to re-

duce CPU load and help to distribute load among the

available cores.

Packet forwarding apps such as Open vSwitch [43,

5], the Linux router, or Click Modular Router [31] avoid

copying packets when forwarding between interfaces by

performing the actual forwarding in a kernel module.
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However, forwarding a packet to a user space applica-

tion or a VM requires a copy operation with the stan-

dard Linux network stack. There are several techniques

based on memory mapping that can avoid this by giv-

ing a user space application direct access to the mem-

ory used by the DMA transfer. Prominent examples of

frameworks that implement this are PF RING DNA [16],

netmap [46], and DPDK [9, 1]. E.g., with DPDK run-

ning on an Intel Xeon E5645 (6x 2.4 GHz cores) an L3

forwarding performance of 35.2 Mpps can be achieved [9].

We showed in previous work that these frameworks not

only improve the throughput but also reduce the de-

lay [21]. Virtual switches like VALE [48] achieve over

17 Mpps vNIC to vNIC bridging performance by uti-

lizing shared memory between VMs and the hypervi-

sor. Prototypes similar to VALE exist [45, 33]. Virtual

switches in combination with guest OSes like ClickOS [33]

achieve notable performance of packet processing in

VMs. All these techniques rely on changes made to

drivers, VM environments, and network stacks. These

modified drivers are only available for certain NICs. Ex-

periments which combine OvS with the described high-

speed packet processing frameworks [44, 47] demon-

strate performance improvements.

2.2 Packet Reception in Linux

The packet reception mechanism implemented in Linux

is called NAPI. Salim et al. [50] describe NAPI in detail.

A network device signals incoming traffic to the OS

by triggering interrupts. During phases of high network

load, the interrupt handling can overload the OS. To

keep the system reactive for tasks other than handling

these interrupts, a NAPI enabled device allows reducing

the interrupts generated. Under high load one interrupt

signals the reception of multiple packets.

A second possibility to reduce the interrupts is of-

fered by the Intel network driver. There the Interrupt

Throttling Rate (ITR) specifies the maximum number

of interrupts per second a network device is allowed to

generate. The following measurements use the ixgbe

driver, which was investigated by Beifuß et al. [11]. This

driver has an ITR of 100,000 interrupts / second in

place for traffic below 10 MB/s (156.25 kpps), the ITR

is decreased to 20,000 if the traffic hits up to 20 MB/s

(312.5 kpps), above that throughput value the ITR is

reduced to 8,000.

2.3 Open vSwitch

Open vSwitch [5, 41, 42, 43] can be used both as a pure

virtual switch in virtualized environments and as a gen-

eral purpose software switch that connects physically

separated nodes. It supports OpenFlow and provides

advanced features for network virtualization.
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Fig. 2 Open vSwitch architecture representing the data pro-
cessing flows

Figure 2 illustrates the different processing paths

in OvS. The two most important components are the

switch daemon ovs-vswitchd that controls the kernel

module and implements the OpenFlow protocol, and

the datapath, a kernel module that implements the ac-

tual packet forwarding. The datapath kernel module

processes packets using a rule-based system: It keeps a

flow table in memory, which associates flows with ac-

tions. An example for such a rule is forwarding all pack-

ets with a certain destination MAC address to a spe-

cific physical or virtual port. Rules can also filter pack-

ets by dropping them depending on specific destination
or source IP addresses. The ruleset supported by OvS

in its kernel module is simpler than the rules defined

by OpenFlow. These simplified rules can be executed

faster than the possibly more complex OpenFlow rules.

So the design choice to explicitly not support all fea-

tures OpenFlow offers results in a higher performance

for the kernel module of OvS [42].

A packet that can be processed by a datapath-rule

takes the fast path and is directly processed in the ker-

nel module without invoking any other parts of OvS.

Figure 2 highlights this fast path with a solid orange

line. Packets that do not match a flow in the flow table

are forced on the slow path (dotted blue line), which

copies the packet to the user space and forwards it to

the OvS daemon in the user space. This is similar to

the encapsulate action in OpenFlow, which forwards a

packet that cannot be processed directly on a switch to

an OpenFlow controller. The slow path is implemented

by the ovs-vswitchd daemon, which operates on Open-

Flow rules. Packets that take this path are matched
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against OpenFlow rules, which can be added by an ex-

ternal OpenFlow controller or via a command line in-

terface. The daemon derives datapath rules for packets

based on the OpenFlow rules and installs them in the

kernel module so that future packets of this flow can

take the fast path. All rules in the datapath are associ-

ated with an inactivity timeout. The flow table in the

datapath therefore only contains the required rules to

handle the currently active flows, so it acts as a cache

for the bigger and more complicated OpenFlow flow

table in the slow path.

3 Related Work

Detailed performance analysis of PC-based packet pro-

cessing systems have been continuously addressed in

the past. In 2005, Tedesco et al. [51] presented mea-

sured latencies for packet processing in a PC and sub-

divided them to different internal processing steps. In

2007, Bolla and Bruschi [13] performed pNIC to pNIC

measurements (according to RFC 2544 [14]) on a soft-

ware router based on Linux 2.61. Furthermore, they

used profiling to explain their measurement results. Do-

brescu et al. [18] revealed performance influences of

multi-core PC systems under different workloads [17].

Contributions to the state of the art of latency mea-

surements in software routers were also made by An-

grisani et al. [10] and Larsen et al. [32] who performed

a detailed analysis of TCP/IP traffic latency. However,

they only analyzed the system under low load while

we look at the behavior under increasing load up to

10 Gbit/s. A close investigation of the of latency in

packet processing software like OvS is presented by Bei-
fuß et al. [11].

In the context of different modifications to the guest

and host OS network stack (cf. Section 2.1), virtual

switching performance was measured [48, 33, 15, 44, 47,

27] but the presented data provide only limited possibil-

ity for direct comparison. Other studies addressed the

performance of virtual switching within a performance

analysis of cloud datacenters [53], but provide less de-

tailed information on virtual switching performance.

Running network functions in VMs and connect-

ing them via a virtual switch can be used to imple-

ment network function virtualization (NFV) with ser-

vice function chaining (SFC) [23]. Martins et al. present

ClickOS, a software platform for small and resource-

efficient virtual machines implementing network func-

tions [34]. Niu et al. discuss the performance of ClickOS [34]

and SoftNIC [24] when used to implement SFC [38].

1 The “New API” network interface was introduced with
this kernel version.

Panda et al. consider the overhead of virtualization too

high to implement SFC and present NetBricks [40], a

NFV framework for writing fast network functions in

the memory-safe language Rust. Our work does not fo-

cus on NFV: we provide benchmark results for Open

vSwitch, a mature and stable software switch that sup-

ports arbitrary virtual machines.

The first two papers from the OvS developers [41,

42] only provide coarse measurements of throughput

performance in bits per second in vNIC to vNIC switch-

ing scenarios with Open vSwitch. Neither frame lengths

nor measurement results in packets per second (pps)

nor delay measurements are provided. In 2015 they pub-

lished design considerations for efficient packet process-

ing and how they reflect in the OvS architecture [43].

In this publication, they also presented a performance

evaluation with focus on the FIB lookup, as this is sup-

ported by hierarchical caches in OvS. In [12] the au-

thors measured a software OpenFlow implementation

in the Linux kernel that is similar to OvS. They com-

pared the performance of the data plane of the Linux

bridge-utils software, the IP forwarding of the Linux

kernel and the software implementation of OpenFlow

and studied the influence of the size of the used lookup

tables. A basic study on the influence of QoS treat-

ment and network separation on OvS can be found in

[25]. The authors of [28] measured the sojourn time of

different OpenFlow switches. Although the main focus

was on hardware switches, they measured a delay be-

tween 35 and 100 microseconds for the OvS datapath.

Whiteaker et al. [54] observed a long tail distribution

of latencies when packets are forwarded into a VM but

their measurements were restricted to a 100 Mbit/s net-

work due to hardware restrictions of their time stamp-

ing device. Rotsos et al. [49] presented OFLOPS, a

framework for OpenFlow switch evaluation. They ap-

plied it, amongst others, to Open vSwitch. Deployed on

systems with a NetFPGA the framework measures ac-

curate time delay of OpenFlow table updates but not

the data plane performance. Their study revealed ac-

tions that can be performed faster by software switches

than by hardware switches, e.g., requesting statistics.

We previously presented delay measurements of VM

network packet processing in selected setups on an ap-

plication level [21].

Latency measurements are sparse in the literature

as they are hard to perform in a precise manner [20].

Publications often rely on either special-purpose hard-

ware, often only capable of low rates, (e.g., [13, 54])

or on crude software measurement tools that are not

precise enough to get insights into latency distributions

on low-latency devices such as virtual switches. We use

our packet generator MoonGen that supports hardware
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timestamping on Intel commodity NICs for the latency

evaluation here [20].

We addressed the throughput of virtual switches

in a previous publication [22] on which this paper is

based. This extended version adds latency measure-

ments and new throughput measurements on updated

software versions of the virtual switches.

4 Test Setup

The description of our test setup reflects the specific

hardware and software used for our measurements and

includes the various VM setups investigated. Figure 3

shows the server setup.

4.1 Hardware Setup for Throughput Tests

Our device under test (DuT ) is equipped with an In-

tel X520-SR2 and an Intel X540-T2 dual 10 GbE net-

work interface card which are based on the Intel 82599

and Intel X540 Ethernet controller. The processor is

a 3.3 GHz Intel Xeon E3-1230 V2 CPU. We disabled

Hyper-Threading, Turbo Boost, and power saving fea-

tures that scale the frequency with the CPU load be-

cause we observed measurement artifacts caused by these

features.

In black-box tests we avoid any overhead on the

DuT through measurements, so we measure the offered

load and the packet rate on the packet generator and

sink. The DuT runs the Linux tool perf for white-box

tests; this overhead reduces the maximum packet rate

by ∼ 1%.

Figure 3 shows the setups for tests involving VMs

on the DuT (Figure 3a, 3b, and 3c) and a pure pNIC

switching setup (Figure 3d), which serves as baseline

for comparison.

4.2 Software Setup

The DuT runs the Debian-based live Linux distribution

Grml with a 3.7 kernel, the ixgbe 3.14.5 NIC driver with

interrupts statically assigned to CPU cores, OvS 2.0.0

and OvS 2.4.0 with DPDK using a static set of Open-

Flow rules, and qemu-kvm 1.1.2 with VirtIO network

adapters unless mentioned otherwise.

The throughput measurements use the packet gen-

erator pfsend from the PF RING DNA [16] framework.

This tool is able to generate minimally sized UDP pack-

ets at line rate on 10 Gbit interfaces (14.88 Mpps). The

packet rate is measured by utilizing statistics registers

of the NICs on the packet sink.
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Fig. 3 Investigated test setups

As the PF RING based packet generator does not

support delay measurements, we use our traffic genera-

tor MoonGen [20] for those. This tool also can generate

full line rate traffic with minimally sized UDP pack-

ets. MoonGen uses hardware timestamping features of

Intel commodity NICs to measure latencies with sub-

microsecond precision and accuracy. MoonGen also pre-

cisely controls the inter-departure times of the gen-

erated packets. The characteristics of the inter-packet

spacings are of particular interest for latency measure-

ments as it can have significant effects on the processing

batch size in the system under test [20].

4.3 Setup with Virtual Machines

Figure 3a, 3b, and 3c show the setups for tests involv-

ing VMs on the DuT. Generating traffic efficiently di-

rectly inside a VM proved to be a challenging prob-

lem because both of our load generators are based on

packet IO frameworks, which only work with certain

NICs. Porting them to a virtualization-aware packet

IO framework (e.g., vPF RING [15]), would circumvent

the VM-hypervisor barrier, which we are trying to mea-

sure.

The performance of other load generators was found

to be insufficient, e.g., the iperf utility only managed

to generate 0.1 Mpps. Therefore, we generate traffic ex-

ternally and send it through a VM. A similar approach

to load generation in VMs can be found in [2]. Running

profiling in the VM shows that about half of the time

is spent receiving traffic and half of it is spent sending

traffic out. Therefore, we assume that the maximum

possible packet rate for a scenario in which a VM inter-

nally generates traffic is twice the value we measured

in the scenario where traffic is sent through a VM.



6 Paul Emmerich et al.

4.4 Adoptions for Delay Measurements

Precise and accurate latency measurements require a

synchronized clock on the packet generator and sink.

To avoid complex synchronization, we send the out-

put from the DuT back to the source host. The mea-

surement server generates traffic on one port, the DuT

forwards traffic between the two ports of its NIC and

sends it back to second port on the measurement server.

Therefore, the delay measurements are not possible on

all Setups (cf. Figure 3). For the first delay measure-

ments the DuT forwards traffic between two pNICs as

depicted in Figure 3d. We use these results as baseline

to compare them with delays in the second setup, which

uses a VM to forward traffic between the two pNICs as

shown in Figure 3b.

Our latency measurements require the traffic to be

sent back to the source. We used a X540 NIC for the la-

tency tests because this interface was the only available

dual port NIC in our testbed.

5 Throughput Measurements

We ran tests to quantify the throughput of several soft-

ware switches with a focus on OvS in scenarios involving

both physical and virtual network interfaces. Through-

put can be measured as packet rate in Mpps or band-

width in Gbit/s. We report the results of all experi-

ments as packet rate at a given packet size.

5.1 Throughput Comparison

Table 1 compares the performance of several forwarding

techniques with a single CPU core per VM and switch.

DPDK vSwitch started as a port of OvS to the user

space packet processing framework DPDK [3] and was

later merged into OvS. DPDK support is a compile-

time option in recent versions of OvS. We use the name

DPDK vSwitch here to refer to OvS with DPDK sup-

port enabled.

DPDK vSwitch is the fastest forwarding technique,

but it is still experimental and not yet ready for real-

world use: we found it cumbersome to use and it was

prone to crashes requiring a restart of all VMs to re-

store connectivity. Moreover, the administrator needs

to statically assign CPU cores to DPDK vSwitch. It

then runs a busy wait loop that fully utilizes these CPU

cores at all times – there is 100% CPU load, even when

there is no network load. There is no support for any

power-saving mechanism or yielding the CPU between

packets. This is a major concern for green computing,
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Fig. 4 Packet rate with various packet sizes and flows

efficiency, and resource allocation. Hence, our main fo-

cus is the widely deployed kernel forwarding techniques,

but we also include measurements for DPDK vSwitch

to show possible improvements for the next generation

of virtual switches.

Guideline 1 Use Open vSwitch instead of the Linux

bridge or router.

Open vSwitch proves to be the second fastest virtual

switch and the fastest one that runs in the Linux kernel.

The Linux bridge is slightly faster than IP forwarding

when it is used as a virtual switch with vNICs. IP for-

warding is faster when used between pNICs. This shows

that OvS is a good general purpose software switch for

all scenarios. The rest of this section will present more

detailed measurements of OvS. All VMs were attached

via VirtIO interfaces.

There are two different ways to include VMs in

DPDK vSwitch: Intel ivshmem and vhost user with Vir-

tIO. Intel ivshmem requires a patched version of qemu
and is designed to target DPDK applications running

inside the VM. The latter is a newer implementation

of the VM interface and the default in DPDK vSwitch

and works with stock qemu and targets VMs that are

not running DPDK.

Intel ivshmem is significantly faster with DPDK run-

ning inside the VM [2]. However, it was removed from

DPDK in 2016 [19] due to its design issues and low

number of users [52]. The more generic, but slower,

vhost user API connects VMs via the stable and stan-

dardized VirtIO interface [36]. All our measurements

involving VMs in DPDK vSwitch were thus conducted

with vhost user and VirtIO.

5.2 Open vSwitch Performance in pNIC to pNIC

Forwarding

Figure 4 shows the basic performance characteristics of

OvS in an unidirectional forwarding scenario between
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Table 1 Single Core Data Plane Performance Comparison

Mpps from pNIC to

Application pNIC vNIC vNIC to pNIC vNIC to vNIC

Open vSwitch 1.88 0.85 0.3 0.27
IP forwarding 1.58 0.78 0.19 0.16
Linux bridge 1.11 0.74 0.2 0.19
DPDK vSwitch 13.51 2.45 1.1 1.0
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Fig. 5 Packet rate of different Open vSwitch versions, 1 to
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two pNICs with various packet sizes and flows. Flow

refers to a combination of source and destination IP

addresses and ports. The packet size is irrelevant until

the bandwidth is limited by the 10 Gbit/s line rate. We

ran further tests in which we incremented the packet

size in steps of 1 Byte and found no impact of packet

sizes that are not multiples of the CPU’s word or cache

line size. The throughput scales sub-linearly with the

number of flows as the NIC distributes the flows to dif-

ferent CPU cores. Adding an additional flow increases

the performance by about 90% until all four cores of
the CPU are utilized.

As we observed linear scaling with earlier versions

of OvS we investigated further. Figure 5 compares the

throughput and scaling with flows of all recent versions

of OvS that are compatible with Linux kernel 3.7. Ver-

sions prior to 1.11.0 scale linearly whereas later ver-

sions only scale sub-linearly, i.e. adding an additional

core does not increase the throughput by 100% of the

single flow throughput. Profiling reveals that this is due

to a contended spin lock that is used to synchronize ac-

cess to statistics counters for the flows. Later versions

support wild card flows in the kernel and match the

whole synthetic test traffic to a single wildcarded data-

path rule in this scenario. So all packets of the different

flows use the same statistics counters, this leads to a

lock contention. A realistic scenario with multiple rules

or more (virtual) network ports does not exhibit this

behavior. Linear scaling with the number of CPU cores

can, therefore, be assumed in real-world scenarios and
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further tests are restricted to a single CPU core. The

throughput per core is 1.88 Mpps.

5.3 Larger Number of Flows

We derive a test case from the OvS architecture de-

scribed in Section 2.3: Testing more than four flows ex-

ercises the flow table lookup and update mechanism in

the kernel module due to increased flow table size. The

generated flows for this test use different layer 2 ad-

dresses to avoid the generation of wild card rules in the

OvS datapath kernel module. This simulates a switch

with multiple attached devices.

Figure 6 shows that the total throughput is affected

by the number of flows due to increased cache misses

during the flow table lookup. The total throughput drops
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from about 1.87 Mpps2 with a single flow to 1.76 Mpps

with 2000 flows. The interrupts were restricted to a sin-

gle CPU core.

Another relevant scenario for a cloud system is cloning

a flow and sending it to multiple output destinations,

e.g., to forward traffic to an intrusion detection system

or to implement multicast. Figure 7 shows that per-

formance drops by 30% when a flow is sent out twice

and another 25% when it is copied one more time. This

demonstrates that a large amount of the performance

can be attributed to packet I/O and not processing.

About 30% of the CPU time is spent in the driver and

network stack sending packets. This needs to be con-

sidered when a monitoring system is to be integrated

into a system involving software switches. An intrusion

detection system often works via passive monitoring of

mirrored traffic. Hardware switches can do this without

overhead in hardware, but this is a significant cost for

a software switch.

5.4 Open vSwitch Throughput with Virtual Network

Interfaces

Virtual network interfaces exhibit different performance

characteristics than physical interfaces. For example,

dropping packets in an overload condition is done effi-

ciently and concurrently in hardware on a pNIC whereas

a vNIC needs to drop packets in software. We, there-

fore, compare the performance of the pNIC to pNIC

forwarding with the pNIC to vNIC scenario shown in

Figure 3a.

Figure 8 compares the observed throughput under

increasing offered load with both physical and virtual

interfaces. The graph for traffic sent into a VM shows

an inflection point at an offered load of 0.5 Mpps. The

throughput then continues to increase until it reaches

0.85 Mpps, but a constant ratio of the incoming pack-

ets is dropped. This start of drops is accompanied by

a sudden increase in CPU load in the kernel. Profil-

ing the kernel with perf shows that this is caused by

increased context switching and functions related to

packet queues. Figure 9 plots the CPU load caused

by context switches (kernel function switch to) and

functions related to virtual NIC queues at the tested

offered loads with a run time of five minutes per run.

This indicates that a congestion occurs at the vNICs

and the system tries to resolve this by forcing a context

switch to the network task of the virtual machine to

retrieve the packets. This additional overhead leads to

drops.

2 Lower than the previously stated figure of 1.88 Mpps due
to active profiling.
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Fig. 11 Throughput without explicitly pinning all tasks to
CPU cores

Packet sizes are also relevant in comparison to the

pNIC to pNIC scenario because the packet needs to

be copied to the user space to forward it to a VM.

Figure 10 plots the throughput and the CPU load of

the kernel function copy user enhanced fast string,

which copies a packet into the user space, in the for-

warding scenario shown in Figure 3a. The throughput
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Fig. 12 CPU load when forwarding packets with Open
vSwitch

drops only marginally from 0.85 Mpps to 0.8 Mpps until

it becomes limited by the line rate with packets larger

than 656 Byte. Copying packets poses a measurable but

small overhead. The reason for this is the high mem-

ory bandwidth of modern servers: our test server has a

memory bandwidth of 200 Gbit per second. This means

that VMs are well-suited for running network services

that rely on bulk throughput with large packets, e.g.,

file servers. Virtualizing packet processing or forward-

ing systems that need to be able to process a large num-

ber of small packets per second is, however, problem-

atic.

We derive another test case from the fact that the

DuT runs multiple applications: OvS and the VM re-

ceiving the packets. This is relevant on a virtualiza-
tion server where the running VMs generate substan-

tial CPU load. The VM was pinned to a different core

than the NIC interrupt for the previous test. Figure 11

shows the throughput in the same scenario under in-

creasing offered load, but without pinning the VM to a

core. This behavior can be attributed to a scheduling

conflict because the Linux kernel does not measure the

load caused by interrupts properly by default. Figure 12

shows the average CPU load of a core running only OvS

as seen by the scheduler (read from the procfs pseudo

filesystem with the mpstat utility) and compares it to

the actual average load measured by reading the CPU’s

cycle counter with the profiling utility perf.

Guideline 2 Virtual machine cores and NIC inter-

rupts should be pinned to disjoint sets of CPU cores.

The Linux scheduler does not measure the CPU load

caused by hardware interrupts properly and therefore

schedules the VM on the same core, which impacts the

performance. CONFIG IRQ TIME ACCOUNTING is a kernel

option, which can be used to enable accurate reporting

of CPU usage by interrupts, which resolves this conflict.

However, this option is not enabled by default in the

Linux kernel because it slows down interrupt handlers,

which are designed to be executed as fast as possible.

Guideline 3 CPU load of cores handling interrupts

should be measured with hardware counters using perf.

We conducted further tests in which we sent exter-

nal traffic through a VM and into a different VM or to

another pNIC as shown in Figure 3b and 3c in Section 4.

The graphs for the results of more detailed tests in these

scenarios provide no further insight beyond the already

discussed results from this section because sending and

receiving traffic from and to a vNIC show the same

performance characteristics.

5.5 Conclusion

Virtual switching is limited by the number of packets,

not the overall throughput. Applications that require a

large number of small packets, e.g., virtualized network

functions, are thus more difficult for a virtual switch

than applications relying on bulk data transfer, e.g.,

file servers. Overloading virtual ports on the switch can

lead to packet loss before the maximum throughput is

achieved.

Using the DPDK backend in OvS can improve the

throughput by a factor of 7 when no VMs are involved.

With VMs, an improvement of a factor of 3 to 4 can be

achieved, cf. Table 1. However, DPDK requires stati-

cally assigned CPU cores that are constantly being uti-

lized by a busy-wait polling logic, causing 100% load on

these cores. Using the slower default Linux IO backend
results in a linear correlation between network load and

CPU load, cf. Figure 12.

6 Latency Measurements

In another set of measurements we address the packet

delay introduced by software switching in OvS. There-

fore, we investigate two different scenarios. In the first

experiment, traffic is forwarded between two physical

interfaces (cf. Figure 3d). For the second scenario the

packets are not forwarded between the physical inter-

faces directly but through a VM as it is shown in Fig-

ure 3b.

6.1 Forwarding between Physical Interfaces

Figure 13 shows the measurement for a forwarding be-

tween two pNICs by Open vSwitch. This graph features
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Fig. 14 Latency distribution for forwarding between pNICs

four different levels of delay. The first level has an aver-

age latency of around 15 µs and a packet transfer rate

of up to 179 kpps. Above that transfer rate the sec-

ond level has a delay value of around 28 µs and lasts

up to 313 kpps. Beyond that rate the third level of-

fers a latency of around 53 µs up to a transfer rate of

1.78 Mpps. We selected three different points (P1 - P3)

– one as a representative for each of the levels before

the system becomes overloaded (cf. Figure 13). Table 2

also includes these points to give typical values for their

corresponding level.

The reason for the shape and length of the first

three levels is the architecture of the ixgbe driver as

described by Beifuß et al. [11]. This driver limits the

interrupt rate to 100k per second for packet rates lower

than 156.2 kpps, which relates the highest transfer rate

measured for the first level in Figure 13. The same ob-

servation holds for the second and the third level. The

interrupt rate is limited to 20k per second for transfer

rates lower than 312.5 kpps, and to 8k per second above

that. These packet rates equal to the step into the next

plateau of the graph.

At the end of the third level the latency drops again

right before the switch is overloaded. Note that the drop

in latency occurs at the point at which the Linux sched-

uler begins to recognize the CPU load caused by inter-

rupts (cf. Section 5.4, Figure 12). The Linux scheduler

is now aware that the CPU core is almost fully loaded

with interrupt handlers and therefore stops scheduling

other tasks on it. This causes a slight decrease in la-

tency. Then the fourth level is reached and the latency

increases to about 1 ms as Open vSwitch can no longer

cope with the load and all queues fill up completely.

We visualized the distributions of latency at three

measurement points P1 – P3 (cf. Figure 13 and Ta-

ble 2). The distributions at these three measurements

are plotted as histogram with bin width of 0.25 µs in

Figure 14. The three selected points show the typical

shapes of the probability density function of their re-

spective levels.

At P1 the distribution shows the behavior before

the interrupt throttle rate affects processing, i.e. one

interrupt per packet is used. The latencies are approxi-

mately normally distributed as each packet is processed

independently.

The distribution at P2 demonstrates the effect of

the ITR used by the driver. A batch of packets accu-

mulates on the NIC and is then processed by a single

interrupt. This causes a uniform distribution as each

packet is in a random position in the batch.

For measurement P3 the distribution depicts a high

load at which both the interrupt throttle rate and the

poll mechanism of the NAPI affect the distribution. A

significant number of packets accumulates on the NIC

before the processing is finished. Linux then polls the

NIC again after processing, without re-enabling inter-

rupts in between, and processes a second smaller batch.

This causes an overlay of the previously seen uniform

distribution with additional peaks caused by the NAPI

processing.

Overloading the system leads to an unrealistic ex-

cessive latency of ≈ 1 ms and its exact distribution is of

little interest. Even the best-case 1st percentile shows

a latency of about 375µs in all measurements during

overload conditions, far higher than even the worst-case

of the other scenarios.

Guideline 4 Avoid overloading ports handling latency-

critical traffic.
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Fig. 16 Latency distribution of packet forwarding through
VM

6.2 Forwarding Through Virtual Machines

For delay measurements of VMs we use our setup as

depicted in Figure 3b. There the traffic originating from

the measurement server is forwarded through the VM

and back to the measurement server.

Figure 15 compares the latency in this scenario with

the pNIC forwarding from Section 6.1. Note that the

plot uses a logarithmic y-axis, so the gap between the

slowest and the fastest packets for the vNIC scenario is

wider than in the pNIC scenario even though it appears

smaller.

The graph for the vNICs does not show plateaus of

steady latency like the pNIC graph but a rather smooth

growth of latency. Analogous to P1 – P3 in the pNIC

scenario, we selected three points V1 – V3 as depicted

in Figure 15. Each point is representative to the relat-

ing levels of latency. The three points are also available

in Table 2. The development of the latency under in-

creasing load shows the same basic characteristics as in

the pNIC scenario due to the interrupt-based process-

ing of the incoming packets. However, the additional

work-load and the emulated NICs smooth the sharp in-

flection points and also increase the delay.

The histograms for the latency at the lowest investi-

gated representatively selected packet rate – P1 in Fig-

ure 14 and V1 in Figure 16 – have a similar shape.

The shape of the histogram in V3 is a long-tail dis-

tribution, i.e. while the average latency is low, there

is a significant number of packets with a high delay.

This distribution was also observed by Whiteaker et

al. [54] in virtualized environments. However, we could

only observe this type of traffic under an overload sce-

nario like V3. Note that the maximum packet rate for

this scenario was previously given as 300 kpps in Ta-

ble 1, so V3 is already an overload scenario. We could

not observe such a distribution under normal load. The

worst-case latency is also significantly higher than in

the pNIC scenario due to the additional buffers in the

vNICs.

Guideline 5 Avoid virtualizing services that are sen-

sitive to a high 99th percentile latency.

6.3 Improving Latency with DPDK

Porting OvS to DPDK also improves the latency. Fig-

ure 17 visualizes representative histograms of latency

probability distributions of forwarding between physi-

cal and virtual interfaces.

DPDK uses a busy-wait loop polling all NICs in-
stead of relying on interrupts, resulting in the previ-

ously mentioned constant CPU load of 100% on all as-

signed cores. The resulting latency is thus a normal

distribution and there are no sudden changes under

increasing load as no interrupt moderation algorithms

are used. We measured a linearly increasing median la-

tency from 7.8µs (99th percentile: 8.2µs) at 0.3 Mpps

to 13.9µs (99th percentile: 23.0µs) at 13.5 Mpps when

forwarding between two physical network interfaces.

Adding virtual machines leads again to a long-tail

distribution as the traffic is processed by multiple differ-

ent processes on different queues. The virtual machine

still uses the VirtIO driver which also does not feature

sophisticated interrupt adaptation algorithms. Hence,

the distribution stays stable regardless of the applied

load. The overall median latency stayed with the range

of 13.5µs to 14.1µs between 0.03 Mpps and 1 Mpps.

However, the 99th percentile increases from 15µs Mpps

to 150µs over the same range, i.e. the long tail grows

longer as the load increases.
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Table 2 Comparison of Latency

Scenario Load
[kpps]

Load*
[%]

Average
[µs]

Std.Dev.
[µs]

25th
Perc. [µs]

50th
Perc. [µs]

95th
Perc. [µs]

99th
Perc. [µs]

P1 (pNIC) 44.6 2.3 15.8 4.6 13.4 15.0 17.3 23.8
P2 (pNIC) 267.9 14.0 28.3 11.2 18.6 28.3 37.9 45.8
P3 (pNIC) 1161.7 60.5 52.2 27.0 28.5 53.0 77.0 89.6
V1 (vNIC) 39.0 11.4 33.0 3.3 31.2 32.7 35.1 37.3
V2 (vNIC) 283.3 82.9 106.7 16.6 93.8 105.5 118.5 130.8
V3 (vNIC) 322.3 94.3 221.1 49.1 186.7 212.0 241.9 319.8

*) Normalized to the load at which more than 10% of the packets were dropped, i.e.
a load ≥ 100% would indicate an overload scenario

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

Latency [µs]

P
ro
b
ab

il
it
y
[%

]

DP1 (4.1 Mpps)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

Latency [µs]

P
ro
b
ab

il
it
y
[%

]

VP1 (0.8 Mpps)

Fig. 17 Latency distribution of forwarding with DPDK

6.4 Conclusion

Latency depends on the load of the switch. This effect

is particularly large when OvS is running in the Linux

kernel due to interrupt moderation techniques leading

to changing latency distributions as the load increases.

Overloading a port leads to excessive worst-case laten-

cies that are one to two orders of magnitude worse than

latencies before packet drops occur. Virtual machines

exhibit a long-tail distribution of the observed laten-

cies under high load. These problems can be addressed

by running OvS with DPDK which exhibits a more con-

sistent and lower latency profile.

7 Conclusion

We analyzed the performance characteristics and limi-

tations of the Open vSwitch data plane, a key element

in many cloud environments. Our study showed good

performance when compared to other Linux kernel for-

warding techniques, cf. Section 5.1. A few guidelines for

system operators can be derived from our results:

Guideline 1 To improve performance, OvS should

be preferred over the default Linux tools when using

cloud frameworks. Consider DPDK als backend for OvS

for future deployments.

Guideline 2 Virtual machine cores and NIC in-

terrupts should be pinned to disjoint sets of CPU cores.

Figure 11 shows performance drops when no pinning

is used. The load caused by processing packets on the

hypervisor should also be considered when allocating

CPU resources to VMs. Even a VM with only one vir-

tual CPU core can load two CPU cores due to virtual

switching. The total system load of Open vSwitch can

be limited by restricting the NIC’s interrupts to a set

of CPU cores instead of allowing them on all cores. If

pinning all tasks is not feasible, make sure to measure

the CPU load caused by interrupts properly.

Guideline 3 CPU load of cores handling inter-

rupts should be measured with hardware counters using

perf. The kernel option CONFIG IRQ TIME ACCOUNTING

can be enabled despite its impact on the performance of

interrupt handlers, to ensure accurate reporting of CPU

utilization with standard tools, cf. Figure 12. Note that

the performance of OvS is not impacted by this option

as the Linux kernel prefers polling over interrupts under

high load.

Guideline 4 Avoid overloading ports handling

latency-critical traffic. Overloading a port impacts la-

tency by up to two orders of magnitude due to buffering

in software. Hence, bulk traffic should be kept separated

from latency-critical traffic.

Guideline 5 Avoid virtualizing services that are

sensitive to a high 99th percentile latency. Latency dou-

bles when using a virtualized application compared to

a natively deployed application, cf. Section 6. This is

usually not a problem as the main share of latency is

caused by the network and not by the target server.

However, the worst-case latency (99th percentile) for

packets increases by an order of magnitude for packets

processed by a VM, cf. Section 6.2. This can be prob-

lematic for protocols with real-time requirements.

Virtualizing services that rely on bulk data trans-

fer via large packets, e.g., file servers, achieve a high

throughput measured in Gbit/s, cf. Figure 10. The per-

packet overhead dominates over the per-byte overhead.

Services relying on smaller packets are thus more diffi-

cult to handle. Not only the packet throughput suffers

from virtualization: latency also increases by a factor

of 2 and the 99th percentile even by an order of mag-
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nitude. However, moving packet processing systems or

virtual switches and routers into VMs is problematic

because of the high overhead per packet that needs to

cross the VM/host barrier and because of their latency-

sensitive nature.

The shift to user space packet-processing frameworks

like DPDK promises substantial improvements for both

throughput (cf. Section 5.1) and latency (cf. Section 6).

DPDK is integrated, but disabled by default, in Open

vSwitch. However, the current version we evaluated still

had stability issues and is not yet fit for production.

Further issues with the DPDK port are usability as

complex configuration is required and the lack of de-

bugging facilities as standard tools like tcpdump are

currently not supported. Intel is currently working on

improving these points to get DPDK vSwitch into pro-

duction [30].
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